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1 Introduction

Super-covariant quantization of superstring (and branes)

is a long standing fundamental problem.

¨ Conceptual and aesthetic desire

¨ Becoming urgent for practical reasons in various arenas

1. Study of D-brane physics

D-branes generate RR (bispinor) fields

Difficult to describe fully in conventional formalisms

RNS: Needs spin fields, picture-changing

GS: Quantization possible only in non-covariant (and rather singular)

L.C. type gauges.

covsupbr-2



2. Study of AdS/CFT

¨ CFT side: Substantial progress has been and is being made through spin-

chain approach, etc.

¨ String side: Quantization in the relevant curved background, such as

AdS5 × S5, with a large RR flux is an urgent and crucial problem.

– Description in the simplified plane-wave background has been achieved in

the GS formalism in the L.C. gauge. Yet due to the lack of covariance, it

is difficult to fully characterize the (SFT) interactions.

3. Study of M-theory

Beyond 11D supergravity approximation, the only formulation we have is the

M(atrix) theory ∼ Matrix-regularized supermembrane theory

Only SO(9)-covariant, D0 cannot be described.

It is of prime importance to construct a manageable super-

covariant quantization scheme for string and membrane.
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GS-type formulation appears more promissing

as it is classically supercovariant

But

Difficulty in quantization:

¨ Fermionic constraints: dα = 0

dα = pα + i∂xµ(γ
µθ)α +

1

2
(γµθ)α(θγµ∂θ)

Eight 1st class (κ-symmetry) and eight 2nd class.

They cannot be separated in Lorentz covariant way.

(No 8-dimensional representation.)

⇓

Quantization procedure breaks super-Poincaré covariance.
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Huge number of attempts to overcome this difficulty ∼ 2000:

Such attempts achieved limited success but provided useful hints.
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New proposal by N.Berkovits (2000):

Pure spinor formalism

Physical states of superstring = cohomology of BRST-like operator Q

Q=

∫
dz

2πi
λα(z)dα(z)

dα = pα + i∂xµ(γ
µθ)α +

1

2
(γµθ)α(θγµ∂θ) = fermionic constraints

pα = conjugate to θα ,

λα = bosonic “ghosts”, subject to pure spinor conditions λαγµ
αβλβ = 0

⇒ 11 independent components

• All the fields are postulated to be free
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Necessity of pure spinor conditions: Nilpotency:

dα(z)dβ(w) =
2iγµΠµ(w)

z − w

Πµ = ∂xµ − iθγµ∂θ = superinvariant momentum

Q2 =

∫
[dz]

∫
[dw]λα(z)λβ(w) dα(z)dβ(w)︸ ︷︷ ︸

2iγµΠµ/(z−w)

= 2i

∫
[dw]λα(w)γµ

αβλβ(w)Πµ(w) = 0

CFT with vanishing center

covsupbr-7



Remarkable successes:

¨ Q-invariant vertex operators are constructed: massless, 1st massive (Berkovits,

Berkovits-Chandia)

¨ Covariant path-integral rules for computing amplitudes to all loops are postu-

lated (Berkovits). They yield known results and more:

– Tree: (Berkovits, Berkovits-Vallilo, Trivedi)

– Loop: Certain vanishing theorems to all loops, some 2-loop calculations,

etc. (Berkovits)

¨ Equivalence with RNS and light-cone GS has been shown (Berkovits, Aisaka-

Kazama)

¨ Action in AdS5 × S5 background has been constructed: Classically, there

exist infinite number of conserved non-local charges, as in GS formalism.

(Berkovits, Vallilo)

¨ “Topological” formulation in an extended space (Berkovits):

Rules for loop amplitudes ∼ topological string ∼ bosonic string
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Very interesting, but unusual and mysterious

Where does the PS formalism come from ?

¨ Reparametrization-invariant action ? Underlying symmetry ?

– What is Q the “BRST” charge of ?

– Where is the Virasoro algebra ?

¨ Why free fields ? How to quantize, with non-linear PS constraints ?

¨ How to derive the covariant rules including the measure ?

