CP-Violating Asymmetries in $b \to s$ penguins $B^0 \to K^0_S K^0_S K^0_S, B^0 \to \pi^0 \pi^0 K^0_S$

Lei Zhang

On Behalf of the BABAR Collaboration

Joint Meeting Of Pacific Region Particle Physics Communities

Oct 29-Nov 3 2006, Honolulu, Hawaii

CKM Matrix and *CP* **Violation**

• Quark mixing (CKM matrix)

$$A_{f_{CP}}(\Delta t) = C_{f_{CP}} \cos(\Delta m_d \Delta t) - S_{f_{CP}} \sin(\Delta m_d \Delta t)$$

CPV in $b \rightarrow s$ penguin, $K^0_S K^0_S K^0_S$, $\pi^0 \pi^0 K^0_S$

CPV in $b \rightarrow s$ Penguin

- $b \rightarrow c$ tree to extract $\sin 2\beta$
- $b \rightarrow s$ penguin diagram
 - $\sin 2\beta_{eff} \approx \sin 2\beta$ in SM
 - Uncertainties on ΔS due to SM pollution
 - Possible contributions from New Physics (NP)
- $B^0 \to K^0_S K^0_S K^0_S$, pure penguin channel, *CP*-even final state. $(B^0 \to P_0 P_0 P_0')$
 - $C = 0, S = -\sin 2\beta$ in SM
- $B \rightarrow \pi^0 \pi^0 K_s^0$, *CP*-even final state $b \rightarrow s$ penguin dominated tree contributions CKM and color suppressed

The PEP-II B Factory and BABAR Detector

BABAR-UCR

Vertex Reconstruction

- No charged tracks from B_{rec}^0 vertex
 - Need excellent vertexing from K_s^0
 - $c\tau(K_s^0) \approx 27\,\mathrm{mm}$
 - SVT is crucial
 - Must have first 3-layer hits radii of inner layers: 32, 40, and 54 mm

- Interaction Point (IP) constrained Vertexing
 - Take advantage of small beam size $\sigma_x \sim 200 \,\mu\text{m}, \, \sigma_y \sim 4 \,\mu\text{m}$
 - B^0 production vertex constrained to the beam-spot on x y plane
- Δt resolution is similar to other BABAR analyses

Event Reconstruction

• $\pi^0 o \gamma\gamma, K^0_S o \pi^+\pi^-$

•
$$B^0 \to 3K_S^0(\pi^+\pi^-)$$
, or $B^0 \to K_S^0K_S^0K_S^0$ with one $K_S^0 \to \pi^0$

- $B^0 \rightarrow \pi^0 \pi^0 K_s^0$
- Main background from $e^+e^- \rightarrow q\overline{q}$, q = u, d, s, c continuum
 - Event-shape variables to reject continuum
 - Include into Neural Net or Fisher variable

B Candidate Reconstruction

• B^0 decay kinematic variables:

 ΔE and $m_{\rm ES}$

-
$$\Delta E = E_B^* - \sqrt{s/2}$$
,
- $m_{\text{ES}} = \sqrt{s/4 - (p_B^*)^2}$, or

 m_B and m_{miss}

- $m_B = |q_{rec}|$ - $m_{miss} = |q_{e^+e^-} - q_B|$
- Major *B* backgrounds: $B^0 \rightarrow K^0_S K^0_S K^0_S$
 - Vetoes on $B^0 \rightarrow \chi_{c0/c2}(K^0_S K^0_S) K^0_S$
 - Other *B* backgrounds negligible for $B^0 \to 3K_S^0(\pi^+\pi^-)$

 $B^0 o \pi^0 \pi^0 K_S^0$

- Vetoes on $B^0 \to \chi_{c0}(\pi^0 \pi^0) K_s^0$
- Invariant mass cuts on $B^0 \to K^0_S \pi^0$ and $D^0 \to K^0_S \pi^0$
- Helicity cuts to remove $B^0 \to K^{*0} \gamma$
- Peaking and non-peaking *B* backgrounds included

B⁰ Tagging

- Coherent production of $B^0\overline{B}^0$ from $\Upsilon(4S)$
- $B_{rec} \rightarrow f_{CP}$
- The other *B*, B_{tag} , partially reconstructed, to determine the flavor of B_{rec} at $\Delta t = 0$
- Categorize B_{tag} w.r.t. decay information and mis-tag rate
 - 7 mutually exclusive tagging categories:
 Lepton, KaonI, KaonII, Kaon-Pion, Pion, Other, NoTag
- Total effective tagging efficiency $Q \approx 30.5\%$

