" Joint Meeting of Pacific Region Particle Physics Communities " (2006, 10/29-11/03, Waikiki)

Amoebas and Instantons

Toshio Nakatsu

Talk based on

Takashi Maeda and T.N., "Amoebas and Instantons," hep-th/0601233.

- T. Maeda, Y. Noma, T. Tamakoshi and T.N. , hep-th/0505083.
- T. Maeda, K. Takasaki, T. Tamakoshi and T.N. , hep-th/0412329.
- T. Maeda, K. Takasaki, T. Tamakoshi and T.N. , hep-th/0412327.

1. Viro's Dequantization and Toropical Geometry

• Maslov's dequantization of deformation quantizations says :

Tropical algebra $(\mathbb{R}, \max, +)$ is a classical semiring of $(\mathbb{R}_{>0}, +, \cdot)$

$$
\frac{1}{R}\log() \; : \; \mathbb{R}_{>0} \; \longrightarrow \; \mathbb{R} \qquad x \longmapsto \frac{1}{R}\log x = u
$$

 $R > 0$ deformation parameter

$$
(\mathbb{R}_{>0}, +, \cdot) \xrightarrow{\frac{1}{R} \log} (\mathbb{R}, \oplus_R, \odot_R) \qquad \xrightarrow{R \to \infty} (\mathbb{R}, \max, +)
$$

$$
\begin{cases} u \oplus_R v = \frac{1}{R} \log(e^{Ru} + e^{Rv}) \\ u \odot_R v = u + v \end{cases} \qquad \begin{cases} \oplus_{\infty} = \max \\ \odot_{\infty} = + \end{cases}
$$

• Tropical geometry is a piecewise linear (PL) geometry

Tropical polynomials

\n
$$
\sum_{i} a_i u^{i} = \max_i (a_i + i u)
$$
\n(Use \bigoplus_{∞} for addition and \bigodot_{∞} for multiplication)

It is a dequantization of real algebraic geometry

real curves
$$
\lim_{R \to \infty} \frac{1}{R} \log \frac{t}{v}
$$
 tropical curves
 $y = \sum_{i} e^{Ra_i} x^i$ $v = \max_i (a_i + iu)$

• We see many examples of tropical geometry in gauge theory and string theory.

Table of Contents

- 1. Viro's dequantization and tropical geometry
- 2. $5d \mathcal{N} = 1$ SUSY gauge theories
- 3. Ground state crystal and local $SU(N)$ geometry
- 4. Amoeba degeneration and crystal
- 5. Limit shape and Ronkin's function
- 6. Summary

2. $5d \mathcal{N} = 1$ SUSY Gauge Theories

• 4d Nekrasov's functions are described by using Young diagrams (partitions).

Young diagram μ

 $|\mu|$ = the number of boxes

.

$$
Z_{U(1)}(\Lambda, \,\hbar) \; = \; \sum_{\mu} \left(\frac{\Lambda}{\hbar}\right)^{2|\mu|} \frac{1}{(\prod_{(i,j) \in \mu} h(i,j))^2}
$$

• 5d Nekrasov's functions are q -deformations and are described by using $3d$ Young diagrams (plane partitions).

• 5d Nekrasov's function of $SU(N)$ Yang-Mills is obtained from $Z_{U(1)}(q,Q)$.

Core and Quotients

$$
\mu \stackrel{1:1}{\longleftrightarrow} (\lambda^{(1)}, p_1), \cdots, (\lambda^{(N)}, p_N) \stackrel{1:1}{\longleftrightarrow}
$$

N-core
$$
(p_1, \dots, p_N)
$$

N-quotients $(\lambda^{(1)}, \dots, \lambda^{(N)})$

3 clusters of bold boxes correspond to 3-quotients $\lambda^{(1,2,3)}.$

3-core is of thin boxes.

Factorization by N-Cores

$$
Z_{U(1)}(q,Q) = \sum_{\text{integers } p_1, \dots, p_N} Z_{SU(N)}(p_1, \dots, p_N; q, Q)
$$

integers p_1, \dots, p_N

This factorization turns to be (hep-th/0412327)

$$
Z_{SU(N)}(\{p_r\};q,Q) = Z_{5d\text{sym}}(\{a_r\};\Lambda,R,\hbar)
$$

by identifying

$$
q = e^{-\frac{R}{N}\hbar}, \quad Q = (R\Lambda)^2, \quad p_r = a_r/\hbar.
$$

The RHS is Nekrasov's function of $5d \mathcal{N} = 1$ SUSY $SU(N)$ Yang-Mills + the Chern-Simons term.

