Lepton non-universality at LEP and charged Higgs

Jae-hyeon Park

Tohoku University

Joint Meeting of Pacific Region Particle Physics Communities Sheraton Waikiki Hotel, Honolulu, Hawaii, 2006–10–31

Based on JHEP10(2006)077 [hep-ph/0607280].

Lepton universality in charged current interactions

- SM predicts lepton universality.
- W boson couplings to e, μ, τ are determined by SU(2) gauge invariance.

$$\mathscr{L}_{\mathrm{CC}} = \frac{g}{\sqrt{2}} \sum_{l=e,\mu,\tau} W^{\dagger}_{\mu} \, \overline{v}_l \, \gamma^{\mu} \left(\frac{1-\gamma_5}{2}\right) l + \mathrm{h.c.}$$

Thoroughly tested in

 $\mu \rightarrow evv, \tau \rightarrow \mu vv, \tau \rightarrow evv, \pi \rightarrow ev, \pi \rightarrow \mu v, \tau \rightarrow \pi v, \dots$ All these consistent with lepton universality.

Test of lepton universality at $\mu \rightarrow e \nu \nu$ and $\tau \rightarrow \mu \nu \nu$

Use parameterization

$$\mathscr{L}_{\mathrm{CC}} = \sum_{l=e,\mu,\tau} \frac{g_l}{\sqrt{2}} W^{\dagger}_{\mu} \overline{v}_l \gamma^{\mu} \left(\frac{1-\gamma_5}{2}\right) l + \mathrm{h.c.}$$

• Take ratio $\Gamma(\tau \rightarrow \mu \nu \nu) / \Gamma(\mu \rightarrow e \nu \nu)$:

Data from Loinaz, Okamura, Rayyan, Takeuchi, Wijewardhana, PRD(2004)

Test of lepton universality at $\mu \rightarrow e \nu \nu$ and $\tau \rightarrow \mu \nu \nu$

Use parameterization

$$\mathscr{L}_{\mathrm{CC}} = \sum_{l=e,\mu,\tau} \frac{g_l}{\sqrt{2}} W^{\dagger}_{\mu} \overline{v}_l \gamma^{\mu} \left(\frac{1-\gamma_5}{2}\right) l + \mathrm{h.c.}$$

~~

• Take ratio $\Gamma(\tau \rightarrow \mu \nu \nu) / \Gamma(\mu \rightarrow e \nu \nu)$:

$$(g_{\tau}/g_e)_{\tau\mu} = 1.0004 \pm 0.0022$$

Perfect agreement with lepton universality

Data from Loinaz, Okamura, Rayyan, Takeuchi, Wijewardhana, PRD(2004)

Measurement of $B(W \rightarrow l\nu)$ at LEP

• LEP directly measured $B(W \rightarrow ev_e)$, $B(W \rightarrow \mu v_{\mu})$, $B(W \rightarrow \tau v_{\tau})$, from partial cross sections of $WW \rightarrow 4f$.

 $(f_1, f_2) = (e, \overline{v}_e), (\mu, \overline{v}_{\mu}), (\tau, \overline{v}_{\tau}), (d, \overline{u}), (s, \overline{c}).$ (f_4, f_3) is a conjugate.

Tau mode excess

LEP electroweak working group, hep-ex/0511027

LEP results

Experiment	$B(W \rightarrow e \nu_e)$ [%]	$B(W \rightarrow \mu \nu_{\mu})$ [%]	$B(W ightarrow au u_{ au})$ [%]
ALEPH	$10.78 \pm 0.29^{*}$	$10.87 \pm 0.26^{*}$	$11.25 \pm 0.38^{*}$
DELPHI	$10.55 \pm 0.34^{*}$	$10.65 \pm 0.27^*$	$11.46 \pm 0.43^*$
L3	$10.78 \pm 0.32^*$	$10.03 \pm 0.31^{*}$	$11.89 \pm 0.45^*$
OPAL	10.40 ± 0.35	10.61 ± 0.35	11.18 ± 0.48
LEP	10.65 ± 0.17	10.59 ± 0.15	11.44 ± 0.22

• Under assumption of $B(W \rightarrow ev_e) = B(W \rightarrow \mu v_{\mu})$,

$$\frac{B(W \to \tau v_{\tau})}{[B(W \to e v_e) + B(W \to \mu v_{\mu})]/2} \bigg|_{\text{LEP}} = 1.077 \pm 0.026$$

Tau mode excess

LEP electroweak working group, hep-ex/0511027

LEP results

Experiment	$B(W \rightarrow e \nu_e)$ [%]	$B(W ightarrow \mu \nu_{\mu})$ [%]	$B(W \rightarrow \tau v_{\tau})$ [%]
ALEPH	$10.78 \pm 0.29^*$	$10.87 \pm 0.26^{*}$	$11.25 \pm 0.38^{*}$
DELPHI	$10.55 \pm 0.34^{*}$	$10.65 \pm 0.27^{*}$	$11.46 \pm 0.43^{*}$
L3	$10.78 \pm 0.32^*$	$10.03 \pm 0.31^{*}$	$11.89 \pm 0.45^{*}$
OPAL	10.40 ± 0.35	10.61 ± 0.35	11.18 ± 0.48
LEP	10.65 ± 0.17	10.59 ± 0.15	11.44 ± 0.22

• Under assumption of $B(W \rightarrow ev_e) = B(W \rightarrow \mu v_{\mu})$,

$$\frac{B(W \to \tau v_{\tau})}{[B(W \to e v_e) + B(W \to \mu v_{\mu})]/2} \bigg|_{\text{LEP}} = 1.077 \pm 0.026$$

• New physics?