Analysis Techniques

- Extract signal yields, *C*, *S* from unbinned maximum-likelihood fit
- Likelihood function

$$\mathcal{L} = \frac{\exp(-\sum_j n_j)}{N!} \prod_{i=1}^N \left(\sum_j n_j \mathcal{P}_j(x_i; a_i) \right)$$

- In fit models, signal and continuum background included
 - *B* background included for $B^0 \to K^0_S K^0_S K^0_S$ with one $K^0_S \to \pi^0 \pi^0$
 - Peaking *B* and non-peaking *B* background included for $B^0 \rightarrow \pi^0 \pi^0 K_s^0$
- Continuum parameters float as many as we can
- Core parameters of ΔE and $m_{\rm ES}$ for $B^0 \to 3K_S^0(\pi^+\pi^-)$ floated
- Fit models validated with simulated studies
- Blind analysis until finalized

BABAR-UCR

CPV in $b \rightarrow s$ penguin, $K_S^0 K_S^0 K_S^0$, $\pi^0 \pi^0 K_S^0$

Yields for $B^0 \rightarrow K^0_S K^0_S K^0_S$

- All results are preliminary
- Based on 347M $B\overline{B}$ pairs
- Observables:
 - (\pm) : ΔE , m_{ES} , \mathcal{F} , Δt , $\sigma(\Delta t)$, tagging
 - (00): m_{miss} , m_B , l_2/l_0 , $m_{\pi^0\pi^0}$, Δt , $\sigma(\Delta t)$, tagging
- Yields:

	$B_{CP(+-)}$	B _{CP(00)}	
N_{S}	116 ± 12	60 ± 12	
$N_{q\overline{q}}$	670 ± 26	4482 ± 71	
$N_{B\bar{B}}$	_	$8{\pm}25$	

• _s*Plot* (arxiv:physics/0402083)

CPV in $b \rightarrow s$ penguin, $K_S^0 K_S^0 K_S^0$, $\pi^0 \pi^0 K_S^0$

C and S for $B^0 \to K^0_S K^0_S K^0_S$

• Combined fit for *C* and *S*

• $_{s}\mathcal{P}lot$:

	$B_{CP(+-)}$	<i>B</i> _{<i>CP</i>(00)}	Combined
S	$-1.04\substack{+0.26 \\ -0.17}$	$0.37\substack{+0.52 \\ -0.54}$	$-0.66 \pm 0.26 \pm 0.08$
С	$-0.31\substack{+0.25 \\ -0.23}$	0.21 ± 0.38	$-0.14 \pm 0.22 \pm 0.05$

- Dominant systematic errors:
 - PDF shapes
 - Bkg composition
 - Δt resolution
 - Fit bias

Yields for
$$B^0
ightarrow \pi^0 \pi^0 K_s^0$$

- Based on 227M $B\overline{B}$ pairs
- Observables: $m_{\rm ES}$, $\Delta E / \sigma_{\Delta E}$, event-shape NN, Δt , $\sigma(\Delta t)$, tagging
- Yield components: signal, peaking and non-peaking *B* background, and continuum
- $N_{sig} = 117 \pm 27$ (Stat. Signf. 5.8 σ)
- $m_{\rm ES}$ and NN projection plots (after signal LLR cuts):

C and *S* for $B^0 o \pi^0 \pi^0 K_S^0$

- $S = 0.84 \pm 0.71 \pm 0.08$
- $C = 0.27 \pm 0.52 \pm 0.13$
- Fix $S = -\sin 2\beta = -0.725$ and C = 0, NLL increase 2.5
- Dominant systematic errors:
 - PDF shapes
 - Bkg composition
 - Δt resolution
 - Fit bias

• Δt projection plots (after signal LLR cuts):

Summary

• World Average $\sin 2\beta_{b \to ccs} = 0.68 \pm 0.03$

- $B^0 \rightarrow K_S^0 K_S^0 K_S^0 CPV$ results consistent with SM $-S = 0.66 \pm 0.26 \pm 0.08$
- $B^0 \rightarrow \pi^0 \pi^0 K_S^0$
 - First observation and CP measurement

 $-S = -0.84 \pm 0.71 \pm 0.08$

- Need more data

 $sin(2\beta^{eff}) \equiv sin(2\phi_1^{eff})$ HFAG