Neutrino Interactions in the MINOS Near Detector

D.Naples University of Pittsburgh

(for the MINOS Collaboration)

DPF 2006 Honolulu, HI Oct 29-Nov 3, 2006

Outline

- ► MINOS Overview
 - NuMI Beam
 - Minos Near Detector
- ► Low Energy Neutino Cross Section
- ► CC Cross Section Analysis
- ► Flux Measurement Technique
 - Flux Results
- ▶ $\overline{\nu}$ Data Sample
- Structure Functions in MINOS
- ► Conclusions

MINOS Overview

- ► Main goal of MINOS: measure oscillation parameters in 2→3 sector.
- ► Purpose of Near Detector:
 - Measure unoscillated beam spectrum.
 - Understand cross section and detector modeling.
- ► Near Det. has large event samples.
 - → Can be used to study neutrino (and antineutrino) interactions and cross sections.

Two detectors: *near* detector at Fermilab (L \sim 1km), *far* detector at Soudan MN (L \sim 735km)

► Focus of talk: cross section measurements using MINOS near detector sample.

Fermilab's NuMI Beam

- Movable target, allows three beam configurations, LE, ME, and HE.
- ► Majority of data (~ 95%) taken in low energy configuration (LE-10).
 - LE-10 Event Composition: 92.9% ν_{μ} 5.8% $\overline{\nu_{\mu}}$, 1.3% ($\nu_{e} + \overline{\nu_{e}}$)

Near	Detector	CC	events	(thru	Oct.	2006).
------	----------	----	--------	-------	------	--------

Beam	Target z (cm)	CC Sample
LE-10	-10	$2.1~ imes 10^{6}~(u)$
LE-10	-10	$1.7 imes 10^5~(\overline{ u})$
ME	-100	1.9 $ imes 10^4$
HE	-250	$3.7 imes 10^4$

Total Exposure of 1.7E20 PoT

► MINOS LE-10 near detector data → largest data sample for neutrino interactions in this energy range to date.

MINOS Near Detector

steel

scintillator

Strips

orthogonall

oriented

Magnetized tracking calormeter

- 1cm thick planes of scintillator (4.1cm wide strips).
- ► Sampling every 2.54cm steel.
 - Coarser sampling in downstream spectrometer region (every 5 planes of steel)
- ► Magnetized steel plates $\langle B \rangle = 1.2 T$

Contributions to Neutrino Scattering

- $\blacktriangleright \sigma_{\rm TOT} = \sigma_{\rm QE} + \sigma_{\rm RES} + \sigma_{\rm DIS}$
- Quasi Elastic (QE) $\nu n \rightarrow \mu^- p, \overline{\nu} p \rightarrow \mu^+ n$ $\nu(\overline{\nu})$ scatters off an entire nucleon.
- Resonance $\nu N \rightarrow \nu N^*$ $\nu_{\mu} p(n) \rightarrow \mu^- \pi^+ p(n)$ $\nu_{\mu} n \rightarrow \mu^- \pi^0 p$ Excited nucleon decays into low multiplicity final states.
- ► Deep Inelastic Scattering (DIS) $\nu(\overline{\nu})N \rightarrow \mu^{-}(\mu^{+})X$ $\nu(\overline{\nu})$ scatters off nucleon constituents.
- ► These contributions are not precisely known at low energies.

Total Cross Section σ /E x 10⁻³⁸ cm²/GeV (Isoscalar) 1.4 ν DIS Quasi-elastic 1.2 Resonances (Rein-Segal) 1 0.8 0.6 0.4 0.2 0 10 100 1 E_{v} 0.6 Total Cross Section $5 / E \times 10^{-38} cm^2 / GeV$ (Isoscalar) $\overline{\mathbf{v}}$ DIS 0.5 Quasi-elastic Resonances (Rein-Segal) 0.4 0.3 0.2 0.1 0 10 100

 E_{v}

Total cross section features:

- $\frac{\sigma}{E}$ rises at low energy due to contributios from QE and Resonance processes. (both saturate a low energy- few GeV region).
- At high energy $\frac{\sigma}{E}$ is roughly flat and dominated by DIS.