¨ Can it be applied to supermembrane ? (Attempt by Berkovits (02))

We will answer many of these questions

from the first principle by

“Double Spinor Formalism”
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Plan of the Talk

1. Introduction

2. Pure Spinor (PS) Formalism for Superparticle in 10D

3. PS Formalism for Superstring

4. Challenge for the Supermembrane Case

5. Summary and Future Problems

Based mainly on

¨ “Origin of Pure Spinor Superstring”, JHEP 0505:046,2005 (hep-th/0502208)

¨ “Towards Pure Spinor Type Covariant Description of Supermembrane:

— An Approach from the Double Spinor Formalism —, JHEP 0605:041,2006

(hep-th/0603004)

with Yuri Aisaka (U. of Tokyo, presently at Instituto de F́ısica, UEP, Brasil)
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2 Covariant PS Formalism for Superparticle in 10D

2.1 Basic Idea: “Double Spinor Formalism”

If we start from the conventional Brink-Schwarz action with xm and θ̃α, quanti-

zation becomes inevitably non-covariant.

¨ Introduce an additional spinor θα, together with a compensating

new local fermionic symmetry, to keep the physical content intact.

¨ Keep the local fermionic symmetry and covariance for the

second spinor θα.

– BRST operator with unconstrained bosonic spinor ghosts naturally arises.

– The non-covariant remnants produced by the quantization procedure can

be decoupled.

– This decoupling process at the same time produces the pure spinor condi-

tions.
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2 Fundamental action for type I superparticle:

Formally the same as the Brink-Schwarz, but with crucial re-interpretation

L =
1

2e
ΠmΠm , Πm = ẏm − iΘγmΘ̇

Θ ≡ θ̃ − θ , ym ≡ xm − iθγmθ̃

Basic variables = xm, θα, θ̃α , m = 0 ∼ 9 , α = 1 ∼ 16

2 Symmetries:

¨ Global SUSY

δθ = ε , δθ̃ = 0 ⇒ δΘ = −ε

δxm = iεγmθ ⇒ δym = −iεγmΘ

⇒ δΠm = 0

¨ Extra local fermionic symmetry (with local fermionic parameter χ)

δθ= χ , δθ̃ = χ δΘ = 0

δxm = iχγmΘ = iχγm(θ̃ − θ)

⇒ δym = iχγmΘ − iχγmθ̃ + iχγmθ= 0
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Using this symmetry, one can fix θ = 0 ⇒ Brink-Schwarz action for θ̃

¨ κ symmetry

δθ = 0 , δθ̃ = Πnγnκ

δxm = iθ̃γmδθ̃ , δe = 4ieΘ̇κ

2 Standard Dirac Analysis:

Momenta

pm =
∂L

∂ẋm
=

1

e
Πm

pα =
∂L

∂θ̇α
=

1

e
Πmi(γm(θ − 2θ̃))α = i(/p(θ − 2θ̃))α

p̃α =
∂L

∂ ˙̃
θα

=
1

e
Πmi(γmθ̃)α = i(/pθ̃)α

pe =
∂L

∂ė
= 0
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Primary constraints

Dα= pα − i(/p(θ − 2θ̃))α = 0

D̃α= p̃α − i(/pθ̃)α = 0

pe = 0

Canonical Hamiltonian

H =
e

2
pmpm

Secondary constraint: {H, pe}P = 0 gives

T ≡ 1

2
p2 = 0

Poisson brackets for fundamental variables:

{xm, pn}P = δm
n

{pα, θβ}P = −δβ
α , {p̃α, θ̃β}P = −δβ

α
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2 Constraints and their algebra:

Dα = pα − i(/p(θ − 2θ̃))α = 0

D̃α = p̃α − i(/pθ̃)α = 0 , T =
1

2
p2 = 0

{Dα, Dβ}P= {D̃α, D̃β}P = 2i/pαβ , {Dα, D̃β}P = −2i/pαβ

rest= 0

Generator of local fermionic symmetry:

∆α= Dα + D̃α , {∆α, Dβ}P = {∆α, D̃β}P = {∆α, ∆β}P = 0

We may regard D̃α and ∆α as independent constraints.

On the constrained surface p2 = 0, rank /p = 8

⇒ D̃α consists of 8 first class and 8 second class.

A natural way to separate them is to use SO(8) decomposition:

pm = (p+, p−, pi) , p± = p0 ± p9 , i = 1 ∼ 8

D̃α = (D̃a, D̃ȧ) , a, ȧ = 1 ∼ 8
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Further introduce κ-generator in place of D̃ȧ

K̃ȧ= D̃ȧ − pi

p+
γi

ȧbD̃b

Then

{D̃a, D̃b}P = 2ip+δab

{K̃ȧ, D̃b}P = {K̃ȧ, T}P = 0

{K̃ȧ, K̃ḃ}P= −4i
T

p+
δȧḃ

So D̃a are second class and K̃ȧ and T are first class.