Tau mode excess

LEP electroweak working group, hep-ex/0511027

LEP results

Experiment	$B(W \rightarrow e \nu_e)$ [%]	$B(W ightarrow \mu \nu_{\mu})$ [%]	$B(W \rightarrow \tau v_{\tau})$ [%]
ALEPH	$10.78 \pm 0.29^*$	$10.87 \pm 0.26^{*}$	$11.25 \pm 0.38^{*}$
DELPHI	$10.55 \pm 0.34^{*}$	$10.65 \pm 0.27^{*}$	$11.46 \pm 0.43^{*}$
L3	$10.78 \pm 0.32^*$	$10.03 \pm 0.31^{*}$	$11.89 \pm 0.45^{*}$
OPAL	10.40 ± 0.35	10.61 ± 0.35	11.18 ± 0.48
LEP	10.65 ± 0.17	10.59 ± 0.15	11.44 ± 0.22

• Under assumption of $B(W \rightarrow ev_e) = B(W \rightarrow \mu v_{\mu})$,

$$\frac{B(W \to \tau v_{\tau})}{[B(W \to e v_e) + B(W \to \mu v_{\mu})]/2} \bigg|_{\text{LEP}} = 1.077 \pm 0.026$$

7.7% or 2.8 σ departure from lepton universality.

New physics?

Previous attempts for explanation

X.-Y. Li, E. Ma, hep-ph/0507017

- Gauge model of generation non-universality.
- Two SU(2) gauge groups: one for 1st and 2nd family fermions, the other for 3rd.
- Mixing of gauge bosons leads to flavor-dependent lightest *W* boson couplings to leptons.
- Can fit leptonic *W* branching ratios.

Previous attempts for explanation

X.-Y. Li, E. Ma, hep-ph/0507017

- Gauge model of generation non-universality.
- Two SU(2) gauge groups: one for 1st and 2nd family fermions, the other for 3rd.
- Mixing of gauge bosons leads to flavor-dependent lightest W boson couplings to leptons.
- Can fit leptonic *W* branching ratios.
- However, it decreases

$$\Gamma(\tau \rightarrow \mu \nu \nu) / \Gamma(\mu \rightarrow e \nu \nu)$$

by 7% \approx 15 $\sigma \longrightarrow$ ruled out.

• A model leading to effective interactions

$$\mathscr{L}_{\rm CC} = \sum_{l=e,\mu,\tau} \frac{g_l}{\sqrt{2}} W^{\dagger}_{\mu} \,\overline{\nu}_l \, \gamma^{\mu} \left(\frac{1-\gamma_5}{2}\right) l + {\rm h.c.},$$

with $g_{\tau} \neq g_{e,\mu}$, generically conflicts with lepton universality tests from μ , τ decays.

• A model leading to effective interactions

$$\mathscr{L}_{\rm CC} = \sum_{l=e,\mu,\tau} \frac{g_l}{\sqrt{2}} W^{\dagger}_{\mu} \,\overline{\nu}_l \, \gamma^{\mu} \left(\frac{1-\gamma_5}{2}\right) l + {\rm h.c.},$$

with $g_{\tau} \neq g_{e,\mu}$, generically conflicts with lepton universality tests from μ , τ decays.

• A different approach is preferable.

Lepton non-universality at LEP and charged Higgs

• A model leading to effective interactions

$$\mathscr{L}_{\rm CC} = \sum_{l=e,\mu,\tau} \frac{g_l}{\sqrt{2}} W^{\dagger}_{\mu} \,\overline{\nu}_l \, \gamma^{\mu} \left(\frac{1-\gamma_5}{2}\right) l + {\rm h.c.},$$

with $g_{\tau} \neq g_{e,\mu}$, generically conflicts with lepton universality tests from μ , τ decays.

• A different approach is preferable.

Lepton non-universality at LEP and charged Higgs

• A model leading to effective interactions

$$\mathscr{L}_{\rm CC} = \sum_{l=e,\mu,\tau} \frac{g_l}{\sqrt{2}} W^{\dagger}_{\mu} \,\overline{\nu}_l \, \gamma^{\mu} \left(\frac{1-\gamma_5}{2}\right) l + {\rm h.c.},$$

with $g_{\tau} \neq g_{e,\mu}$, generically conflicts with lepton universality tests from μ , τ decays.

• A different approach is preferable.

Lepton non-universality at LEP and charged Higgs

Outline

Introduction

- Charged Higgs solution
 - 3 Constraints from data
 - 4) Effects on $B(W \rightarrow l\nu)$
- 5 Test at future experiments

• Suppose H^+H^- pairs were produced at LEP.

• $B(W \rightarrow lv)$ is measured by counting final state fermions.

