Lepton non-universality at LEP and charged Higgs

Jae-hyeon Park

Tohoku University

Joint Meeting of Pacific Region Particle Physics Communities Sheraton Waikiki Hotel, Honolulu, Hawaii, 2006–10–31

Based on JHEP10(2006)077 [hep-ph/0607280].

Lepton universality in charged current interactions

- SM predicts lepton universality.
- *W* boson couplings to *e*,µ,^τ are determined by SU(2) gauge invariance.

$$
\mathscr{L}_{\text{CC}} = \frac{g}{\sqrt{2}} \sum_{l=e,\mu,\tau} W^{\dagger}_{\mu} \, \overline{v}_l \, \gamma^{\mu} \left(\frac{1-\gamma_5}{2} \right) l + \text{h.c.}
$$

• Thoroughly tested in

 $\mu \to e \nu \nu$, $\tau \to \mu \nu \nu$, $\tau \to e \nu \nu$, $\pi \to e \nu$, $\pi \to \mu \nu$, $\tau \to \pi \nu$, ... All these consistent with lepton universality.

Test of lepton universality at $\mu \rightarrow e \nu \nu$ and $\tau \rightarrow \mu \nu \nu$

Use parameterization

$$
\mathscr{L}_{CC} = \sum_{l=e,\mu,\tau} \frac{g_l}{\sqrt{2}} W^{\dagger}_{\mu} \, \overline{V}_l \, \gamma^{\mu} \left(\frac{1-\gamma_5}{2} \right) l + \text{h.c.}
$$

• Take ratio $\Gamma(\tau \to \mu \nu \nu)/\Gamma(\mu \to e \nu \nu)$:

Data from Loinaz, Okamura, Rayyan, Takeuchi, Wijewardhana, PRD(2004)

Test of lepton universality at $\mu \rightarrow e \nu \nu$ and $\tau \rightarrow \mu \nu \nu$

Use parameterization

$$
\mathscr{L}_{CC} = \sum_{l=e,\mu,\tau} \frac{g_l}{\sqrt{2}} W^{\dagger}_{\mu} \, \overline{V}_l \, \gamma^{\mu} \left(\frac{1-\gamma_5}{2} \right) l + \text{h.c.}
$$

• Take ratio $\Gamma(\tau \to \mu \nu \nu)/\Gamma(\mu \to e \nu \nu)$:

$$
\rightarrow (g_{\tau}/g_e)_{\tau\mu} = 1.0004 \pm 0.0022
$$

Perfect agreement with lepton universality

Data from Loinaz, Okamura, Rayyan, Takeuchi, Wijewardhana, PRD(2004)

Measurement of $B(W \rightarrow l\nu)$ at LEP

• LEP directly measured $B(W \to eV_e)$, $B(W \to \mu V_\mu)$, $B(W \to \tau V_\tau)$, from partial cross sections of $WW \rightarrow 4f$.

 $(f_1, f_2) = (e, \overline{v}_e), (\mu, \overline{v}_\mu), (\tau, \overline{v}_\tau), (d, \overline{u}), (s, \overline{c}).$ (f_4, f_3) is a conjugate.

Tau mode excess

LEP electroweak working group, hep-ex/0511027

o LEP results

• Under assumption of $B(W \to eV_e) = B(W \to \mu V_\mu)$,

$$
\frac{B(W \to \tau v_{\tau})}{[B(W \to e v_e) + B(W \to \mu v_{\mu})]/2}\bigg|_{\text{LEP}} = 1.077 \pm 0.026
$$

Tau mode excess

LEP electroweak working group, hep-ex/0511027

• LEP results

• Under assumption of $B(W \to eV_e) = B(W \to \mu V_\mu)$,

$$
\frac{B(W \to \tau v_{\tau})}{[B(W \to e v_e) + B(W \to \mu v_{\mu})]/2}\bigg|_{\text{LEP}} = 1.077 \pm 0.026
$$

• New physics?

Tau mode excess

LEP electroweak working group, hep-ex/0511027

o LEP results

• Under assumption of $B(W \to eV_e) = B(W \to \mu V_\mu)$,

$$
\frac{B(W \to \tau v_{\tau})}{[B(W \to e v_e) + B(W \to \mu v_{\mu})]/2}\bigg|_{\text{LEP}} = 1.077 \pm 0.026
$$

7.7% or 2.8 σ departure from lepton universality.

• New physics?

Previous attempts for explanation

X.-Y. Li, E. Ma, hep-ph/0507017

- **Gauge model of generation non-universality.**
- Two SU(2) gauge groups: one for 1st and 2nd family fermions, the other for 3rd.
- Mixing of gauge bosons leads to flavor-dependent lightest *W* boson couplings to leptons.
- Can fit leptonic *W* branching ratios.