CC Cross Sections in MINOS

- ► MINOS coarse-grained detector is not ideal for identifying individual final state particles \rightarrow except for μ .
 - Look at inclusive CC cross section and DIS cross section.
- Energy dependence of total CC cross section (range ${\sim}5\text{-}50~\text{GeV}).$

- $\star\,$ Existing data is of limited precision $\stackrel{\sim}{>}10\%$
- * MINOS range covers interesting low energy region where all three process contribute.

DIS Cross Section and Structure Functions

- $\star\,$ New kinematic regime for $\nu\,$ N SFs
- ★ High-x low Q² : Good coverage in chargedlepton scattering, but little neutrino data.

Charged-Current Neutrino Scattering

 $\times 10^3$

DIS is the largest contribution to the MINOS event sample.
 DIS 62%, RES 21%, QE 17%
 For $E_{\nu} > 5$ GeV, DIS is the dominant process.

Reconstruct $E_{\nu} = E_{HAD} + E_{\mu}$ Shower energy resolution: 55%/ \sqrt{E} Muon Momentum resolution: 6% range,13% curvature

10

5

20

15

Neutrino Energy(GeV)

25

30

$$\begin{array}{ll} Q^2 = 4 E_{\nu} E_{\mu} \sin^2 \frac{\theta}{2}, & \mbox{Squared four momentum transfer} \\ x = \frac{Q^2}{2 M E_{HAD}}, & \mbox{Fractional quark momentum} \\ y = \frac{E_{HAD}}{E_{\nu}}, & \mbox{Inelasticity} \\ W^2 = M^2 + 2 M E_{HAD} - Q^2, & \mbox{Squared final state invariant mass} \end{array}$$

CC Event Selection

- ► 1 good fit track
- Vertex contained inside fiducial volume.
 - Upstream 'target' region.
 - Centered on beam spot.
 - Fiducial mass ~4ton.
- Select sign of the muon, μ^- for ν_{μ} , 0 μ^+ for $\overline{\nu_{\mu}}$,
- CC event selection kinematic cut: $E_{\mu} > 2 \text{GeV}$
 - Stopping, momentum from range
 - Exiting, momentum from curvature
 - Removes NC contamination.
- Reconstructed neutrino energy $E_{\nu} > 5$ GeV.

Cross Section Extraction

- ► Two samples: Flux, Cross section
- Monte Carlo used to apply corrections for acceptance and smearing. Ingredients
 - Input beam flux (GEANT3 based beamline simulation, production model FLUKA05).
 - Cross section model (NEUGEN3): uses Bodek-Yang duality model,(BY-GRV98LO), tuned to data in DIS/res. overlap region.
 - Detector simulation.
- Determine Flux from 'flux' sample (next slide).
- Extract cross section, $\frac{d^2\sigma}{dxdy}^{\nu(\overline{\nu})} = \frac{1}{\Phi(E)} \frac{d^2N}{dxdy}^{\nu(\overline{\nu})}$.

Cross Section Extraction

- ► Two samples: Flux, Cross section
- Monte Carlo used to apply corrections for acceptance and smearing. Ingredients
 - Input beam flux (GEANT3 based beamline simulation, production model FLUKA05).
 - Cross section model (NEUGEN3): uses Bodek-Yang duality model,(BY-GRV98LO), tuned to data in DIS/res. overlap region.
 - Detector simulation.

Iterate with new (measured) flux

Cross Section Extraction

- ► Two samples: Flux, Cross section
- Monte Carlo used to apply corrections for acceptance and smearing. Ingredients
 - Input beam flux (GEANT3 based beamline simulation, production model FLUKA05).
 - Cross section model (NEUGEN3): uses Bodek-Yang duality model,(BY-GRV98LO), tuned to data in DIS/res. overlap region.
 - Detector simulation.
- Determine Flux from 'flux' sample (next slide).
- Extract cross section, $\frac{d^2\sigma}{dxdy}^{\nu(\overline{\nu})} = \frac{1}{\Phi(E)} \frac{d^2N}{dxdy}^{\nu(\overline{\nu})}$.
- Iterate with new (measured) flux
- Fit differential cross section and input as new cross section model... iterate.

