

Multi-lepton production at HERA

-Using ZEUS detector

University of Tokyo Nao Okazaki

• Hadron Electron Ring Accelerator HERA

HERA is the only eletron-proton collider in the world. <u>large center of mass energy</u>

Multi-lepton production at HERA

◆Multi-lepton production in e[±]p collision proceeds dominantly via Bethe-Heitler process.

At HERA, we can explore up to a large γ l^+ invariant mass , ~150 GeV.

-May be sensitive to new physics.

H1 reported an excess in HERA I data Using 115 pb⁻¹ HERA I data Multi-electron

Selection	Data	SM	Pair Production (GRAPE)	DIS + Compton
$2e^{M} M_{12} > 100 \text{ GeV}$	3	0.30 ± 0.04	0.21 ± 0.03	0.09 ± 0.02
'3e" M $_{12} > 100 \text{ GeV}$	3	0.23 ± 0.04	0.23 ± 0.03	< 0.02 (95% C.L.)

In ZEUS analysis

♦Using HERA I ,II data.

• Multi-electron and di-tau productions are searched for.

Multi-electrons

Event topology ; e,e,(e)

Signal; (simulated by GRAPE)

• Electrons from pair production and a scattered electron.

• One electron is often out of detector acceptance.

Background;

Neutral Current Deep Inelastic Scattering (NC DIS) (simulated by DJANGO)

- For example, π^{0} in jets is misidentified as an electron.
- ♦QED Compton

(QEDC) (simulated by COMPTON 2.0)

• For example, a photon is misidentified as an electron

Multi-electron (1/7)

Event selection

 $\blacklozenge 2$ or more isolated electromagnetic (EM) clusters in the calorimeter.

◆At least 2 EM clusters are within the Central Tracking region and are associated with a track of CTD.

 \bullet Highest Pt electron, $P_{T,1} > 10 \text{GeV}$

- \bullet Second highest Pt electron, $P_{T,2} > 5 GeV$
- Z position of the primary vertex, $|Z_{vertex}| < 50$ cm Multi-electron (2/7)

Multi-electron (3/7)

Invariant mass of e_1, e_2

◆The SM gives a good description of the measurements. ◆One event is found at $M_{1,2} > 100$ GeV. *Multi-electron* (4/7)

Event yields at large $M_{1,2}$

Selection	Data	SM total	Background		
$e^{\pm}296pb^{-1}$					
2e $M_{1,2} > 50 GeV$	53	67 ± 7.1	19 ± 2.6		
> 100 GeV	1	1.5 ± 0.5	0.6 ± 0.3		
$3e \ M_{1,2} > 50 GeV$	12	15 ± 1.3	< 0.5		
> 100 GeV	1	$0.8^{+0.3}_{-0.04}$	< 0.4		

The measured event yields agree with the SM predictions.

Multi-electron (5/7)

Event displays

<u>The highest M_{12} event of the 2e event.</u>

•

The highest M_{12} event of the 3e event.

Multi-electron (7/7)

Di-tau

Event topology ; e, µ

$e^{-(+)} \qquad \qquad \underbrace{ e^{-(+)}}_{V_{\tau}} \qquad \underbrace{ \begin{array}{c} \underline{Signali} \\ \text{In this analysis, events in which} \\ e^{+}(\mu) \text{ one tau decays to an electron and} \\ the other decays to a muon are \\ \hline \nu_{e} \qquad the other decays to a muon are \\ \hline \nu_{e} \qquad the other decays to a muon are \\ \hline \nu_{\tau} \qquad \underbrace{ \begin{array}{c} \tau \\ \nu_{\tau} \\ \nu_{\mu} \end{array}}_{V_{\tau}} \left\{ \begin{array}{c} \tau \\ \rightarrow \end{array} \right. \\ \tau \\ \hline \tau \\ \rightarrow \end{array} \right. \\ \mu, \nu_{\mu}. \nu_{\tau} \end{array} \right\}$

Background;

Di-muon events in which one muon escapes detection, for example, by passing through beam pipe. *Di-tau* (1/10)

Event selection

The proton is scattered elastically.

- Energy deposit around beam pipe < 1 GeV
- $\cdot 0 <$ Number of tracks < 4
- ◆To be with one muon and one or more electrons.

Electron identification;

- Energy > 4GeV
- $\theta e < 2.6 rad$

Muon identification;

 \cdot By combined information

from the muon detectors, the calorimeters,

the tracking detectors.

 $\cdot \text{Pt} > 2 \ GeV$

$\bullet E-Pz = (E-Pz)_{CAL} + (E-Pz)_{Muon} < 45 \text{ GeV}$

E-Pz is conserved to be 55 $\text{GeV}(2E_e^{beam})$ unless particles escape in -z direction.

Di-tau (3/10)

Background rejection (cont'd)

◆There is no extra muon candidates found by loosen selection criteria.

For example, a calorimeter energy deposit which is consistent with a Minimum Ionizing Particle. (MIP)

Event yields

◆3 Events are found

• Event yield is consistent with the SM.