Previous attempts for explanation

X.-Y. Li, E. Ma, hep-ph/0507017

- **Gauge model of generation non-universality.**
- Two SU(2) gauge groups: one for 1st and 2nd family fermions, the other for 3rd.
- Mixing of gauge bosons leads to flavor-dependent lightest *W* boson couplings to leptons.
- **Can fit leptonic** *W* branching ratios.
- **However**, it decreases

$$
\Gamma(\tau \to \mu \nu \nu)/\Gamma(\mu \to e \nu \nu)
$$

by $7\% \approx 15 \sigma \longrightarrow$ **ruled out.**

• A model leading to effective interactions

$$
\mathscr{L}_{\text{CC}} = \sum_{l=e,\mu,\tau} \frac{g_l}{\sqrt{2}} W^{\dagger}_{\mu} \, \overline{V}_l \, \gamma^{\mu} \left(\frac{1-\gamma_5}{2} \right) l + \text{h.c.},
$$

with $g_{\tau} \neq g_{e,\mu}$, generically conflicts with lepton universality tests from μ , τ decays.

• A different approach is preferable.

[Lepton non-universality at LEP and charged Higgs](#page-0-0) DPF+JPS / 2006-10-31 7 / 20

• A model leading to effective interactions

$$
\mathscr{L}_{CC} = \sum_{l=e,\mu,\tau} \frac{g_l}{\sqrt{2}} W^{\dagger}_{\mu} \, \overline{V}_l \, \gamma^{\mu} \left(\frac{1-\gamma_5}{2} \right) l + \text{h.c.},
$$

with $g_{\tau} \neq g_{e,\mu}$, generically conflicts with lepton universality tests from μ , τ decays.

• A different approach is preferable.

[Lepton non-universality at LEP and charged Higgs](#page-0-0) DPF+JPS / 2006-10-31 7 / 20

• A model leading to effective interactions

$$
\mathscr{L}_{\text{CC}} = \sum_{l=e,\mu,\tau} \frac{g_l}{\sqrt{2}} W^{\dagger}_{\mu} \, \overline{V}_l \, \gamma^{\mu} \left(\frac{1-\gamma_5}{2} \right) l + \text{h.c.},
$$

with $g_{\tau} \neq g_{e,\mu}$, generically conflicts with lepton universality tests from μ , τ decays.

• A different approach is preferable.

[Lepton non-universality at LEP and charged Higgs](#page-0-0) Decree and Content of the DPF+JPS / 2006-10-31 7 / 20

• A model leading to effective interactions

$$
\mathscr{L}_{\text{CC}} = \sum_{l=e,\mu,\tau} \frac{g_l}{\sqrt{2}} W^{\dagger}_{\mu} \, \overline{V}_l \, \gamma^{\mu} \left(\frac{1-\gamma_5}{2} \right) l + \text{h.c.},
$$

with $g_{\tau} \neq g_{e,\mu}$, generically conflicts with lepton universality tests from μ , τ decays.

A different approach is preferable.

[Lepton non-universality at LEP and charged Higgs](#page-0-0) DPF+JPS / 2006-10-31 7 / 20

Outline

[Introduction](#page-1-0)

- 2 [Charged Higgs solution](#page-15-0)
	- [Constraints from data](#page-24-0)
	- [Effects on](#page-35-0) $B(W \rightarrow l\nu)$
- ⁵ [Test at future experiments](#page-46-0)

Suppose *H* ⁺*H* − pairs were produced at LEP.

 \bullet *B*(*W* \rightarrow *lv*) is measured by counting final state fermions.

- \bullet σ _{*HH*} is a decreasing function of $m_{H^{\pm}}$ \rightarrow \mid $m_{H^{\pm}}$ \approx m_W desirable. See the plot on Page 16.
- **Hard to realize in MSSM due to** $m_{H^{\pm}}^2 = m_W^2 + m_A^2$ and $m_A > 93$ GeV.
- Consider a 2HDM.

Suppose *H* ⁺*H* − pairs were produced at LEP.

 \bullet *B*(*W* \rightarrow *lv*) is measured by counting final state fermions.

- σ_{HH} is a decreasing function of $m_{H^{\pm}} \rightarrow |m_{H^{\pm}} \approx m_W$ desirable. See the plot on Page 16.
- **Hard to realize in MSSM due to** $m_{H^{\pm}}^2 = m_W^2 + m_A^2$ and $m_A > 93$ GeV.
- Consider a 2HDM.

Suppose *H* ⁺*H* − pairs were produced at LEP.

 \bullet *B*(*W* \rightarrow *lv*) is measured by counting final state fermions.

- \bullet σ_{HH} is a decreasing function of $m_{H^{\pm}} \rightarrow |m_{H^{\pm}} \approx m_W$ desirable. See the plot on Page 16.
	-
- **Hard to realize in MSSM due to** $m_{H^{\pm}}^2 = m_W^2 + m_A^2$ and $m_A > 93$ GeV.
- Consider a 2HDM.