Relative Flux Extraction Method

► Use inclusive low $\nu(=E_{HAD})$ cross section to get flux shape.

• Similar method used at higher energy (CCFR/NuTeV)→ adapt to lower energies.

$$\frac{d^2 \sigma^{\nu,\overline{\nu}}}{dxd\nu} = \frac{G^2 M}{\pi} \left[\left(1 - \frac{\nu}{E} - \frac{Mx\nu}{2E^2} + \frac{\nu^2}{2E^2} \frac{1 + 2Mx/\nu}{1 + R} \right) F_2(x) \pm \frac{\nu}{E} \left(1 - \frac{\nu}{2E} \right) x F_3(x) \right]$$

Integrate $d^2\sigma/dxd\nu$ over x for fixed ν :

$$\frac{d\sigma}{d\nu} = A\left(1 + \frac{B}{A}\frac{\nu}{E} - \frac{C}{A}\frac{\nu^2}{2E^2}\right)$$

• At low ν and high E_{ν} $\Rightarrow (\frac{\nu}{E})$ and $(\frac{\nu}{E})^2$ terms are small.

$$\begin{split} \mathbf{A} &= \frac{\mathbf{G}^2 \mathbf{M}}{\pi} \int \mathbf{F}_2(\mathbf{x}) d\mathbf{x} \\ \mathbf{B} &= -\frac{\mathbf{G}^2 \mathbf{M}}{\pi} \int \left(\mathbf{F}_2(\mathbf{x}) \mp \mathbf{x} \mathbf{F}_3(\mathbf{x}) \right) d\mathbf{x} \\ \mathbf{C} &= \mathbf{B} - \frac{\mathbf{G}^2 \mathbf{M}}{\pi} \int \mathbf{F}_2(\mathbf{x}) \left(\frac{1 + \frac{2\mathbf{M}\mathbf{x}}{\nu}}{1 + \mathbf{R}(\mathbf{x})} - \frac{\mathbf{M}\mathbf{x}}{\nu} - 1 \right) d\mathbf{x} \end{split}$$

 $\frac{d\sigma}{d\nu}^{\nu}_{\lim\nu\to 0} = \frac{d\sigma}{d\nu}^{\overline{\nu}}_{\lim\nu\to 0} = A \quad \text{constant, independent of } E_{\nu}. \rightarrow \Phi(E) \propto N(E, \nu < \nu_{o}).$

- For MINOS require $\nu < 1$ GeV and extract flux for $E_{\nu} > 5$ GeV.
- 1. Count events at low ν , N(E, $\nu < 1$ GeV) 2. Use cross section model to correct for energy dependence in low- ν sample, $c(E) = \frac{\sigma_{asym}(\nu < 1)}{\sigma(\nu < 1)}$ 3. $\Phi(E) \propto c(E)N(E, \nu < 1$ GeV)

Near Detector Extracted Flux

LE-10 Data Sample 1.0E20 PoT (June-Dec 2005).

- Flux sample: CC events with $\nu < 1$ GeV, ($E_{\nu} > 5$ GeV)
 - Data corrected for acceptance and smearing using MC model.

- Extracted data flux for 1E20 PoT (unnormalized).
 - Compare with MC which uses default beam flux model (GEANT3 + FLUKA05 production).
 - * MC normalized to 1.0E20 PoT.
- ▶ Shows large discrepancy (up to 40% ± 10%) in the E_ν > 10GeV GeV region (outside the beam focusing peak).
 - Beam model flux uncertainties are large (~15%) and dominated by production uncertainties in this region.

Reconstructed Energy Spectrum

- ► Total cross section sample:
 - All CC events (events with well reconstructed muon, $E_{\mu} > 2 \text{GeV}$).
- Effect of flux re-iteration on reconstructed CC energy spectrum.
 - Nominal MC (blue curve) using GEANT3+FLUKA05 beam flux.
 - MC reweighted by low-ν extracted flux (red curve).
 - Data/MC agreement improves dramatically after one reiteration of the flux.

