SOI technology and study on its dose effect

31 Oct., 2006 Hirokazu Ishino(Tokyo Institute of Technology) for SOIPIX group

SOIPIX group

- KEK Detector Technology Project : [SOIPIX Group]
- Y. Arai(*)、Y. Ikegami、Y. Ushiroda、
- Y. Unno、O. Tajima、T. Tsuboyama、
- S. Terada、M. Hazumi、H. Ikeda^A、
- K. Hara^B、H. Ishino^C、T. Kawasaki^D、H. Miyake^E
- G. Varner^F, E. Martin^F, H. Tajima^G,
- M. Ohno^H, K. Fukuda^H, H. Hayashi^H H. Komatsubara^H, J. IdaH
- KEK、JAXAA、U. Tsukuba B 、TITC、
- Niigata U.^D、Osaka U.^E, U. Hawaii^F, SLAC^G,
- OKI Elec. Ind. Co.^H http://rd.kek.jp/project/soi

*: contact person Financial Support by KEK Detector Technology Project

Motivation

- Vertex detectors play an essential role in particle physics
	- precise decay position measurements of the heavy quarks and leptons
- ◆ Silicon On Insulator (SOI) is one of the techniques usable for future high energy experiments, space experiments and medicine.
	- no bump bonding
	- high resistive substrate for radiation detection and low resistive silicon layer for transistor formation; two silicon layers are separated by SiO2 Buried Oxide (BOX)
	- can be very thin

Characteristics of the SOI transistors

– radiation hard

- \leftrightarrow no parasitic PNPN structure, therefore no latch -ups.
- thin active transistor, i.e. insensitive to SEU thin active transistor, i.e. insensitive to SEU
- $\mathcal{L}_{\mathcal{A}}$, and the set of th – high speed and lower power consumption

SOI pixel detector design

Overview of our SOI

• Fully-Depleted CMOS SOI fabricated by OKI Electric Industry Co. Ltd.

- commercial technology with 150nm rule commercial technology with 150nm rule
- thin Si layer (~20nm) + metal gate
- OKI adopts Unibond wafers from SOITEC, France
	- Top Si: Cz, ∼18Ωcm, p-type, ∼40nm thickness
	- Buried Oxide (BOX): 200nm thickness
	- handle wafer: Cz, high-resistive with > 1kΩ
		- no type assignment, however, identified by I-V measurements, shown later.
		- \cdot original thickness 650 μ m, thinned to 350 μ m and plated with AI (200nm).

SOI wafer production (UNIBOND™, SOITEC)

- Initial silicon wafers $A \& B$
- 2 Oxidation of wafer A to create insulating layer
- Smart Cut ion implantation induces formation of an in-depth weakened layer
- \bullet Cleaning & bonding wafer A to the handle substrate, wafer B
- Smart Cut cleavage at the mean ion penetration depth splits off wafer A
- Wafer B undergoes annealing, CMP and touch polish => SOI wafer complete
- Split-off wafer A is recycled, becoming the new wafer A or B

Diode TEG

Metal contact & p+ implant

I-V characteristics of the handle wafer

substrate is N-type ~700 Ω cm ~6×10¹² cm⁻³

SOI TEG submitted in 2005

- 2.5×2.5 mm 2 Chips
	- Transistor
		- p-MOS and n-MOS transistors of different parameters
		- \cdot the characteristics are measured
		- radiation test has been performed -> this talk
	- Circuit
		- preamp, Q2T etc.
	- Strip
		- Silicon strip sensor for studying its basic performance
	- pixel
		- \bullet 32 x 32 matrix of 20 x 20 μ m $^{\mathsf{2}}$ pixels
		- correlated double sample circuit
			- reset -> integrate -> readout

Next speaker

Pixel TEG

proton irradiation test of the transistor TEG

• 70MeV proton beam irradiation to the transistor TEG

–CYRIC @ Tohoku U.

- •up to 8×10^{14} p/cm²
- three different types of transistors are mounted.

- –HVT, LVT, I/O
- NMOS and PMOS

Ref. http://www.oki.com/en/otr/196/downloads/otr-196-R15.pdf

Matrix of the transistors

Fig.2 Transistor Matrix Circuit

proton irradiation test to the transistor TEG chip

- Total dose effect
	- – positively charge trap in buried oxide (BOX)
	- – changes the threshold voltage of the transistor
	- increases the leakage current of NMOS transistors

Ref. IEEE Trans. on Nucl. Sci. Vol. 35, p.1529, 1988

Threshold shifts of the transistors

 $\Delta V_T \sim -0.1 V$ for NMOS(LVT), PMOS(LVT, HVT) $\Delta V_T \sim -0.2 V$ for NMOS(HVT)

Leakage current of the transistors

Back gate bias compensation

5.Next Submission Plan

Next submission is our own Multi Project Wafer run.

Summary

■ We have started R&D for the SOI detector with OKI Elec. Ind. Co. 2.5 x 2.5 mm² TEG chips have been fabricated – $-$ transistor, circuit, strip and pixel \blacksquare transistor TEG chip was irradiated by the proton beam up to 8 \times 10¹⁴ p/cm² – threshold shifts of -0.1~-0.2V $\,$ $\mathcal{L}_{\mathcal{A}}$ $-$ leakage current of NMOS increases by $\overline{}$ $30 - 100 \mu A$ depending on gate length. $\mathcal{L}_{\mathcal{A}}$ – the back gate bias reduces the threshold voltage $\overline{}$ shift.

■ New submission on Dec., 2006

backup

Pixel TEG

Pixel layout

Pixel IV character

 \rightarrow Smooth the corner and move the ring inward at next submission.