Suppose *H* ⁺*H* − pairs were produced at LEP.

Mostly, $(f_1, f_2) = (\tau, \overline{v}_\tau), (s, \overline{c}).$

 \bullet *B*(*W* \rightarrow *lv*) is measured by counting final state fermions.

Charged Higgs contamination may appear as excessive $B(W \to \tau v_{\tau})$

- \bullet σ _{*HH*} is a decreasing function of $m_{H^{\pm}} \rightarrow |m_{H^{\pm}} \approx m_W$ desirable. See the plot on Page 16.
	-
- **Hard to realize in MSSM due to** $m_{H^{\pm}}^2 = m_W^2 + m_A^2$ and $m_A > 93$ GeV.
- Consider a 2HDM.

Suppose *H* ⁺*H* − pairs were produced at LEP.

 \bullet *B*(*W* \rightarrow *lv*) is measured by counting final state fermions.

Charged Higgs contamination may appear as excessive $B(W \to \tau v_{\tau})$

- \bullet σ_{HH} is a decreasing function of $m_{H^{\pm}} \rightarrow |m_{H^{\pm}} \approx m_W$ desirable. See the plot on Page 16.
- Hard to realize in MSSM due to $m_{H^{\pm}}^2 = m_W^2 + m_A^2$ and $m_A > 93$ GeV.
- Consider a 2HDM.

Suppose *H* ⁺*H* − pairs were produced at LEP.

 \bullet *B*(*W* \rightarrow *lv*) is measured by counting final state fermions.

Charged Higgs contamination may appear as excessive $B(W \to \tau v_{\tau})$

- \bullet σ_{HH} is a decreasing function of $m_{H^{\pm}} \rightarrow |m_{H^{\pm}} \approx m_W$ desirable. See the plot on Page 16.
- Hard to realize in MSSM due to $m_{H^{\pm}}^2 = m_W^2 + m_A^2$ and $m_A > 93$ GeV.

Consider a 2HDM.

Suppose *H* ⁺*H* − pairs were produced at LEP.

 \bullet *B*(*W* \rightarrow *lv*) is measured by counting final state fermions.

Charged Higgs contamination may appear as excessive $B(W \to \tau v_{\tau})$

- \bullet σ_{HH} is a decreasing function of $m_{H^{\pm}} \rightarrow |m_{H^{\pm}} \approx m_W$ desirable. See the plot on Page 16.
- **Hard to realize in MSSM due to** $m_{H^{\pm}}^2 = m_W^2 + m_A^2$ and $m_A > 93$ GeV.
- Consider a 2HDM.

2HDM's free of tree-level FCNC

- Make assumptions on Higgs Yukawa couplings for suppressing tree-level FCNC.
- Four example models

Model labels borrowed from Barger, Hewett, Phillips, PRD(1990)

Models								
$\begin{array}{ c c c c c c c } \hline \rule[-1mm]{0mm}{1.2mm} & \text{VEV} & A_f & \text{VEV} & A_f & \text{VEV} & A_f \ \hline \rule[-1mm]{0mm}{1.2mm} & \rule[-1mm]{0mm}{1.2mm$								
$'$ V .								
$\left(\begin{array}{c}i\\i\end{array}\right)$						H_2 $-\cot\beta$ H_1 $\tan\beta$ H_2 $-\cot\beta$ H_1		$\tan \beta$

$$
\tan\beta \equiv v_2/v_1
$$

 H^\pm -fermion-fermion interaction Lagrangian

$$
\mathcal{L} = \frac{g}{\sqrt{2}m_W} H^+[V_{ij}m_{u_i}A_u\overline{u}_{Ri}d_{Lj} + V_{ij}m_{d_j}A_d\overline{u}_{Li}d_{Rj} + m_lA_l\overline{v}_Ll_R] + \text{h.c.}
$$

goversn $b \rightarrow s\gamma, H^{\pm} \rightarrow \tau v_{\tau}, ...$

2HDM's free of tree-level FCNC

- Make assumptions on Higgs Yukawa couplings for suppressing tree-level FCNC.
- Four example models

Model labels borrowed from Barger, Hewett, Phillips, PRD(1990)

Models					Ш		IV				
	VEV		VEV	A_f	VEV	A_f	VEV	A_{f}			
	H ₂	$\cot \beta$	H ₂	$\cot \beta$	H ₂	$\cot \beta$	H ₂	$\cot \beta$			
$\frac{u}{d}$	H ₂	$-\cot\beta$	H_1	$\tan \beta$	H_1	$\tan \beta$	H ₂	$-\cot\beta$			
$\mathcal V$											
	H ₂	$-cot \beta$	H_1	$\tan \beta$	H ₂	$-\cot\beta$	H_1	$\tan \beta$			
	$\tan \beta \equiv v_2/v_1$										
\bullet H^{\pm} -fermion-fermion interaction Lagrangian											
$H^+[V,m,A,\overline{u}_n,d_n+V,m,A,\overline{u}_n,d_n+m,A,\overline{u}_n] + b.c.$											

$$
\mathcal{L} = \frac{8}{\sqrt{2}m_W}H^+[V_{ij}m_{u_i}A_u\overline{u}_{Ri}d_{Lj}+V_{ij}m_{d_j}A_d\overline{u}_{Li}d_{Rj}+m_lA_l\overline{v}_Ll_R]+h.c.
$$

governs $b \to s\gamma$, $H^{\pm} \to \tau v_{\tau}$, ...