- σ_{HH} is a decreasing function of $m_{H^{\pm}} \rightarrow m_{W}$ desirable. See the plot on Page 16.
- Hard to realize in MSSM due to $m_{H^{\pm}}^2 = m_W^2 + m_A^2$ and $m_A > 93 \text{ GeV}$
- Consider a <u>2HDM.</u>

• Suppose H^+H^- pairs were produced at LEP.

• $B(W \rightarrow lv)$ is measured by counting final state fermions.

- σ_{HH} is a decreasing function of $m_{H^{\pm}} \rightarrow m_{W}$ desirable See the plot on Page 16.
- Hard to realize in MSSM due to $m_{H^{\pm}}^2 = m_W^2 + m_A^2$ and $m_A > 93 \text{ GeV}$
- Consider a <u>2HDM.</u>

• $B(W \rightarrow lv)$ is measured by counting final state fermions.

- σ_{HH} is a decreasing function of $m_{H^{\pm}} \rightarrow m_{H^{\pm}} \approx m_W \, decreasing function of <math>m_{H^{\pm}} \rightarrow m_{H^{\pm}} \approx m_W \, decreasing function of m_{H^{\pm}}$
- Hard to realize in MSSM due to $m_{H^{\pm}}^2 = m_W^2 + m_A^2$ and $m_A > 93 \text{ GeV}$
- Consider a <u>2HDM.</u>

• Suppose H^+H^- pairs were produced at LEP.

• $B(W \rightarrow lv)$ is measured by counting final state fermions.

Charged Higgs contamination may appear as excessive $B(W \rightarrow \tau v_{\tau})$

- σ_{HH} is a decreasing function of $m_{H^{\pm}} \rightarrow m_{W}$ desirable. See the plot on Page 16.
- Hard to realize in MSSM due to $m_{tr+}^2 = m_W^2 + m_A^2$ and $m_A > 93$
- Consider a <u>2HDM.</u>

• Suppose H^+H^- pairs were produced at LEP.

• $B(W \rightarrow lv)$ is measured by counting final state fermions.

Charged Higgs contamination may appear as excessive $B(W \rightarrow \tau v_{\tau})$

- σ_{HH} is a decreasing function of $m_{H^{\pm}} \rightarrow m_{H^{\pm}} \approx m_W$ desirable. See the plot on Page 16.
- Hard to realize in MSSM due to $m_{H^{\pm}}^2 = m_W^2 + m_A^2$ and $m_A > 93$ GeV.
- Consider a <u>2HDM.</u>

• Suppose H^+H^- pairs were produced at LEP.

• $B(W \rightarrow l\nu)$ is measured by counting final state fermions.

Charged Higgs contamination may appear as excessive $B(W \rightarrow \tau v_{\tau})$

- σ_{HH} is a decreasing function of $m_{H^{\pm}} \rightarrow m_{H^{\pm}} \approx m_W$ desirable. See the plot on Page 16.
- Hard to realize in MSSM due to

$$m_{H^{\pm}}^2 = m_W^2 + m_A^2$$
 and $m_A > 93$ GeV.

Consider a <u>2HDM.</u>

• Suppose H^+H^- pairs were produced at LEP.

• $B(W \rightarrow l\nu)$ is measured by counting final state fermions.

Charged Higgs contamination may appear as excessive $B(W \rightarrow \tau v_{\tau})$

- σ_{HH} is a decreasing function of $m_{H^{\pm}} \rightarrow m_{H^{\pm}} \approx m_W$ desirable. See the plot on Page 16.
- Hard to realize in MSSM due to

$$m_{H^{\pm}}^2 = m_W^2 + m_A^2$$
 and $m_A > 93$ GeV.

Consider a <u>2HDM.</u>

2HDM's free of tree-level FCNC

- Make assumptions on Higgs Yukawa couplings for suppressing tree-level FCNC.
- Four example models

Model labels borrowed from Barger, Hewett, Phillips, PRD(1990)

Models	Ι		II		III		IV	
	VEV	A_{f}	VEV	A_f	VEV	A_f	VEV	A_f
$\begin{pmatrix} u \end{pmatrix}$	H_2	$\cot\beta$	H_2	$\cot\beta$	H_2	$\cot\beta$	H_2	$\cot\beta$
$\begin{pmatrix} d \end{pmatrix}$	H_2	$-\cot\beta$	H_1	$\tan \beta$	H_1	$\tan eta$	H_2	$-\cot\beta$
(v)								
(1)	H_2	$-\cot\beta$	H_1	$\tan\beta$	H_2	$-\cot\beta$	H_1	$\tan \beta$
	$\tan\beta \equiv v_2/v_1$							

• H^{\pm} -fermion-fermion interaction Lagrangian

$$\mathscr{L} = \frac{g}{\sqrt{2}m_W} H^+ [V_{ij}m_{u_i}A_u \,\overline{u}_{Ri}d_{Lj} + V_{ij}m_{d_j}A_d \,\overline{u}_{Li}d_{Rj} + m_lA_l \,\overline{\nu}_L l_R] + \text{h.c.}$$
governs $b \to s\gamma, H^{\pm} \to \tau \nu_{\tau}, \ldots$

