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MINOS Overview
I Main goal of MINOS: measure

oscillation parameters in 2→3 sector.

I Purpose of Near Detector:

• Measure unoscillated beam
spectrum.

• Understand cross section and
detector modeling.

I Near Det. has large event samples.

→ Can be used to study neutrino (and
antineutrino) interactions and cross

sections.
Two detectors: near detector at Fermilab (L∼1km),
far detector at Soudan MN (L∼735km)

I Focus of talk: cross section measurements using MINOS near detector sample.
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Fermilab’s NuMI Beam
I Movable target, allows three beam

configurations, LE, ME, and HE.

I Majority of data (∼ 95%) taken in low
energy configuration (LE-10).

• LE-10 Event Composition: 92.9%νµ

5.8% νµ, 1.3% (νe + νe)

Near Detector CC events (thru Oct. 2006).

Beam Target z (cm) CC Sample

LE-10 -10 2.1 × 10
6 (ν)

LE-10 -10 1.7 ×10
5 (ν)

ME -100 1.9 ×104

HE -250 3.7 ×104

Total Exposure of 1.7E20 PoT

I MINOS LE-10 near detector data → largest data sample for neutrino interactions in
this energy range to date.
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MINOS Near Detector
Magnetized tracking calormeter

I 1cm thick planes of scintillator
(4.1cm wide strips).

I Sampling every 2.54cm steel.

• Coarser sampling in
downstream spectrometer
region (every 5 planes of
steel)

I Magnetized steel plates
〈B〉 =1.2T

SPECTROMETER
MUON

SHOWER
HADRON

TARGETVETO

PARTIALLY INSTRUMENTED REGION

1.2m 2.4m 3.6m 7.2m

(FINE SAMPLING)
UPSTREAM

(COARSE SAMPLING)
DOWNSTREAM
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Contributions to Neutrino Scattering
I σTOT = σQE + σRES + σDIS

I Quasi Elastic (QE)
νn → µ−p, νp → µ+n

ν(ν) scatters off an entire nucleon.

I Resonance νN → νN∗

νµp(n) → µ−π+p(n)

νµn → µ−π0p

Excited nucleon decays into low
multiplicity final states.

I Deep Inelastic Scattering (DIS)
ν(ν)N → µ−(µ+)X

ν(ν) scatters off nucleon constituents.

I These contributions are not precisely
known at low energies.
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Total cross section features:

• σ
E

rises at low energy due to contributios from QE and Resonance processes. (both
saturate a low energy- few GeV region).

• At high energy σ
E

is roughly flat and dominated by DIS. – p.5/34



CC Cross Sections in MINOS
I MINOS coarse-grained detector is not ideal for identifying individual final state particles

→ except for µ.

• Look at inclusive CC cross section and DIS cross section.

• Energy dependence of total CC cross sec-
tion (range ∼5-50 GeV).
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? Existing data is of limited precision
∼
>10%

? MINOS range covers interesting low energy
region where all three process contribute.

• DIS Cross Section and Structure Functions

? New kinematic regime for ν N SFs

? High-x low Q2 : Good coverage in charged-
lepton scattering, but little neutrino data.
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Charged-Current Neutrino Scattering

I DIS is the largest contribution to
the MINOS event sample.

DIS 62%, RES 21%, QE 17%

• For Eν > 5 GeV, DIS is the
dominant process.
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CC Event Selection

I 1 good fit track

I Vertex contained inside fiducial
volume.

• Upstream ’target’ region.

• Centered on beam spot.

• Fiducial mass ∼4ton.

I Select sign of the muon, µ− for νµ,
µ+ for νµ,

I CC event selection kinematic cut:
Eµ > 2GeV

• Stopping, momentum from range

• Exiting, momentum from
curvature

I Removes NC contamination.

I Reconstructed neutrino energy
Eν > 5 GeV.

-µ

Calorimeter Spectrometer
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Cross Section Extraction

Raw Data

Cross−Sect
samplesample

Flux

FLUX Cross−Sect

detector sim.

Cross section
  model

beam flux
MC

I Two samples: Flux, Cross section

I Monte Carlo used to apply corrections for
acceptance and smearing.
Ingredients

• Input beam flux (GEANT3 based beamline
simulation, production model FLUKA05).

• Cross section model (NEUGEN3): uses
Bodek-Yang duality model,(BY-GRV98LO),
tuned to data in DIS/res. overlap region.

• Detector simulation.

I Determine Flux from ’flux’ sample (next slide).

I Extract cross section, d2σ
dxdy

ν(ν)
= 1

Φ(E)
d2N
dxdy

ν(ν)
.
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Cross Section Extraction

Raw Data

Cross−Sect
samplesample
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Cross section
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I Two samples: Flux, Cross section

I Monte Carlo used to apply corrections for
acceptance and smearing.
Ingredients

• Input beam flux (GEANT3 based beamline
simulation, production model FLUKA05).

• Cross section model (NEUGEN3): uses
Bodek-Yang duality model,(BY-GRV98LO),
tuned to data in DIS/res. overlap region.

• Detector simulation.

I Determine Flux from ’flux’ sample (next slide).