 H^+ in Model I becomes fermiophobic for high $\tan\beta$

b → *s*^γ constraint

- \bullet One of the most stringent constraints on $m_{H^{\pm}}$.
- Branching ratio in 2HDM:

$$
\frac{B(B \to X_s \gamma)}{B_{\text{SM}}(B \to X_s \gamma)} = \left| \frac{C_{7\gamma}^{\text{SM}}(m_b) + C_{7\gamma}^{H^\pm}(m_b)}{C_{7\gamma}^{\text{SM}}(m_b)} \right|^2 = \left| 1 + 0.71 A_u A_d + 0.15 A_u^2 \right|^2
$$

• In Models **II** and **III**, $A_uA_d = 1$, and therefore

$$
\frac{B(B \to X_s \gamma)}{B_{\text{SM}}(B \to X_s \gamma)} \ge 2.9 \quad \text{for} \quad m_{H^\pm} \approx m_W
$$

−→ **excluded**.

 \bullet In Models **I** and **IV**, $A_u = -A_d = \cot \beta$,

b → *s*^γ constraint

- \bullet One of the most stringent constraints on $m_{H^{\pm}}$.
- Branching ratio in 2HDM:

$$
\frac{B(B \to X_s \gamma)}{B_{\text{SM}}(B \to X_s \gamma)} = \left| \frac{C_{7\gamma}^{\text{SM}}(m_b) + C_{7\gamma}^{H^{\pm}}(m_b)}{C_{7\gamma}^{\text{SM}}(m_b)} \right|^2 = \left| 1 + 0.71 A_u A_d + 0.15 A_u^2 \right|^2
$$

• In Models **II** and **III**, $A_uA_d = 1$, and therefore

$$
\frac{B(B \to X_s \gamma)}{B_{\text{SM}}(B \to X_s \gamma)} \ge 2.9 \quad \text{for} \quad m_{H^\pm} \approx m_W
$$

−→ **excluded**.

 \bullet In Models **I** and **IV**, $A_u = -A_d = \cot \beta$,

b → *s*^γ constraint

- \bullet One of the most stringent constraints on $m_{H^{\pm}}$.
- Branching ratio in 2HDM:

$$
\frac{B(B \to X_s \gamma)}{B_{\text{SM}}(B \to X_s \gamma)} = \left| \frac{C_{7\gamma}^{\text{SM}}(m_b) + C_{7\gamma}^{H^{\pm}}(m_b)}{C_{7\gamma}^{\text{SM}}(m_b)} \right|^2 = \left| 1 + 0.71 A_u A_d + 0.15 A_u^2 \right|^2
$$

• In Models II and III, $A_uA_d = 1$, and therefore

$$
\frac{B(B \to X_s \gamma)}{B_{\text{SM}}(B \to X_s \gamma)} \ge 2.9 \quad \text{for} \quad m_{H^\pm} \approx m_W
$$

−→ **excluded**.

 \bullet In Models **I** and **IV**, $A_u = -A_d = \cot \beta$,

Models **I** and **IV** survive if $\tan \beta \geq 4$

Direct constraints on $m_{H^{\pm}}$

 $B(H^{\pm} \to \tau v_{\tau})$ as a function of $\tan \beta$:

Hatched region is excluded for $m_{H^{\pm}} = 86$ GeV [plot on Page 16]. Model IV leads to $B(H^{\pm} \to \tau v_{\tau}) \gtrsim 0.99$ for tan $\beta \gtrsim 4$.

 \bullet $b \rightarrow s\gamma$ and direct search largely determine one viable model.

Hatched region is excluded for $m_{H^{\pm}} = 86$ GeV [plot on Page 16]. Model IV leads to $B(H^{\pm} \to \tau v_{\tau}) \gtrsim 0.99$ for tan $\beta \gtrsim 4$.

 \bullet $b \rightarrow s\gamma$ and direct search largely determine one viable model.

Hatched region is excluded for $m_{H^{\pm}} = 86$ GeV [plot on Page 16].

Model IV leads to $B(H^{\pm} \to \tau v_{\tau}) \gtrsim 0.99$ for tan $\beta \gtrsim 4$.

b → *sγ* and direct search largely determine one viable model.