Di-tau (5/10)

Event displays

Di-tau (6/10)

•

Di-tau (7/10)

Di-tau (8/10)

◆Data is compatible with MC.

Di-tau (10/10)

•

Summary

•Multi-electron production has been studied by using 296 pb^{-1} of the HERA I and II e[±]p data.

- •One event is found for $M_{1,2} > 100$ GeV in 2e and 3e sample.
- No excess is observed.

♦ The di-tau production has been studied by using 135 pb^{-1} of the HERA II e⁻p data.

• 3 events are found.

◆The measured event yields are found to be in agreement with the predictions from the SM.

Backup slides

Tracking detectors Calorimeters Muon detectors

The tracking detectors

silicon Micro Vertex Detector

<u>High statistics data is used</u>

Multi-electron analysis at ZEUS

Electron identification;

◆To be found by an algorithm which combined information from the calorimeter and the tracking detector.

• Energy not associated with electron in an $\eta \cdot \phi$ cone

of radius 0.8 < 0.3 GeV

 $R = (\Delta \eta^2 + \Delta \phi^2)^{\frac{1}{2}}$ $P \quad \eta = -ln(tan\frac{\theta}{2})$

- Forward ($\theta_e < 17^\circ$)
- Central $(17^{\circ} < \theta_e < 164^{\circ})$ Ener [CentralTrackingDetector region]
- Rear $(\theta_e > 164^\circ)$

Energy > 10GeV

Energy > 10GeV

Energy > 5GeV

Cone

For central region;

DCA between the CAL energy deposit and the track < 8cmNumber of tracks except the matching track

in an $\eta - \phi$ cone of radius 0.4

• Multi-electron analysis at ZEUS (cont'd)

Systematic uncertainly

• The energy scale varied conservatively by $\pm 2\%$ for the calorimeters.

2e;	6.4%(+2%)	-5.2%(-2%)
3e;	5.8%(+2%)	-4.2%(-2%)

Background

	Total background	QED Compton	NC DIS
2e	26.0%	10.7%	15.2%
Be	1.0%	0.27%	1.2%
Fotal	23%	9.4%	13.4%

Multi-electron analysis at ZEUS (cont'd) **Event displays**

<u>I ne nignest Pt electron</u> ,				
[Theta]	1.2 rad			
[Charge]	positive			
The 2 nd hig	<u>;hest Pt electron;</u>			
[Theta]	0.5 rad			
[Charge]	negative			

The highest Pt electron;

Theta [Charge]

0.10 rad positive

The 2nd highest Pt electron;

Theta 0.76 rad [Charge] negative

The 3rd highest Pt electron:

Theta 0.58rad [Charge] positive

Multi-electron analysis at H1

60

with M_{1,2}>100 GeV

The cross section integrated over the phase space defined above. $\sigma = (0.59 \pm 0.08 \pm 0.05) pb$

Tau pair production at H1

Di-tau analysis at ZEUS **Event selection Trigger**; with muon candidates found by the muon detectors. $|Z_{vertex}| < 50cm$ $(X_{vertex} - 1.33)^2 + (Y_{vertex} - 0.22)^{2\frac{1}{2}} < 1.5cm$ Electron candidates definition Vertex; Muon candidates definition $\theta < 2.6 \text{ rad} \bullet For central region (0.3 < <math>\theta_e < 2.6 \text{ rad}$) $Momentum of track > 2 \ GeV$ Pt > 2GeV $DCA < 10 \ cm$ To match with track Energy > 4GeVEnergy in cone not from an electron candidate < 5 GeV• Events are required to have one or more muons and one

or more electrons

•Number of good tracks = 1,2,3

(Pt of track >0.15 *GeV*,inner layer<2,outer layer >2)

If there are more than 1 track, at least a track is required to match an electron

◆FCAL 1nd + 2nd inner ring energy <1GeV

Di-tau analysis at ZEUS (cont'd)

Event selection (cont'd)

- ♦Number of muons =1.
- (Pt >1.5 or momentum>1.5 GeV)
- ♦0.1<colinearity<2.7 (*rad*)
- E-Pz < 45 GeV

◆There is no calorimeter energy deposit which is consistent MIP.

Not to be CAL noise. Not match above electron candidates and a muon candidates. 0.2< Energy of EMC < 1.5 GeV and 0.5 <Energy of HAC <2.5 GeV.

 $\bullet \theta = 1.0$ rad if there are electron candidates

which have negative charge.

Di-tau final samples

Nmu	Emncand			
1	1			
Muqual	Mupt	Muth	Muph	Mucharge
4	4.86	1.41	0.033	1
EM Ee	Emth	Emph	Emtrkq	
5.38	0.71	2.92	-1	

Nmu	Emncand			
1	1			
Muqual	Mupt	Muth	Muph	Mucharge
4	4.78	2.04	3.46	1
EM Ee	Emth	Emph	Emtrkq	
12.83	1.75	0.34	1	

Nmu	Emncand			
1	1			
Muqual	Mupt	Muth	Muph	Mucharge
3	4.91	0.83	3.31	1
EM Ee	Emth	Emph	Emtrkq	
5.56	0.26	0.083	-1	