Flux Tuning in Oscillation Analysis

- Use reconstructed energy spectra from all beam configurations to tune production model.
 - Hadron production model, (production of pions from 120GeV protons on graphite) iS adjusted by applying fitted weights as a function of (x_f, p_T) of parent pion.
- Nominal Near detector MC (blue curve) shows systematic disagreement in tail of LE beam.
- Data/MC agreement (red curve, MC after tuning) improves for LE tail.
- "Tuned" flux is also higher in the tail region, agrees with extracted low-ν flux.

Total Cross Section Energy Dependence

- $\blacktriangleright \sigma_{\text{TOT}}(E) = \frac{N_{\text{xsec}}^{\text{corr}}}{\Phi(E)}$
 - $N_{\rm xsec}^{\rm corr} =$ cross section sample events corrected for acceptance and smearing using MC.
- Correct to Isoscalar target, (Iron $\frac{N-Z}{A} = 0.0567$).
- Normalize in region 10-50 GeV using world average ν -lso Fe value: $\left(\frac{\sigma^{\nu}}{E}\right)_{\text{world}} = 0.676 \pm 0.04 \times 10^{-38} \frac{\text{cm}^2}{\text{GeV}}$
- Measures shape of $\frac{\sigma}{E}$ with energy.
- ► Fake-data study, comparison to NEUGEN model prediction. (3.7×10¹⁹ PoT sample).
 - Band shows size of error on the weighted average for data points with E>10GeV (used for normalization).
- ► Minos full sample (7.4×10²⁰ PoT) will be ~20× larger → statistical precision ~4.5× better.

$$\begin{split} N_{\rm xsec}^{\rm corr}({\rm E}) &= N_{\rm xsec}^{\rm raw}({\rm E}) \left(\frac{N^{\rm MCgen}({\rm E})}{N_{\rm xsec}^{\rm MCreco}({\rm E})} \right) \\ N^{\rm MCgen}({\rm E}) &= \text{events generated in the fi ducial volume.} \\ N_{\rm xsec}^{\rm MCreco}({\rm E}) &= \text{events in the MC reconstructed sample.} \end{split}$$

Flux and Cross Section Errors

- ► Low- ν Flux method valid for $E_{\nu} > 5$ GeV
 - At lower energies systematics from model and acceptance corrections become large.
- Systematics evaluated:
 - E_{μ} scale $\pm 2\%$ (Largest for Flux)
 - $E_{\rm HAD}$ scale ±5.6%
 - Final state Intranuclear rescattering. (affects measured E_{HAD})
 →Largest for cross section, estimate is crude, will be reduced).
 - Model correction uncertainty estimate (B/A correction).
- ▶ Prognosis: Expect flux and cross section uncertainties in range 2-5% for $E_{\nu} > 5$ GeV.

Antineutrino Sample in MINOS

- ▶ Above 5GeV \sim 15% of events are from $\overline{\nu}$.
- ► Total expected v̄-CC sample= 7.4 × 10⁵ events for 7.4E20 PoT.
- ► Also studying v flux and cross section extraction.
 - Larger model corrections to flux.
 - Acceptance corrections (μ⁺s defocussed).

- Contamination from mis-IDed ν_μCC events is large (5-20%).
- ► Improvement needed to charge-sign ID to obtain high-purity sample of v (WIP).

DIS Cross Section Sample

- ▶ Large data sample of DIS (W > 2GeV) and transition region (2 > W > 1.4GeV) events.
 - Kinematic range overlaps with SLAC and JLAB charged-lepton data sets.