2HDM's free of tree-level FCNC

- Make assumptions on Higgs Yukawa couplings for suppressing tree-level FCNC.
- Four example models

Model labels borrowed from Barger, Hewett, Phillips, PRD(1990)

Models	I		II		III		IV	
	VEV	A_f	VEV	A_{f}	VEV	A_f	VEV	A_f
$\begin{pmatrix} u \end{pmatrix}$	H_2	$\cot\beta$	H_2	$\cot\beta$	H_2	$\cot\beta$	H_2	$\cot\beta$
$\begin{pmatrix} d \end{pmatrix}$	H_2	$-\cot\beta$	H_1	$\tan\beta$	H_1	$\tan eta$	H_2	$-\cot\beta$
(v)								
$\left(l \right)$	H_2	$-\cot\beta$	H_1	$\tan\beta$	H_2	$-\cot\beta$	H_1	$\tan \beta$
	$\tan\beta \equiv v_2/v_1$							

H[±]-fermion-fermion interaction Lagrangian

$$\mathscr{L} = \frac{g}{\sqrt{2}m_W} H^+ [V_{ij}m_{u_i}A_u\,\overline{u}_{Ri}d_{Lj} + V_{ij}m_{d_j}A_d\,\overline{u}_{Li}d_{Rj} + m_lA_l\,\overline{v}_Ll_R] + \text{h.c.}$$

governs $b \rightarrow s\gamma$, $H^{\pm} \rightarrow \tau v_{\tau}$, ...

 H^+ in Model I becomes fermiophobic for high $\tan\beta$

$b \rightarrow s \gamma$ constraint

- One of the most stringent constraints on $m_{H^{\pm}}$.
- Branching ratio in 2HDM:

$$\frac{B(B \to X_s \gamma)}{B_{\rm SM}(B \to X_s \gamma)} = \left| \frac{C_{7\gamma}^{\rm SM}(m_b) + C_{7\gamma}^{H^{\pm}}(m_b)}{C_{7\gamma}^{\rm SM}(m_b)} \right|^2 = \left| 1 + 0.71A_{u}A_d + 0.15A_{u}^2 \right|^2$$

• In Models II and III, $A_u A_d = 1$, and therefore

$$rac{B(B o X_s \gamma)}{B_{
m SM}(B o X_s \gamma)} \geq 2.9 \quad {
m for} \quad m_{H^\pm} pprox m_W$$

 \longrightarrow excluded.

• In Models I and IV, $A_u = -A_d = \cot \beta$,

$b \rightarrow s\gamma$ constraint

- One of the most stringent constraints on $m_{H^{\pm}}$.
- Branching ratio in 2HDM:

$$\frac{B(B \to X_s \gamma)}{B_{\rm SM}(B \to X_s \gamma)} = \left| \frac{C_{7\gamma}^{\rm SM}(m_b) + C_{7\gamma}^{H^{\pm}}(m_b)}{C_{7\gamma}^{\rm SM}(m_b)} \right|^2 = \left| 1 + 0.71A_u A_d + 0.15A_u^2 \right|^2$$

• In Models II and III, $A_u A_d = 1$, and therefore

$$rac{B(B
ightarrow X_s \gamma)}{B_{
m SM}(B
ightarrow X_s \gamma)} \geq 2.9 \quad {
m for} \quad m_{H^\pm} pprox m_W$$

 \longrightarrow excluded.

• In Models I and IV, $A_u = -A_d = \cot \beta$,

$b \rightarrow s \gamma$ constraint

- One of the most stringent constraints on $m_{H^{\pm}}$.
- Branching ratio in 2HDM:

$$\frac{B(B \to X_s \gamma)}{B_{\rm SM}(B \to X_s \gamma)} = \left| \frac{C_{7\gamma}^{\rm SM}(m_b) + C_{7\gamma}^{H^{\pm}}(m_b)}{C_{7\gamma}^{\rm SM}(m_b)} \right|^2 = \left| 1 + 0.71 A_{u} A_d + 0.15 A_u^2 \right|^2$$

• In Models II and III, $A_u A_d = 1$, and therefore

$$rac{B(B o X_s \gamma)}{B_{
m SM}(B o X_s \gamma)} \geq$$
 2.9 for $m_{H^\pm} pprox m_W$

 \longrightarrow excluded.

• In Models I and IV, $A_u = -A_d = \cot \beta$,

Models I and IV survive if $\tan\beta\gtrsim 4$

Direct constraints on $m_{H^{\pm}}$

• $B(H^{\pm} \rightarrow \tau v_{\tau})$ as a function of $\tan \beta$:

Hatched region is excluded for $m_{H^{\pm}} = 86 \text{ GeV}$ [plot on Page 16]. • Model IV leads to $B(H^{\pm} \rightarrow \tau v_{\tau}) \gtrsim 0.99$ for $\tan \beta \gtrsim 4$.

• $b \rightarrow s\gamma$ and direct search largely determine one viable model.

• Consider only Model I from here on.

Hatched region is excluded for $m_{H^{\pm}} = 86 \text{ GeV}$ [plot on Page 16]. • Model IV leads to $B(H^{\pm} \rightarrow \tau v_{\tau}) \gtrsim 0.99$ for $\tan \beta \gtrsim 4$.