Hatched region is excluded for $m_{H^{\pm}} = 86$ GeV [plot on Page 16].

Model IV leads to $B(H^{\pm} \to \tau v_{\tau}) \gtrsim 0.99$ for $\tan \beta \gtrsim 4$.

Model I is favored for $m_{H^{\pm}} \approx m_W$

 \bullet $b \rightarrow s\gamma$ and direct search largely determine one viable model.

Hatched region is excluded for $m_{H^{\pm}} = 86$ GeV [plot on Page 16].

Model IV leads to $B(H^{\pm} \to \tau v_{\tau}) \gtrsim 0.99$ for $\tan \beta \gtrsim 4$.

Model I is favored for $m_{H^{\pm}} \approx m_W$

- \bullet $b \rightarrow s\gamma$ and direct search largely determine one viable model.
- Consider only **Model I** from here on.

- **O** From LEP
	- \triangleright *W*-pair production cross section: σ_{HH} < 1% σ_{WW} < error of σ_{WW}
	- ◮ Angular distribution of *W*-pair: measured from $qqev$ and $qq\mu v$ final states \longrightarrow irrelevant.
	- ► Anomalous triple-gauge-boson couplings measurement: charged Higgs effect is smaller than or comparable to an error.
	- ◮ *W* mass and width: shifts are smaller than errors.
- *S*, *T*, and *U*: okay unless neutral Higgses are too heavy.
- **From CDF**
	- \blacktriangleright *t* → *H*⁺*b*: constraint weakens as tan $β$ grows \longrightarrow safe for tan $β ≳ 1$.
- FCNC and *CP* violation: $B_s\overline{\rightarrow}B_s$, $B^0\overline{\rightarrow}B^0$, $K^0\overline{\rightarrow}K^0$, $\varepsilon'/\varepsilon_K$, $B^-\to\tau\overline{\nu}$, ... H^\pm decouples from fermions for high tan $\beta \models \rightarrow$ Safe for tan $\beta \gtrsim 4.$

- **O** From LEP
	- \triangleright *W*-pair production cross section: σ_{HH} < 1% σ_{WW} < error of σ_{WW}
	- ◮ Angular distribution of *W*-pair: measured from *qqe*ν and *qqμv* final states → irrelevant.
	- ► Anomalous triple-gauge-boson couplings measurement: charged Higgs effect is smaller than or comparable to an error.
	- ◮ *W* mass and width: shifts are smaller than errors.
- *S*, *T*, and *U*: okay unless neutral Higgses are too heavy.
- **From CDF**
	- \blacktriangleright *t* → *H*⁺*b*: constraint weakens as tan $β$ grows \longrightarrow safe for tan $β ≳ 1$.
- FCNC and *CP* violation: $B_s \overline{B_s}$, $B^0 B^0$, $K^0 K^0$, $\varepsilon'/\varepsilon_K$, $B^- \to \tau \overline{\nu}$, ... H^\pm decouples from fermions for high tan $\beta \to$ Safe for tan $\beta \gtrsim 4.$

- **O** From LEP
	- \blacktriangleright *W*-pair production cross section: σ_{HH} < 1% σ_{WW} < error of σ_{WW}
	- ◮ Angular distribution of *W*-pair: measured from $qqev$ and $qq\mu v$ final states \longrightarrow irrelevant.
	- ► Anomalous triple-gauge-boson couplings measurement: charged Higgs effect is smaller than or comparable to an error.
	- ◮ *W* mass and width: shifts are smaller than errors.
- *S*, *T*, and *U*: okay unless neutral Higgses are too heavy.
- **From CDF**
	- \blacktriangleright *t* → *H*⁺*b*: constraint weakens as tan $β$ grows \longrightarrow safe for tan $β ≳ 1$.
- FCNC and *CP* violation: $B_s \overline{B_s}$, $B^0 B^0$, $K^0 K^0$, $\varepsilon'/\varepsilon_K$, $B^- \to \tau \overline{\nu}$, ... H^\pm decouples from fermions for high tan $\beta \models \rightarrow$ Safe for tan $\beta \gtrsim 4.$
- For the same reason.

 $\Gamma(\tau \to \mu \nu \nu)/\Gamma(\mu \to e \nu \nu)$ [μ, τ, π, K decays] **safe** if $\tan \beta \geq 0.03$

A feature not shared by non-universal charged current interaction models!