3. Ground State Crystal and Local $SU(N)$ Geometry

 $1/R$ = Temp. in Statistical Model

As $R \to \infty$ the ground state dominates. The ground state is the $3d$ Young diagram UNIQUELY determined by N -core $(p_1, \cdots, p_N).$

 \exists lattice homomorphism (degree N) that maps the ground state to a $3d$ solid $\mathcal{P}^c_{\mathcal{S}}$ $\frac{c}{SU(N)}$.

 \mathcal{P}_S^c $S_{SU(N)}^{c}$ is the complement between two polyhedra $\mathcal{P}_{SU(N)}$ and $\mathcal{P}_{sing}.$

$$
\mathcal{P}^c_{SU(N)}\ =\ \mathcal{P}_{sing}\setminus\mathcal{P}_{SU(N)}
$$

• Two polyhedra descibe local geometries resposible to field theories

 P_{sing} local geometry of $5d$ SCFT $\mathcal{P}_{SU(N)}\;$ local geometry of $5d$ gauge theory

• The ground state energy becomes (hep-th/0505083)

$$
E_{\text{ground state}} = \text{Vol}\left(\mathcal{P}_{SU(N)}^{c}\right) = \frac{1}{6} \sum_{r>s}^{N} (a_r - a_s)^3 + \frac{N}{6} \sum_{r=1}^{N} a_r^3
$$

Comments

 $i)$ This is consistent with Vafa's "Quantum Calabi-Yau".

 $ii)$ The volume can be a regularized Kahler volume of local geometry. (Noma's talk.)

4. Amoeba Degeneration and Crystal

• Amoebas are mathematical ones (Gelfand-Kapranov-Zelevinsky)

 $5d$ version of $SU(N)$ SW curve

$$
V_{f_{SU(N)}} = \left\{ f_{SU(N)}(x, y) = 0 \in (\mathbb{C}^*)^2 \right\},
$$

$$
f_{SU(N)}(x, y) = \prod_{r=1}^N (x - \beta_r) - (R\Lambda)^N (y + y^{-1})
$$

Amoeba of the SW curve

$$
\mathcal{A}_{f_{SU(N)}} = \text{Log}(V_{f_{SU(N)}}),
$$

where

$$
\text{Log} : (\mathbb{C}^*)^2 \longrightarrow \mathbb{R}^2
$$

$$
(x, y) \longmapsto (\log |x|, \log |y|).
$$

The amoeba spreads 4 tentackles and has N-1 holes.

• As $R \to \infty$ the amoeba degenerates and realizes a tropical curve (essentially,

by Viro's dequantization).

Use of Ronkin's function

$$
N_{f_{SU(N)}}(x, y) : \mathbb{R}^2 \longrightarrow \mathbb{R} \cup {\infty}
$$

$$
N_{f_{SU(N)}}(u, v) = \frac{1}{R} \frac{1}{(2\pi i)^2} \int_{\substack{|x| = \exp Ru \\ |y| = \exp Rv}} \frac{dx}{x} \frac{dy}{y} \log |f_{SU(N)}(x, y)|
$$

Ronkin's function is a convex function that is $i)$ strictly convex over the amoeba and $ii)$ linear over each connected component over the amoeba complement.

 $N = 1$

5. Limit Shape and Ronkin's Function

• At finite R the ground state crystal (local geometry) is deformed by thermal excitation.

The limit shape realized in $Q = 1$ $U(1)$ model is interpreted by using Ronkin's function of $f(x, y) = 1 + x + y$. (Okounkov-Reshetikhin).

Limit shape $P_\star^{SU(N)}$ of the main diagonal Young diagram μ is the following section of the Ronkin function (hep-th/0601233) \overline{a} ´

 $\overline{}$ $\overline{\$

$$
N_{f_{SU(N)}}(u,0) = \frac{N}{2}\left(P_{\star}^{SU(N)}(u)+u\right)
$$

6.Summary

We have seen the correspondence

 $\mathcal{N}=2$ SUSY gauge theories/ $\mathbb{R}^4\times S^1$

The Seiberg-Witten curves

 $V_{f_{SU(N)}}$

Kähler gravities/local geometries

Limit shapes

 ${\bf P}^{SU(N)}_{\star}$ \star

through

⇐⇒

♠ The Ronkin functions

 $N_{f_{SU(N)}}(u,0) = \frac{N}{2}$ 2 \overline{a} $P_\star^{SU(N)}$ $\star^{SU(N)}(u)+u$ ´

♠ Tropical degeneration of the amoebas

$$
\text{Vol}\Big(\mathcal{P}^c_{SU(N)}\Big)=E_{\text{ground state}}
$$

This issue will be tied up with the following perspectives

i) Integrable structure of the gauge theories

ii) The mirror symmetry

iii) Dimers, Algae, ...