- Extract doubly differential cross section. $\frac{d^2\sigma}{dxdy}^{\nu(\overline{\nu})} = \frac{1}{\Phi(E)} \frac{d^2N}{dxdy}^{\nu(\overline{\nu})}$.
- Measure ν -Iron structure functions, $F_2(x, Q^2)$ and $xF_3(x, Q^2)$ $\frac{d^2 \sigma^{\nu(\bar{\nu})}}{dxdy} = \frac{G_F^2 M E_{\nu}}{\pi (1+Q^2/M_W^2)^2} \left[\left(1 - y - \frac{Mxy}{2E} + \frac{y^2}{2} \frac{1+4M^2 x^2/Q^2}{1+R(x,Q^2)} \right) F_2^{\nu(\bar{\nu})} \pm y \left(1 - \frac{y}{2} \right) x F_3^{\nu(\bar{\nu})} \right]$

Structure Function Measurements

► $F_2(x, Q^2)$ from cross section sum.

$$\begin{bmatrix} \frac{d^2 \sigma^{\nu}}{dx dy} + \frac{d^2 \sigma^{\overline{\nu}}}{dx dy} \end{bmatrix} =$$

$$\frac{2 \mathrm{MG}^2 \mathrm{E}}{\pi} \left[1 - \mathrm{y} - \frac{\mathrm{Mxy}}{2\mathrm{E}} + \frac{1 + (\frac{2 \mathrm{Mx}}{\mathrm{Q}})^2}{1 + \mathrm{R(x,Q^2)}} (\frac{\mathrm{y}^2}{2}) \right] F_2(x,Q^2) +$$

$$\left[\mathrm{y} - \frac{\mathrm{y}^2}{2} \right] \Delta x F_3(x,Q^2)$$

- ► $xF_3(x,Q^2)$ from cross section difference. $\left[\frac{d^2\sigma^{\nu}}{dxdy} - \frac{d^2\sigma^{\overline{\nu}}}{dxdy}\right] = \frac{2MG^2E}{\pi} \left(y - \frac{y^2}{2}\right) xF_3^{AVG}(x,Q^2)$
 - $xF_3(x,Q^2)$ only from ν scattering.
- ► F₂(x, Q²) sensitivity statistical errors only for 1.85×10²⁰ PoT.
 - Systematics will be of comparable size at this level of statistical precision.

Conclusions

- ► First steps underway to extract CC cross sections from MINOS ND data sample.
 - Low- ν flux method applied to extract neutrino flux for $E_{\nu} > 5$ GeV.
 - Analysis underway to extract shape of charged-current total cross section in the interesting low energy region.
 - High statistics $\overline{\nu}$ sample, studies underway to improve purity.
- ► Plans for inclusive ND cross section measurements:
 - Energy dependence of total cross section (ν and $\overline{\nu}$).
 - DIS differential ν and $\overline{\nu}$ cross sections.
 - Neutrino iron structure functions \rightarrow New kinematic range for ν scattering.
- Also underway:
 - Quasi-elastic cross section.
 - Coherent π production
 - Dimuon production.

Backups

Hadronic Energy Resolution

Fits to the energy resolution for π^{\pm} and p

Measured with test beam (CALDET) in range 1-10 GeV for pions and protons. $\frac{\sigma}{E} = A \oplus \frac{B}{\sqrt{E}} \text{ quadratic}$ $\frac{\sigma}{E} = A + \frac{B}{\sqrt{E}} \text{ linear}$

		A (%)	B (%)	
ì	π^+	4.2 ± 1.5	55.7 ± 0.5	quadratic
/	π^+	0.7 ± 0.4	55.1 ± 0.9	linear
	π^-	0.0 ± 3.3	56.2 ± 0.3	quadratic
	π^-	-0.1 ± 0.4	56.3 ± 0.9	linear
	$\pi^+ + \pi^-$	2.1 ± 1.5	56.1 ± 0.3	quadratic
	$\pi^+ + \pi^-$	0.3 ± 0.2	55.8 ± 0.4	linear
	р	4.3 ± 1.4	56.6 ± 0.6	quadratic
	р	0.7 ± 0.5	55.9 ± 1.0	linear

CC Selection Efficiency

Effi ciency of $E_{\mu} > 2$ GeV cut.