I Extract cross section, d2σ
dxdy

ν(ν)
= 1

Φ(E)
d2N
dxdy

ν(ν)
.

I Iterate with new (measured) flux

I Fit differential cross section and input as new
cross section model... iterate.
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Relative Flux Extraction Method
I Use inclusive low ν(= EHAD) cross section to get flux shape.

• Similar method used at higher energy (CCFR/NuTeV)→ adapt to lower energies.
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=
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ν

lim ν→0
= A constant, independent of Eν . → Φ(E) ∝ N(E, ν < νo).

I For MINOS require ν < 1GeV and extract flux for Eν > 5 GeV.

1. Count events at low ν, N(E, ν < 1GeV)

2. Use cross section model to correct for energy de-

pendence in low-ν sample, c(E) =
σasym(ν<1))

σ(ν<1)

3. Φ(E) ∝ c(E)N(E, ν < 1GeV)
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Near Detector Extracted Flux
LE-10 Data Sample 1.0E20 PoT (June-Dec 2005).

I Flux sample: CC events with ν < 1 GeV, (Eν > 5 GeV)

• Data corrected for acceptance and smearing using MC model.
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I Extracted data flux for 1E20 PoT
(unnormalized).

• Compare with MC which uses
default beam flux model (GEANT3 +
FLUKA05 production).
? MC normalized to 1.0E20 PoT.

I Shows large discrepancy (up to 40% ±
10%) in the Eν > 10GeV GeV region
(outside the beam focusing peak).

• Beam model flux uncertainties are
large (∼15%) and dominated by
production uncertainties in this
region.
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Reconstructed Energy Spectrum

I Total cross section sample:

• All CC events (events with well
reconstructed muon, Eµ > 2GeV).

I Effect of flux re-iteration on
reconstructed CC energy spectrum.

• Nominal MC (blue curve) using
GEANT3+FLUKA05 beam flux.

• MC reweighted by low-ν extracted
flux (red curve).

• Data/MC agreement improves
dramatically after one reiteration of
the flux.
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Flux Tuning in Oscillation Analysis
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Tuned Hadron Production

I Use reconstructed energy spectra from
all beam configurations to tune
production model.

• Hadron production model, (production of

pions from 120GeV protons on graphite) is
adjusted by applying fitted weights
as a function of (xf , pT ) of parent
pion.

I Nominal Near detector MC (blue curve)
shows systematic disagreement in tail
of LE beam.

I Data/MC agreement (red curve, MC
after tuning) improves for LE tail.

I “Tuned” flux is also higher in the tail re-
gion, agrees with extracted low-ν flux.
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Total Cross Section Energy Dependence
I σTOT(E) =

Ncorr
xsec

Φ(E)

• Ncorr
xsec = cross section sample events corrected for

acceptance and smearing using MC.

Ncorr
xsec(E) = N raw

xsec(E)

„

NMCgen(E)

NMCreco
xsec (E)

«

NMCgen(E) = events generated in the fiducial volume.

NMCreco
xsec (E) = events in the MC reconstructed sample.

• Correct to Isoscalar target, (Iron N−Z
A

= 0.0567).

• Normalize in region 10-50 GeV using world
average ν-Iso Fe value:
“

σν

E

”

world
= 0.676 ± 0.04 ×10−38 cm2

GeV

I Measures shape of σ
E

with energy.

I Fake-data study, comparison to NEUGEN model
prediction. (3.7×1019 PoT sample).

• Band shows size of error on the weighted average for data

points with E>10GeV (used for normalization).

I Minos full sample (7.4×1020 PoT)
will be ∼20× larger → statistical precision
∼4.5× better. Neutrino Energy(GeV)
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Flux and Cross Section Errors

I Low-ν Flux method valid for Eν > 5GeV

• At lower energies systematics from
model and acceptance corrections
become large.

I Systematics evaluated:

• Eµ scale ±2% (Largest for Flux)

• EHAD scale ±5.6%

• Final state Intranuclear rescattering.
(affects measured EHAD)
→Largest for cross section,estimate is
crude, will be reduced).

• Model correction uncertainty estimate
(B/A correction).

I Prognosis: Expect flux and cross section
uncertainties in range 2-5% for Eν > 5GeV.
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Antineutrino Sample in MINOS

I Above 5GeV ∼ 15% of events are from ν.

I Total expected ν-CC sample= 7.4 × 105

events for 7.4E20 PoT.

I Also studying ν flux and cross section
extraction.

• Larger model corrections to flux.

• Acceptance corrections (µ+s
defocussed).

I Contamination from mis-IDed νµCC events
is large (5-20%).

I Improvement needed to charge-sign ID to
obtain high-purity sample of ν (WIP).
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DIS Cross Section Sample
I Large data sample of DIS (W > 2GeV) and transition region (2 > W > 1.4GeV) events.

• Kinematic range overlaps with SLAC and JLAB charged-lepton data sets.

ν DIS sample:
(1E20 POT LE-10)

MC: Low-ν flux rewt.

W > 2GeV

Q2 > 1GeV2

Eν > 5GeV

I Extract doubly differential cross section. d2σ
dxdy

ν(ν)
= 1

Φ(E)
d2N
dxdy

ν(ν)
.