- $b \rightarrow s\gamma$ and direct search largely determine one viable model.
- Consider only Model I from here on.

Hatched region is excluded for $m_{H^{\pm}} = 86 \text{ GeV}$ [plot on Page 16].

• Model IV leads to $B(H^{\pm} \rightarrow \tau v_{\tau}) \gtrsim 0.99$ for $\tan \beta \gtrsim 4$.

• $b \rightarrow s\gamma$ and direct search largely determine one viable model.

• Consider only Model I from here on.

Hatched region is excluded for $m_{H^{\pm}} = 86 \text{ GeV}$ [plot on Page 16].

• Model IV leads to $B(H^{\pm} \rightarrow \tau v_{\tau}) \gtrsim 0.99$ for $\tan \beta \gtrsim 4$.

Model I is favored for $m_{H^{\pm}} \approx m_W$

• $b \rightarrow s\gamma$ and direct search largely determine one viable model.

• Consider only **Model I** from here on.

Hatched region is excluded for $m_{H^{\pm}} = 86 \text{ GeV}$ [plot on Page 16].

• Model IV leads to $B(H^{\pm} \rightarrow \tau v_{\tau}) \gtrsim 0.99$ for $\tan \beta \gtrsim 4$.

Model I is favored for $m_{H^{\pm}} \approx m_W$

- $b \rightarrow s\gamma$ and direct search largely determine one viable model.
- Consider only Model I from here on.

- From LEP
 - *W*-pair production cross section: $\sigma_{HH} < 1\% \cdot \sigma_{WW} < \text{error of } \sigma_{WW}$
 - Angular distribution of *W*-pair: measured from qqev and $qq\mu v$ final states \rightarrow irrelevant.
 - Anomalous triple-gauge-boson couplings measurement: charged Higgs effect is smaller than or comparable to an error.
 - W mass and width: shifts are smaller than errors.
- *S*, *T*, and *U*: okay unless neutral Higgses are too heavy.
- From CDF
 - $t \rightarrow H^+b$: constraint weakens as $\tan\beta$ grows \longrightarrow safe for $\tan\beta \gtrsim 1$.
- FCNC and *CP* violation: $B_s \overline{B_s}$, $B^0 \overline{B^0}$, $K^0 \overline{K^0}$, $\varepsilon' / \varepsilon_K$, $B^- \to \tau \overline{\nu}$, ... H^{\pm} decouples from fermions for high $\tan \beta \longrightarrow$ Safe for $\tan \beta \gtrsim 4$.

- From LEP
 - *W*-pair production cross section: $\sigma_{HH} < 1\% \cdot \sigma_{WW} < \text{error of } \sigma_{WW}$
 - Angular distribution of *W*-pair: measured from qqev and $qq\mu v$ final states \rightarrow irrelevant.
 - Anomalous triple-gauge-boson couplings measurement: charged Higgs effect is smaller than or comparable to an error.
 - W mass and width: shifts are smaller than errors.
- *S*, *T*, and *U*: okay unless neutral Higgses are too heavy.
- From CDF
 - $t \rightarrow H^+ b$: constraint weakens as $\tan \beta$ grows \longrightarrow safe for $\tan \beta \gtrsim 1$.
- FCNC and *CP* violation: $B_s \overline{B_s}$, $B^0 \overline{B^0}$, $K^0 \overline{K^0}$, $\varepsilon' / \varepsilon_K$, $B^- \to \tau \overline{\nu}$, ... H^{\pm} decouples from fermions for high $\tan \beta \longrightarrow$ Safe for $\tan \beta \gtrsim 4$.

- From LEP
 - *W*-pair production cross section: $\sigma_{HH} < 1\% \cdot \sigma_{WW} < \text{error of } \sigma_{WW}$
 - Angular distribution of *W*-pair: measured from qqev and $qq\mu v$ final states \rightarrow irrelevant.
 - Anomalous triple-gauge-boson couplings measurement: charged Higgs effect is smaller than or comparable to an error.
 - W mass and width: shifts are smaller than errors.
- *S*, *T*, and *U*: okay unless neutral Higgses are too heavy.
- From CDF
 - $t \rightarrow H^+b$: constraint weakens as $\tan\beta$ grows \longrightarrow safe for $\tan\beta \gtrsim 1$.
- FCNC and *CP* violation: $B_s \overline{B_s}$, $B^0 \overline{B^0}$, $K^0 \overline{K^0}$, $\varepsilon' / \varepsilon_K$, $B^- \to \tau \overline{\nu}$, ... H^{\pm} decouples from fermions for high $\tan \beta \longrightarrow$ Safe for $\tan \beta \gtrsim 4$.
- For the same reason,

 $\Gamma(au o \mu
u
u) / \Gamma(\mu o e
u
u)$ [μ , au, π , K decays] safe if $\tan \beta \gtrsim 0.03$

A feature not shared by non-universal charged current interaction models!

