SOI technology and study on its dose effect

31 Oct., 2006 Hirokazu Ishino (Tokyo Institute of Technology) for SOIPIX group

SOIPIX group

- KEK Detector Technology Project : [SOIPIX Group]
- Y. Arai(*), Y. Ikegami, Y. Ushiroda,
- Y. Unno、O. Tajima、T. Tsuboyama、
- S. Terada、M. Hazumi、H. Ikeda^A、
- K. Hara^B、H. Ishino^C、T. Kawasaki^D、H. Miyake^E
- G. Varner^F, E. Martin^F, H. Tajima^G,

*: contact person

- M. Ohno^H, K. Fukuda^H, H. Hayashi^H H. Komatsubara^H, J. Ida^H
- KEK、JAXA^A、U. Tsukuba^B、TIT^C、
- Niigata U.^D, Osaka U.^E, U. Hawaii^F, SLAC^G,
- OKI Elec. Ind. Co.^H http://rd.kek.jp/project/soi
 - Financial Support by KEK Detector Technology Project

Motivation

- Vertex detectors play an essential role in particle physics
 - precise decay position measurements of the heavy quarks and leptons
- Silicon On Insulator (SOI) is one of the techniques usable for future high energy experiments, space experiments and medicine.
 - no bump bonding
 - high resistive substrate for radiation detection and low resistive silicon layer for transistor formation; two silicon layers are separated by SiO2 Buried Oxide (BOX)
 - ✤ can be very thin

Characteristics of the SOI transistors

- radiation hard

- thin active transistor, i.e. insensitive to SEU
- high speed and lower power consumption

SOI pixel detector design

Overview of our SOI

Fully-Depleted CMOS SOI fabricated by OKI Electric Industry Co. Ltd. - commercial technology with 150nm rule - thin Si layer (~20nm) + metal gate OKI adopts Unibond wafers from SOITEC, France - Top Si: Cz, ~18Ωcm, p-type, ~40nm thickness - Buried Oxide (BOX): 200nm thickness – handle wafer: Cz, high-resistive with > $1k\Omega$ no type assignment, however, identified by I-V measurements, shown later. original thickness 650μm, thinned to 350μm and plated with AI (200nm).

SOI wafer production (UNIBOND[™], SOITEC)

- 🚺 Initial silicon wafers A & B
- Oxidation of wafer A to create insulating layer
- Smart Cut ion implantation induces formation of an in-depth weakened layer
- Cleaning & bonding wafer A to the handle substrate, wafer B
- Smart Cut cleavage at the mean ion penetration depth splits off wafer A
- Over the second seco
- Split-off wafer A is recycled, becoming the new wafer A or B

Diode TEG

Metal contact & p+ implant

I-V characteristics of the handle wafer

substrate is N-type ~700 Ω cm ~6×10¹² cm⁻³

SOI TEG submitted in 2005

- 2.5 x 2.5 mm² Chips
 - Transistor
 - p-MOS and n-MOS transistors of different parameters
 - the characteristics are measured
 - radiation test has been performed -> this talk
 - Circuit
 - preamp, Q2T etc.
 - Strip
 - Silicon strip sensor for studying its basic performance
 - pixel
 - 32 x 32 matrix of 20 x 20 μ m² pixels
 - correlated double sample circuit
 - reset -> integrate -> readout

Next speaker

Pixel TEG

proton irradiation test of the transistor TEG

 70MeV proton beam irradiation to the transistor TEG

– CYRIC @ Tohoku U.

- up to 8 x 10¹⁴ p/cm²
- three different types of transistors are mounted.

- HVT, LVT, I/O
- NMOS and PMOS

Transistor		Basic Logic HVT	Low V _{TH} LVT	I/O IO
V _{DD}	[V]	1.0	1.0	1.8
Gate Length	[µm]	0.14	0.14	0.30
Gate Oxide	[nm]	2.5	2.5	5.0
V _{TH}	[V]	0.4	0.2	0.5

Ref. http://www.oki.com/en/otr/196/downloads/otr-196-R15.pdf

Matrix of the transistors

Fig.2 Transistor Matrix Circuit

proton irradiation test to the transistor TEG chip

- Total dose effect
 - positively charge trap in buried oxide (BOX)
 - changes the threshold voltage of the transistor
 - increases the leakage current of NMOS transistors

Ref. IEEE Trans. on Nucl. Sci. Vol. 35, p.1529, 1988

Threshold shifts of the transistors

$$\begin{array}{l} \Delta V_{T} \sim -0.1V \\ for NMOS(LVT), PMOS(LVT, HVT) \\ \Delta V_{T} \sim -0.2V \\ for NMOS(HVT) \end{array}$$

Leakage current of the transistors

Back gate bias compensation

5.Next Submission Plan

Next submission is our own Multi Project Wafer run.

Summary

We have started R&D for the SOI detector with OKI Elec. Ind. Co. 2.5 x 2.5 mm² TEG chips have been fabricated - transistor, circuit, strip and pixel transistor TEG chip was irradiated by the proton beam up to $8 \times 10^{14} \text{ p/cm}^2$ - threshold shifts of -0.1~-0.2V leakage current of NMOS increases by $30 \sim 100 \mu A$ depending on gate length. the back gate bias reduces the threshold voltage shift.

New submission on Dec., 2006

backup

Pixel TEG

Pixel layout

Pixel IV character

 \rightarrow Smooth the corner and move the ring inward at next submission.