- From LEP
	- \blacktriangleright *W*-pair production cross section: σ_{HH} < 1% σ_{WW} < error of σ_{WW}
	- ◮ Angular distribution of *W*-pair: measured from $qqev$ and $qq\mu v$ final states \longrightarrow irrelevant.
	- ► Anomalous triple-gauge-boson couplings measurement: charged Higgs effect is smaller than or comparable to an error.
	- ◮ *W* mass and width: shifts are smaller than errors.
- *S*, *T*, and *U*: okay unless neutral Higgses are too heavy.
- **O** From CDF
	- \blacktriangleright *t* → *H*⁺*b*: constraint weakens as tan $β$ grows \longrightarrow safe for tan $β ≳ 1$.
- FCNC and *CP* violation: $B_s \overline{B_s}$, $B^0 B^0$, $K^0 K^0$, $\varepsilon'/\varepsilon_K$, $B^- \to \tau \overline{\nu}$, ...

 H^\pm decouples from fermions for high tan $\beta \models \rightarrow$ Safe for tan $\beta \gtrsim 4.$

• For the same reason.

 $\Gamma(\tau \to \mu \nu \nu)/\Gamma(\mu \to e \nu \nu)$ [μ, τ, π, K decays] **safe** if $\tan \beta \geq 0.03$

A feature not shared by non-universal charged current interaction models! Okay thanks to *H*⁺'s fermiophobia for high tan β

How effective is charged Higgs contribution?

- Take $m_{H^{\pm}} = 81 \text{ GeV}, \sqrt{s} = 200 \text{ GeV} \longrightarrow \sigma_{HH} = 0.14 \text{ pb}, \sigma_{WW} = 17 \text{ pb}$
- For Model I, $B(H^{\pm} \rightarrow qq) = 0.3$ and $B(H^{\pm} \rightarrow \tau v_{\tau}) = 0.7$
- $B(W \to qq) = 6/9$, $B(W \to \mu v_u) = 1/9$
- Estimate using *qq*τν and *qq*µν modes:

$$
\frac{B(W \to \tau v_{\tau})}{B(W \to \mu v_{\mu})}\Big|_{\text{appar}} = \frac{\sigma_{WW}^{qq\tau v} + \sigma_{HH}^{qq\tau v}}{\sigma_{WW}^{qq\mu v}}
$$

$$
= 1 + \frac{\sigma_{HH}}{\sigma_{WW}} \frac{B(H^{\pm} \to \tau v_{\tau})}{B(W \to \mu v_{\mu})} \frac{B(H^{\pm} \to qq)}{B(W \to qq)} \approx 1.02
$$

Estimate using $\tau v \tau v$ **and** $\mu v \mu v$ **:**

$$
\left. \frac{B(W \to \tau v_\tau)}{B(W \to \mu v_\mu)} \right|_{\text{appar}} = \sqrt{1 + \frac{\sigma_{HH}}{\sigma_{WW}} \left(\frac{B(H^\pm \to \tau v_\tau)}{B(W \to \mu v_\mu)} \right)^2} \approx 1.15
$$

● Can accommodate a few % of tau mode excess.

How effective is charged Higgs contribution?

- Take $m_{H^{\pm}} = 81 \text{ GeV}, \sqrt{s} = 200 \text{ GeV} \longrightarrow \sigma_{HH} = 0.14 \text{ pb}, \sigma_{WW} = 17 \text{ pb}$
- For Model I, $B(H^{\pm} \rightarrow qq) = 0.3$ and $B(H^{\pm} \rightarrow \tau v_{\tau}) = 0.7$
- $B(W \to qq) = 6/9$, $B(W \to \mu v_\mu) = 1/9$
- Estimate using *qq*τν and *qq*µν modes:

$$
\frac{B(W \to \tau v_{\tau})}{B(W \to \mu v_{\mu})}\Big|_{\text{appar}} = \frac{\sigma_{WW}^{qq\tau v} + \sigma_{HH}^{qq\tau v}}{\sigma_{WW}^{qq\mu v}}
$$

$$
= 1 + \frac{\sigma_{HH}}{\sigma_{WW}} \frac{B(H^{\pm} \to \tau v_{\tau})}{B(W \to \mu v_{\mu})} \frac{B(H^{\pm} \to qq)}{B(W \to qq)} \approx 1.02
$$

Estimate using $\tau v \tau v$ **and** $\mu v \mu v$ **:**

$$
\left. \frac{B(W \to \tau v_\tau)}{B(W \to \mu v_\mu)} \right|_{\text{appar}} = \sqrt{1 + \frac{\sigma_{HH}}{\sigma_{WW}} \left(\frac{B(H^\pm \to \tau v_\tau)}{B(W \to \mu v_\mu)} \right)^2} \approx 1.15
$$

● Can accommodate a few % of tau mode excess.

Use data available in DELPHI, EPJC (2004).