- From LEP
 - *W*-pair production cross section: $\sigma_{HH} < 1\% \cdot \sigma_{WW} < \text{error of } \sigma_{WW}$
 - Angular distribution of *W*-pair: measured from qqev and $qq\mu v$ final states \rightarrow irrelevant.
 - Anomalous triple-gauge-boson couplings measurement: charged Higgs effect is smaller than or comparable to an error.
 - W mass and width: shifts are smaller than errors.
- *S*, *T*, and *U*: okay unless neutral Higgses are too heavy.
- From CDF
 - $t \rightarrow H^+b$: constraint weakens as $\tan\beta$ grows \longrightarrow safe for $\tan\beta \gtrsim 1$.
- FCNC and *CP* violation: $B_s \overline{B_s}$, $B^0 \overline{B^0}$, $K^0 \overline{K^0}$, $\varepsilon' / \varepsilon_K$, $B^- \to \tau \overline{\nu}$, ...

 H^{\pm} decouples from fermions for high $\tan \beta \longrightarrow$ Safe for $\tan \beta \gtrsim 4$.

For the same reason,

 $\Gamma(au o \mu
u
u) / \Gamma(\mu o e
u
u)$ [μ , au, π , K decays] safe if $\tan \beta \gtrsim 0.03$

A feature not shared by non-universal charged current interaction models! Okay thanks to H^+ 's fermiophobia for high tan β

How effective is charged Higgs contribution?

- Take $m_{H^{\pm}} = 81 \text{ GeV}, \sqrt{s} = 200 \text{ GeV} \longrightarrow \sigma_{HH} = 0.14 \text{ pb}, \sigma_{WW} = 17 \text{ pb}$
- For Model I, $B(H^{\pm} \rightarrow qq) = 0.3$ and $B(H^{\pm} \rightarrow \tau v_{\tau}) = 0.7$
- $B(W \rightarrow qq) = 6/9$, $B(W \rightarrow \mu \nu_{\mu}) = 1/9$
- Estimate using $qq\tau v$ and $qq\mu v$ modes:

$$\frac{B(W \to \tau v_{\tau})}{B(W \to \mu v_{\mu})} \bigg|_{appar} = \frac{\sigma_{WW}^{qq\tau\nu} + \sigma_{HH}^{qq\tau\nu}}{\sigma_{WW}^{qq\mu\nu}} = 1 + \frac{\sigma_{HH}}{\sigma_{WW}} \frac{B(H^{\pm} \to \tau v_{\tau})}{B(W \to \mu v_{\mu})} \frac{B(H^{\pm} \to qq)}{B(W \to qq)} \approx 1.02$$

• Estimate using $\tau v \tau v$ and $\mu v \mu v$:

$$\frac{B(W \to \tau v_{\tau})}{B(W \to \mu v_{\mu})}\Big|_{\text{appar}} = \sqrt{1 + \frac{\sigma_{HH}}{\sigma_{WW}} \left(\frac{B(H^{\pm} \to \tau v_{\tau})}{B(W \to \mu v_{\mu})}\right)^2} \approx 1.15$$

Can accommodate a few % of tau mode excess

How effective is charged Higgs contribution?

- Take $m_{H^{\pm}} = 81 \text{ GeV}, \sqrt{s} = 200 \text{ GeV} \longrightarrow \sigma_{HH} = 0.14 \text{ pb}, \sigma_{WW} = 17 \text{ pb}$
- For Model I, $B(H^{\pm} \rightarrow qq) = 0.3$ and $B(H^{\pm} \rightarrow \tau v_{\tau}) = 0.7$
- $B(W \rightarrow qq) = 6/9$, $B(W \rightarrow \mu \nu_{\mu}) = 1/9$
- Estimate using $qq\tau v$ and $qq\mu v$ modes:

$$\frac{B(W \to \tau v_{\tau})}{B(W \to \mu v_{\mu})} \bigg|_{appar} = \frac{\sigma_{WW}^{qq\tau\nu} + \sigma_{HH}^{qq\tau\nu}}{\sigma_{WW}^{qq\mu\nu}}$$
$$= 1 + \frac{\sigma_{HH}}{\sigma_{WW}} \frac{B(H^{\pm} \to \tau v_{\tau})}{B(W \to \mu v_{\mu})} \frac{B(H^{\pm} \to qq)}{B(W \to qq)} \approx 1.02$$

• Estimate using $\tau v \tau v$ and $\mu v \mu v$:

$$\frac{B(W \to \tau v_{\tau})}{B(W \to \mu v_{\mu})}\Big|_{\text{appar}} = \sqrt{1 + \frac{\sigma_{HH}}{\sigma_{WW}} \left(\frac{B(H^{\pm} \to \tau v_{\tau})}{B(W \to \mu v_{\mu})}\right)^2} \approx 1.15$$

Can accommodate a few % of tau mode excess.

• Use data available in DELPHI, EPJC (2004).