Note: κ constraint ∼ √ of T constraint.

covsupbr-16



2 Semi-LC gauge, Dirac bracket and the basic constraint alge-

bra:

Semi-LC gauge: θ̃ȧ = 0 Imposed only for θ̃ to fix κ symmetry

Dirac bracket:

{θ̃a, θ̃b}D =
i

2p+
δab

Sa ≡
√

2p+ θ̃a , {Sa, Sb}D = iδab

We still have ∆α = Dα constraint (⇐ D̃α = 0 now)

Basic classical first class constraint algebra:

{Dȧ, Dḃ}D = −4i
T

p+
δȧḃ , rest = 0

The content of the κ-symmetry algebra is transferred to

Dα̇ algebra through the local fermionic symmetry.
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2 Quantization:

Redefine pα → −ipα, Sa → −iSa, Dα → −iDα.

Quantization is trivial:

[xm, pn] = iδm
n ,

{
pα, θβ

}
= δβ

α , {Sa, Sb} = δab

Da = da + i
√

2p+ Sa , Dȧ = dȧ + i

√
2

p+
piγi

ȧbSb

dα≡ pα + (/pθ)α

Quantum first-class constraint algebra:

{Dȧ, Dḃ} = −4
T

p+
δȧḃ , rest = 0
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2 BRST charge and derivation of PS formalism:

First class algebra ⇒ nilpotent BRST operator (Suppress
∫

):

Q̂ = λ̃αDα + λ̃ȧλ̃ȧb̃ +
2T

p+
c̃ = λ̃αDα +

2

p+
λ̃ȧλ̃ȧb + cT

{
b̃, c̃

}
= {b, c} = 1 , λ̃α = unconstrained bosonic spinor

At this stage, Q̂ contains the “energy-momentum tensor” T , as expected for a

reparametrization invariant theory.

Also note the important relation
{

Q̂, b
}

= T .

We now show that Q̂ can be transformed into Q = λαdα of the PS formalism

without changing its cohomology by a quantum similarity transformation:

Step 1:

¨ Disappearance of T, b, c ⇒ explains why T is absent in Q.

¨ and the appearance of a quadratic constraint λ̃ȧ → λȧ, λȧλȧ = 0
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Introduce an auxiliary field lȧ with the properties λ̃ȧlȧ = 1 and lȧlȧ = 0.

Then, one can construct another (composite) b-ghost bB in addition to

the original b:

bB≡ −p+

4
lȧDȧ ⇒ {bB, bB} = 0 ,

{
Q̂, bB

}
= T

Perform the following similarity transformation: T disappears and we get

ebBcQ̂e−bBc = λ̃aDa +

(
λ̃ȧ − 1

2
lȧλ̃ḃλ̃ḃ

)

︸ ︷︷ ︸
λȧ

Dȧ + (2/p+)λ̃ȧλ̃ȧb︸ ︷︷ ︸
δb: decouples

= Q̃ + ↗δb

where

Q̃= λ̃aDa + λȧDȧ , λȧλȧ = 0 : one of the PS constraints
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Step 2: Decoupling of Sa and a part of λ̃: λ̃a → λa

Split Sa and λ̃a into two parts by introducing projection operators

P 1
ab + P 2

ab = δab , P 1
ab ≡ 1

2
(γiλ)a(γ

il)b = P 2
ba

Sa = S1
a + S2

a ≡ (P 1S)a + (P 2S)a

λ̃a = λ1
a + λ2

a ≡ (P 1λ̃)a + (P 2λ̃)a

λ1
aS

1
a = λ2

aS
2
a = 0 , etc.

¨ λ1
a satisfies the remaining 4 PS conditions λ1

aγ
i
aḃ

λḃ = 0.

⇒ λα ≡ (λ1
a, λȧ) satisfies λγmλ = 0

¨ (S1, S2) forms a “conjugate” pair:{
S1

a, S1
b

}
=

{
S2

a, S2
b

}
= 0 ,

{
S1

a, S2
b

}
= P 1

ab ,
{
S2

a, S1
b

}
= P 2

ab

In terms of these variables, Q̃ takes the form

Q̃ = λαdα︸ ︷︷ ︸
Q

+ i
√

2p+ λ2
aS

1
a︸ ︷︷ ︸

δ

+ λ2
ada + i

(√
2p+ λ1

b +

√
2

p+
piλȧγ

i
ȧb

)
S2

b
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Now perform another similarity transformation:

eY Q̃e−Y = Q + ↗δ
where Y =

idaS
2
a√

2p+
, {δ, δ} = {δ, λαdα} = 0

Thus we finally obtain

Q= λαdα , λγmλ= 0

Note: Once we decouple non-covariant Sa, we are bound to get PS condition

λγmλ = 0, since it is the only way that Q remains nilpotent.