Likelihood fit with only *W* gives

$$
\left. \frac{B(W \to \tau v_{\tau})}{[B(W \to e v_e) + B(W \to \mu v_{\mu})]/2} \right|_{W \text{ only}} = 1.071.
$$

Likelihood fit in 2HDM I gives

$$
\left. \frac{B(W \to \tau v_{\tau})}{[B(W \to e v_{e}) + B(W \to \mu v_{\mu})]/2} \right|_{2\text{HDM fit}} = 1.031
$$

- **Tau mode excess diminished by 4%.**
- Can expect an improvement of the ratio

$$
\frac{B(W \to \tau v_{\tau})}{[B(W \to e v_e) + B(W \to \mu v_{\mu})]/2}\bigg|_{\text{LEP}, 2\text{HDM}} \simeq 1.037 \pm 0.026
$$

- Use data available in DELPHI, EPJC (2004).
- Likelihood fit with only *W* gives

$$
\left. \frac{B(W \to \tau v_{\tau})}{[B(W \to e v_e) + B(W \to \mu v_{\mu})]/2}\right|_{W \text{ only}} = 1.071.
$$

Likelihood fit in 2HDM I gives

$$
\frac{B(W \to \tau v_{\tau})}{[B(W \to e v_e) + B(W \to \mu v_{\mu})]/2}\bigg|_{2\text{HDM fit}} = 1.031
$$

- **Tau mode excess diminished by 4%.** \bullet
- Can expect an improvement of the ratio

$$
\frac{B(W \to \tau v_{\tau})}{[B(W \to e v_e) + B(W \to \mu v_{\mu})]/2}\bigg|_{\text{LEP}, 2\text{HDM}} \simeq 1.037 \pm 0.026
$$

- Use data available in DELPHI, EPJC (2004).
- Likelihood fit with only *W* gives

$$
\left. \frac{B(W \to \tau v_{\tau})}{[B(W \to e v_e) + B(W \to \mu v_{\mu})]/2}\right|_{W \text{ only}} = 1.071.
$$

● Likelihood fit in 2HDM I gives

$$
\frac{B(W \to \tau v_\tau)}{[B(W \to e v_e) + B(W \to \mu v_\mu)]/2}\bigg|_{2\text{HDM fit}} = 1.031
$$

- **Tau mode excess diminished by 4%.**
- Can expect an improvement of the ratio

$$
\frac{B(W \to \tau v_{\tau})}{[B(W \to e v_e) + B(W \to \mu v_{\mu})]/2} \bigg|_{\text{LEP}, 2\text{HDM}} \simeq 1.037 \pm 0.026
$$

- Use data available in DELPHI, EPJC (2004).
- Likelihood fit with only *W* gives

$$
\left. \frac{B(W \to \tau v_{\tau})}{[B(W \to e v_e) + B(W \to \mu v_{\mu})]/2}\right|_{W \text{ only}} = 1.071.
$$

● Likelihood fit in 2HDM I gives

$$
\frac{B(W \to \tau v_\tau)}{[B(W \to e v_e) + B(W \to \mu v_\mu)]/2}\bigg|_{2\text{HDM fit}} = 1.031
$$

for $m_{H^{\pm}} = 81$ GeV.

Tau mode excess diminished by 4%.

• Can expect an improvement of the ratio

$$
\frac{B(W \to \tau v_{\tau})}{[B(W \to e v_e) + B(W \to \mu v_{\mu})]/2}\bigg|_{\text{LEP}, 2\text{HDM}} \simeq 1.037 \pm 0.026
$$

- Use data available in DELPHI, EPJC (2004).
- Likelihood fit with only *W* gives

$$
\left. \frac{B(W \to \tau v_{\tau})}{[B(W \to e v_e) + B(W \to \mu v_{\mu})]/2}\right|_{W \text{ only}} = 1.071.
$$

● Likelihood fit in 2HDM I gives

$$
\frac{B(W \to \tau v_\tau)}{[B(W \to e v_e) + B(W \to \mu v_\mu)]/2}\bigg|_{2\text{HDM fit}} = 1.031
$$

- **Tau mode excess diminished by 4%.**
- Can expect an improvement of the ratio

$$
\frac{B(W \to \tau v_{\tau})}{[B(W \to e v_e) + B(W \to \mu v_{\mu})]/2}\bigg|_{\text{LEP}, 2\text{HDM}} \simeq 1.037 \pm 0.026.
$$

- Use data available in DELPHI, EPJC (2004).
- Likelihood fit with only *W* gives

$$
\left. \frac{B(W \to \tau v_{\tau})}{[B(W \to e v_e) + B(W \to \mu v_{\mu})]/2}\right|_{W \text{ only}} = 1.071.
$$

● Likelihood fit in 2HDM I gives

$$
\frac{B(W \to \tau v_\tau)}{[B(W \to e v_e) + B(W \to \mu v_\mu)]/2}\bigg|_{2\text{HDM fit}} = 1.031
$$

for $m_{H^{\pm}} = 81$ GeV.