• Likelihood fit with only W gives

$$\frac{B(W \to \tau v_{\tau})}{[B(W \to e v_e) + B(W \to \mu v_{\mu})]/2} \bigg|_{W \text{ only}} = 1.071.$$

Likelihood fit in 2HDM I gives

$$\frac{B(W \to \tau v_{\tau})}{[B(W \to e v_e) + B(W \to \mu v_{\mu})]/2} \bigg|_{\text{2HDM fit}} = 1.031$$

- Tau mode excess diminished by 4%.
- Can expect an improvement of the ratio

$$\frac{B(W \to \tau v_{\tau})}{[B(W \to e v_e) + B(W \to \mu v_{\mu})]/2} \bigg|_{\text{LEP.2HDM}} \simeq 1.037 \pm 0.026$$

- Use data available in DELPHI, EPJC (2004).
- Likelihood fit with only W gives

$$\frac{B(W \to \tau v_{\tau})}{[B(W \to e v_e) + B(W \to \mu v_{\mu})]/2} \bigg|_{W \text{ only}} = 1.071.$$

Likelihood fit in 2HDM I gives

$$\frac{B(W \to \tau v_{\tau})}{[B(W \to e v_e) + B(W \to \mu v_{\mu})]/2} \bigg|_{\text{2HDM fit}} = 1.031$$

- Tau mode excess diminished by 4%.
- Can expect an improvement of the ratio

$$\frac{B(W \to \tau v_{\tau})}{[B(W \to e v_e) + B(W \to \mu v_{\mu})]/2} \bigg|_{\text{LEP.2HDM}} \simeq 1.037 \pm 0.026$$

- Use data available in DELPHI, EPJC (2004).
- Likelihood fit with only W gives

$$\frac{B(W \to \tau v_{\tau})}{[B(W \to e v_e) + B(W \to \mu v_{\mu})]/2} \bigg|_{W \text{ only}} = 1.071.$$

Likelihood fit in 2HDM I gives

$$\frac{B(W \to \tau v_{\tau})}{[B(W \to e v_e) + B(W \to \mu v_{\mu})]/2} \bigg|_{\text{2HDM fit}} = 1.031$$

- Tau mode excess diminished by 4%.
- Can expect an improvement of the ratio

$$\frac{B(W \to \tau v_{\tau})}{[B(W \to e v_e) + B(W \to \mu v_{\mu})]/2} \bigg|_{\text{LEP.2HDM}} \simeq 1.037 \pm 0.026$$

- Use data available in DELPHI, EPJC (2004).
- Likelihood fit with only W gives

$$\frac{B(W \to \tau v_{\tau})}{[B(W \to e v_e) + B(W \to \mu v_{\mu})]/2} \bigg|_{W \text{ only}} = 1.071.$$

Likelihood fit in 2HDM I gives

$$\frac{B(W \to \tau v_{\tau})}{[B(W \to e v_e) + B(W \to \mu v_{\mu})]/2} \bigg|_{\text{2HDM fit}} = 1.031$$

for $m_{H^{\pm}} = 81$ GeV.

• Tau mode excess diminished by 4%.

Can expect an improvement of the ratio

$$\frac{B(W \to \tau v_{\tau})}{[B(W \to e v_e) + B(W \to \mu v_{\mu})]/2} \bigg|_{\text{LEP,2HDM}} \simeq 1.037 \pm 0.026$$

- Use data available in DELPHI, EPJC (2004).
- Likelihood fit with only W gives

$$\frac{B(W \to \tau v_{\tau})}{[B(W \to e v_e) + B(W \to \mu v_{\mu})]/2} \bigg|_{W \text{ only}} = 1.071.$$

Likelihood fit in 2HDM I gives

$$\frac{B(W \to \tau v_{\tau})}{[B(W \to e v_e) + B(W \to \mu v_{\mu})]/2} \bigg|_{\text{2HDM fit}} = 1.031$$

- Tau mode excess diminished by 4%.
- Can expect an improvement of the ratio

$$\frac{B(W \to \tau \nu_{\tau})}{[B(W \to e \nu_e) + B(W \to \mu \nu_{\mu})]/2} \bigg|_{\text{LEP,2HDM}} \simeq 1.037 \pm 0.026$$

- Use data available in DELPHI, EPJC (2004).
- Likelihood fit with only W gives

$$\frac{B(W \to \tau v_{\tau})}{[B(W \to e v_e) + B(W \to \mu v_{\mu})]/2} \bigg|_{W \text{ only}} = 1.071.$$

Likelihood fit in 2HDM I gives

$$\frac{B(W \to \tau v_{\tau})}{[B(W \to e v_e) + B(W \to \mu v_{\mu})]/2} \bigg|_{\text{2HDM fit}} = 1.031$$

for $m_{H^{\pm}} = 81$ GeV.

- Tau mode excess diminished by 4%.
- Can expect an improvement of the ratio

$$\frac{B(W \to \tau v_{\tau})}{[B(W \to e v_e) + B(W \to \mu v_{\mu})]/2} \bigg|_{\text{LEP,2HDM}} \simeq 1.037 \pm 0.026$$

Lepton non-universality reduced to 1.4σ

Charged Higgs mass dependence of the fit

• Likelihood fit result of $r \equiv \frac{B(W \to \tau v_{\tau})}{[B(W \to e v_e) + B(W \to \mu v_{\mu})]/2} \Big|_{2\text{HDM fit}}$ as a function of $m_{H^{\pm}}$:

The lighter, the better, but for Model I, LEP constrains

 $m_{H^{\pm}} > 80.7 \text{ GeV}.$

Charged Higgs mass dependence of the fit

• Likelihood fit result of $r \equiv \frac{B(W \to \tau v_{\tau})}{[B(W \to e v_e) + B(W \to \mu v_{\mu})]/2} \Big|_{2\text{HDM fit}}$ as a function of $m_{H^{\pm}}$:

1- σ mitigation needs $m_{H^{\pm}} \lesssim 86~{
m GeV}$

• The lighter, the better, but for Model I, LEP constrains

 $m_{H^{\pm}} > 80.7 \text{ GeV}.$

Charged Higgs mass dependence of the fit

• Likelihood fit result of $r \equiv \frac{B(W \to \tau v_{\tau})}{[B(W \to e v_e) + B(W \to \mu v_{\mu})]/2} \Big|_{2\text{HDM fit}}$ as a function of $m_{H^{\pm}}$:

1- σ mitigation needs $m_{H^{\pm}} \lesssim 86 \text{ GeV}$

The lighter, the better, but for Model I, LEP constrains

$$m_{H^{\pm}} > 80.7 \text{ GeV}.$$

Test at ILC

- What to look for: charged Higgs with $m_{H^{\pm}} \approx m_W$ that couples very weakly to fermions.
- Test of scenario is charged Higgs search.
- Doable at ILC.
- Beam polarization helps a lot.

e^{-}/e^{+} polarization	<i>σ_{HH}</i> [pb]	σ_{WW} [pb]	σ_{HH}/σ_{WW} [%]
0%/ 0%	0.10	7.13	1.4
80%/ 0%	0.05	1.47	3.3
90%/ 0%	0.04	0.76	5.4
80%/60%	0.06	0.65	8.7
90%/60%	0.06	0.37	15.0

for $\sqrt{s} = 500$ GeV, right-handed electron and left-handed positron beam polarizations.

• At LHC? Not sure.

Test at ILC

- What to look for: charged Higgs with m_{H[±]} ≈ m_W that couples very weakly to fermions.
- Test of scenario is charged Higgs search.
- Doable at ILC.
- Beam polarization helps a lot.

e^{-}/e^{+} polarization	σ_{HH} [pb]	σ_{WW} [pb]	σ_{HH}/σ_{WW} [%]
0%/ 0%	0.10	7.13	1.4
80%/ 0%	0.05	1.47	3.3
90%/ 0%	0.04	0.76	5.4
80%/60%	0.06	0.65	8.7
90%/60%	0.06	0.37	15.0

for $\sqrt{s} = 500$ GeV, right-handed electron and left-handed positron beam polarizations.

• At LHC? Not sure.

Test at ILC

- What to look for: charged Higgs with m_{H[±]} ≈ m_W that couples very weakly to fermions.
- Test of scenario is charged Higgs search.
- Doable at ILC.
- Beam polarization helps a lot.

e^{-}/e^{+} polarization	σ_{HH} [pb]	σ_{WW} [pb]	σ_{HH}/σ_{WW} [%]
0%/ 0%	0.10	7.13	1.4
80%/ 0%	0.05	1.47	3.3
90%/ 0%	0.04	0.76	5.4
80%/60%	0.06	0.65	8.7
90%/60%	0.06	0.37	15.0

for $\sqrt{s} = 500$ GeV, right-handed electron and left-handed positron beam polarizations.

• At LHC? Not sure.

Summary

- A resolution is proposed of the possible lepton non-universality observed at the *W*-pair production experiments at LEP.
- H^{\pm} almost degenerate with *W*, within 2HDM, could reduce 2.8 σ of deviation down to 1.4 σ .
- No conflict with the existing direct or indirect constraints. In particular, μ, τ, π, K decays are safe.
- Charged Higgs direct search at LEP in combination with b → sγ singles out one viable type of 2HDM out of the four that are free of tree-level FCNC interactions.
- No $\tan \beta$ dependence in prediction.
- Testable at ILC.

More plots

 m_h (GeV)

Fit in 2HDM

Modify channel cross sections as

$$\begin{aligned} \sigma_s^{qq\tau\nu} &= \sigma_{WW,s} \cdot 2B(W \to qq) B(W \to \tau \nu_{\tau}) + \sigma_{HH,s} \cdot 2B(H^{\pm} \to qq) B(H^{\pm} \to \tau \nu_{\tau}) \\ \sigma_s^{\tau\nu\tau\nu} &= \sigma_{WW,s} \cdot B^2(W \to \tau \nu_{\tau}) + \sigma_{HH,s} \cdot B^2(H^{\pm} \to \tau \nu_{\tau}) \\ \sigma_s^{qqqq} &= \sigma_{WW,s} \cdot B^2(W \to qq) + \sigma_{HH,s} \cdot B^2(H^{\pm} \to qq) \end{aligned}$$

- Use $B(H^{\pm} \rightarrow qq) = 0.3$ and $B(H^{\pm} \rightarrow \tau v_{\tau}) = 0.7$ for Model I, and calculated $\sigma_{HH,s}$.
- Fit variables are $B(W \to ev_e), B(W \to \mu v_{\mu}), B(W \to \tau v_{\tau}), \sigma_{WW,s}$.