Model Corrections to Flux Extraction

Cross section model NEUGEN3 uses:

- ► Bodek-Yang duality model (GRV98LO pdfs tuned to data in DIS/res. overlap region.)
- QE cross section with ($M_A = 1.03$)
- ► No explicit contribution from resonances.
- ► Have also studied a NEUGEN3 version which explicitly includes resonances for W < 1.7 (tuned on data). resonance region.

Low- ν energy dependence of cross section components (neutrino).

Model Corrections to Flux (Antineutrinos)

Cross section model NEUGEN3 uses:

- ► Bodek-Yang duality model (GRV98LO pdfs tuned to data in DIS/res. overlap region.)
- QE cross section with ($M_A = 1.03$)
- ► No explicit contribution from resonances.
- ► Have also studied a NEUGEN3 version which explicitly includes resonances for W < 1.7 (tuned on data).

Low- ν energy dependence of cross section components (antineutrino).

Flux Model Correction Uncertainty

Low- ν method:

- $\frac{d\sigma}{d\nu} = A\left(1 + \frac{B}{A}\frac{\nu}{E} \frac{C}{A}\frac{\nu^2}{2E^2}\right)$
 - At low ν and high $E_{\nu} \rightarrow (\frac{\nu}{E})$ and $(\frac{\nu}{E})^2$ terms are small \Rightarrow decreasing with energy.
 - ► Theoretical value for $\frac{B}{A}$ computed from model, (problem: large uncertainty at low ν)

▷
$$(\frac{B}{A})^{nu}(\nu = 20) \approx -0.25$$
 (lower limit)
▷ $(\frac{B}{A})^{antinu}(\nu = 20) \approx -1.7$ (upper limit)

10

v(GeV)

15

20

Range of DIS model uncertainty contributed by the (bounded) $\frac{B}{A}$ correction: neutrino $0 > (\frac{B}{A})^{\nu} > -0.25$ antineutrino $-1.7 > (\frac{B}{A})^{\overline{\nu}} > -2$

5

Flux and Cross Section Corrections

Beam Model Tuning Using ND Data

- ND data/MC disagreements are "Beam tune" dependent.
 - Detector and cross section model are common to all tunes. ▷ *implies beam modeling*
- Hadron production model (production of pions from 120GeV protons on graphite, (f(x_f, p_t)), is tuned to further improve data/MC agreement.
 - Fit for weights as a function of x_f, p_t for
 6 beam configurations.

Minos Calibration System

- LED based light injection system
 - Track PMT gains.

► Cosmic ray muons

- Remove variations along and between strips.
- Stopping muons for detector-to-detector relative energy calibration.
- ► Test beam with mini-MINOS detector (CALDET)
 - Measure absolute energy scales. (e, μ , π ,p).

Energy Scale Uncertainties

- ► 5.7% Absolute
- ► 2% Near/Far relative

MINOS QE Selection

- ▶ PDF based selection based on shower topology, proton direction, reco-W.
- ▶ \sim 40% efficiency, \sim 70% purity.
- Modeling of low energy shower topology complicated by final state rescattering of hadronic particles.
 - Difficult to model, large uncertainty

Beam Flux Errors

- Beam component (matter most in the focusing peak region)
 - 1. Horn 1 offset (small)
 - 2. baffle scraping (small)
 - 3. POT (2%)
 - 4. Horn current offset (1%)
 - 5. Horn current distribution (0-8% effect)

- Production : 8-15% (15% above the beam peak).
 - Assume will be reduced after MIPP to ${\sim}4\%$.

Near Detector Planes

Systematics and Structure Functions

Near Detector Data

- ▶ ND sees large event rates \rightarrow multiple events per 8-10µsec spill.
 - Typical intensity 2.2×10^{13} protons/spill (spill length 8-10 μ sec).
- Events are separated using timing and topology.
- No rate dependent reconstruction effects observed.

One near detector spill

DIS Cross Section Sample

DIS events ($E_{\mathrm{HAD}} > 1 \mathrm{GeV}$, $W > 2 \mathrm{GeV}$, $Q^2 > 1 GeV^2$, $E_{\nu} > 5 \mathrm{GeV}$)