- **Tau mode excess diminished by 4%.**
- Can expect an improvement of the ratio

$$
\frac{B(W \to \tau v_{\tau})}{[B(W \to e v_e) + B(W \to \mu v_{\mu})]/2}\bigg|_{\text{LEP}, 2\text{HDM}} \simeq 1.037 \pm 0.026.
$$

Lepton non-universality reduced to 1.4 σ

Charged Higgs mass dependence of the fit

Likelihood fit result of *r* ≡ $B(W \to \tau v_{\tau})$ $[\mathcal{B}(W \to e \nu_e) + \mathcal{B}(W \to \mu \nu_\mu)]/2$ $\overline{}$ $\overline{}$   2HDM fit as a function of $m_{H^{\pm}}$:

• The lighter, the better, but for Model I, LEP constrains

 $m_{H^{\pm}} > 80.7$ GeV.

Charged Higgs mass dependence of the fit

Likelihood fit result of *r* ≡ $B(W \to \tau v_{\tau})$ $[\mathcal{B}(W \to e \nu_e) + \mathcal{B}(W \to \mu \nu_\mu)]/2$ $\overline{}$   2HDM fit as a function of $m_{H^{\pm}}$:

1-σ mitigation needs $m_{H^{\pm}} \lesssim 86$ GeV

• The lighter, the better, but for Model I, LEP constrains

 $m_{H^{\pm}} > 80.7$ GeV.

Charged Higgs mass dependence of the fit

Likelihood fit result of *r* ≡ $B(W \to \tau v_{\tau})$ $[\mathcal{B}(W \to e \nu_e) + \mathcal{B}(W \to \mu \nu_\mu)]/2$ $\overline{}$   2HDM fit as a function of $m_{H^{\pm}}$:

1-σ mitigation needs $m_{H^{\pm}} \lesssim 86$ GeV

• The lighter, the better, but for Model I, LEP constrains

 $m_{H^{\pm}} > 80.7$ GeV.

Test at ILC

- What to look for: charged Higgs with $m_{H^{\pm}} \approx m_W$ that couples very weakly to fermions.
- **•** Test of scenario is charged Higgs search.
- **O** Doable at ILC.
- Beam polarization helps a lot. \bullet

for \sqrt{s} = 500 GeV, right-handed electron and left-handed positron beam polarizations.

At LHC? Not sure.

Test at ILC

- What to look for: charged Higgs with $m_{H^{\pm}} \approx m_W$ that couples very weakly to fermions.
- **•** Test of scenario is charged Higgs search.
- **O** Doable at ILC.
- Beam polarization helps a lot.

for \sqrt{s} = 500 GeV, right-handed electron and left-handed positron beam polarizations.

At LHC? Not sure.

Test at ILC

- \bullet What to look for: charged Higgs with $m_{H^\pm}\approx m_W$ that couples very weakly to fermions.
- **•** Test of scenario is charged Higgs search.
- **O** Doable at ILC.
- Beam polarization helps a lot.

for \sqrt{s} = 500 GeV, right-handed electron and left-handed positron beam polarizations.

• At LHC? Not sure.

Summary

- A resolution is proposed of the possible lepton non-universality observed at the *W*-pair production experiments at LEP.
- *H* ± **almost degenerate with** *W*, within 2HDM, **could reduce 2.8** ^σ **of deviation down to 1.4** ^σ**.**
- No conflict with the existing direct or indirect constraints. In particular, ^µ**,** ^τ**,** ^π**,** *K* **decays are safe.**
- Charged Higgs direct search at LEP in combination with *b* → *s*^γ singles out one viable type of 2HDM out of the four that are free of tree-level FCNC interactions.
- \bullet No tan β dependence in prediction.
- **O** Testable at ILC.

More plots

 m_h (GeV)

Fit in 2HDM

• Modify channel cross sections as

$$
\sigma_s^{qq\tau\nu} = \sigma_{WW,s} \cdot 2B(W \to qq)B(W \to \tau\nu_{\tau}) + \sigma_{HH,s} \cdot 2B(H^{\pm} \to qq)B(H^{\pm} \to \tau\nu_{\tau})
$$

\n
$$
\sigma_s^{\tau\nu\tau\nu} = \sigma_{WW,s} \cdot B^2(W \to \tau\nu_{\tau}) + \sigma_{HH,s} \cdot B^2(H^{\pm} \to \tau\nu_{\tau})
$$

\n
$$
\sigma_s^{qqqq} = \sigma_{WW,s} \cdot B^2(W \to qq) + \sigma_{HH,s} \cdot B^2(H^{\pm} \to qq)
$$

- Use $B(H^{\pm} \rightarrow qq) = 0.3$ and $B(H^{\pm} \rightarrow \tau v_{\tau}) = 0.7$ for Model I, and calculated σ_{HH,s}.
- Fit variables are $B(W \to e \nu_e), B(W \to \mu \nu_\mu), B(W \to \tau \nu_\tau), \sigma_{WW,s}.$