I Measure ν-Iron structure functions, F2(x, Q2) and xF3(x, Q2)
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Structure Function Measurements

I F2(x, Q2) from cross section sum.
h
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I xF3(x, Q2) from cross section difference.
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• xF3(x, Q2) only from ν scattering.

I F2(x, Q2) sensitivity - statistical errors only
for 1.85×1020 PoT.

• Systematics will be of comparable size at
this level of statistical precision.
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Conclusions
I First steps underway to extract CC cross sections from MINOS ND data sample.

• Low-ν flux method applied to extract neutrino flux for Eν > 5GeV.

• Analysis underway to extract shape of charged-current total cross section in the
interesting low energy region.

• High statistics ν sample, studies underway to improve purity.

I Plans for inclusive ND cross section measurements:

• Energy dependence of total cross section (ν and ν).

• DIS differential ν and ν cross sections.

• Neutrino iron structure functions → New kinematic range for ν scattering.

I Also underway:

• Quasi-elastic cross section.

• Coherent π production

• Dimuon production.
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Backups
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Hadronic Energy Resolution

Measured with test beam
(CALDET) in range 1-10 GeV
for pions and protons.
σ
E

= A ⊕ B√
E

quadratic
σ
E

= A + B√
E

linear
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CC Selection Efficiency

Efficiency of Eµ > 2 GeV cut.
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Model Corrections to Flux Extraction
Cross section model NEUGEN3 uses:

I Bodek-Yang duality model (GRV98LO pdfs tuned to data in DIS/res. overlap region.)

I QE cross section with (MA = 1.03)

I No explicit contribution from resonances.

I Have also studied a NEUGEN3 version which explicitly includes resonances for W < 1.7

(tuned on data). resonance region.

Low-ν energy dependence of cross section components (neutrino).
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Model Corrections to Flux (Antineutrinos)
Cross section model NEUGEN3 uses:

I Bodek-Yang duality model (GRV98LO pdfs tuned to data in DIS/res. overlap region.)

I QE cross section with (MA = 1.03)

I No explicit contribution from resonances.

I Have also studied a NEUGEN3 version which explicitly includes resonances for W < 1.7

(tuned on data).

Low-ν energy dependence of cross section components (antineutrino).
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Flux Model Correction Uncertainty
Low-ν method:
dσ
dν

= A
“

1 + B
A

ν
E

− C
A

ν2

2E2

”

I At low ν and high Eν → ( ν
E

) and ( ν
E

)2

terms are small ⇒ decreasing with en-
ergy.

B
A

= −

Z

(F2(x) ∓ xF3(x)) dx
Z

F2(x)dx

I Smaller for ν than for ν

• - for neutrinos: −1 < B
A

< 0

• + for anti-neutrinos: −2 < B
A

< −1

I Theoretical value for B
A

computed from
model, (problem: large uncertainty at low ν)

. ( B
A

)nu(ν = 20) ≈ −0.25 (lower limit)

. ( B
A

)antinu(ν = 20) ≈ −1.7 (upper limit)
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Flux and Cross Section Corrections
Other physics corrections to flux and cross section
1-loop radiative corrections (Bardin), isoscalar target correction

Flux
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Beam Model Tuning Using ND Data
I ND data/MC disagreements are “Beam

tune” dependent.

• Detector and cross section model are
common to all tunes. . implies beam
modeling

I Hadron production model (production of pions

from 120GeV protons on graphite, (f(xf , pt)), is
tuned to further improve data/MC
agreement.

• Fit for weights as a function of xf , pt for
6 beam configurations.
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Minos Calibration System
ILED based light injection system

• Track PMT gains.

ICosmic ray muons

• Remove variations along and between strips.

• Stopping muons for detector-to-detector
relative energy calibration.

ITest beam with mini-MINOS detector (CALDET)

• Measure absolute energy scales. (e,µ, π,p).

Energy Scale Uncertainties

I 5.7% Absolute

I 2% Near/Far relative
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MINOS QE Selection
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I PDF based selection based on shower topology, proton direction, reco-W.

I ∼40% efficiency, ∼70% purity.

I Modeling of low energy shower topology complicated by final state rescattering of
hadronic particles.

• Difficult to model, large uncertainty
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Beam Flux Errors
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GNUMI Flux Uncertainties

I Beam component (matter most in the
focusing peak region)

1. Horn 1 offset (small)

2. baffle scraping (small)

3. POT (2%)

4. Horn current offset (1%)

5. Horn current distribution (0-8% effect)

I Production : 8-15% (15% above the
beam peak).

• Assume will be reduced after
MIPP to ∼4%.
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Near Detector Planes
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Systematics and Structure Functions
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Near Detector Data

I ND sees large event rates → multiple
events per 8-10µsec spill.

• Typical intensity 2.2 × 1013

protons/spill (spill length 8-10µsec).

I Events are separated using timing and
topology.

I No rate dependent reconstruction ef-
fects observed.
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DIS Cross Section Sample
DIS events (EHAD > 1GeV, W > 2GeV, Q2 > 1GeV 2, Eν > 5GeV )
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