Thus we have derived the PS formalism for superparticle from

the first principle.
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3 PS Formalism for Superstring

The basic idea is exactly the same as for the superparticle case.

However we will encounter several new non-trivial complications:

¨ Action is more non-linear with the WZ term.

¨ More complicated structures with the derivatives ∂σ.

¨ For type II string, left-right separation will be non-trivial due to

extra spinors.

¨ Fundamental fields are apparently not free under the Dirac bracket.

¨ Quantum singularities will produce corrections.
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2 Reparametrization Invariant Fundamantal Action (for type

IIB):

Formally the same as the GS action:

S =

∫
d2ξ(LK + LWZ) ,

LK = −1

2

√
−g gijΠm

i Πmj ,

LWZ = εijΠm
i (W 1

mj − W 2
mj) − εijW 1m

i W 2
mj ∼ O(Θ4) ,

where

Πm
i ≡ ∂iy

m −
∑

A

W Am
i , W Am

i ≡ iΘAγm∂iΘ
A (A = 1, 2)

ΘA≡ θ̃A − θA , ym ≡ xm −
∑

A

iθAγmθ̃A

Symmetries: Reparametrization, Global SUSY,

extra local fermionic sym. and κ symmetry.
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Procedure:

¨ Perform Dirac analysis to get constraints

¨ Identify κ generator, and separate the constraints into 1st class and the 2nd

class

¨ Adopt the semi-LC gauge for θ̃α and compute the algebra of constraints under

the appropriate Dirac bracket

⇓
Constraint algebra governing the entire classical dynamics: (for

the left-moving sector)

{Dȧ(σ), Dβ̇(σ
′)}D= −8iT (σ)δȧḃδ(σ − σ′) , rest = 0

T ≡ T

Π+
, T = Virasoro generator
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2 Free field basis:

♠ Problem: Except for the self-conjugate field Sa =
√

2Π+ θ̃a, the other

basic fields no longer satisfy canonical relations under the Dirac bracket:

Examples:

{xm(σ), kn(σ′)}D = ηmnδ(σ − σ′) + (i/2Π+)(γmθ̃)a(γ
n)a(σ)δ′(σ − σ′)

{km(σ), kn(σ′)}D = −(i/2)∂σ[(1/Π+)(γmΘ)a(γ
nΘ)aδ

′(σ − σ′)] , etc.

♥ Solution: We have found a systematic redefinition of the original mo-

menta (km, kA
a , kA

ȧ ) −→ (pm, pA
a , pA

ȧ ) so that the new fields satisfy canonical

bracket relations:

pm ≡ km − i∂σ(θ̃γmθ) + i∂σ(
ˆ̃
θγmθ̂) ,

pA
a ≡ kA

a − iηA(∂σx+ − iθAγ+∂σθA)θ̃A
a

+ ηA

[
2(γi∂σθA)aθ̃

AγiθA + (γiθA)a∂σ(θ̃
AγiθA)

]
,

pA
ȧ ≡ kA

ȧ + iηA(γmθA)ȧ

[−2iθ̃Aγm∂σθA + iθ̃Aγm∂σθ̃A − i∂σ(θ̃
AγmθA)

]

− iηA(γiθ̃A)ȧ

[
∂σxi − 3iθAγi∂σθA + 2iθAγi∂σθ̃A + i∂σ(θ̃

A′
γiθA′

)
]
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In terms of these “free” fields (xm, pm, θα, pα, Sa)

(= the canonical basis for the supersymplectic structure on the constraint surface)

the constraints simplify considerably and become very similar to those for the

superparticle case:

Da = da + i
√

2Π+ Sa ,

Dȧ = dȧ + i

√
2

Π+
Πi(γiS)ȧ +

2

Π+
(γiS)ȧ(Sγi∂σθ) ,

T =
1

4

ΠmΠm

Π+
.

where dα≡ pα − i(γmθ)α(pm + ∂xm) − (γmθ)α(θγm∂θ)
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2 Quantization:

Radial quantization is straightforward, except that we need to add a few quantum

corrections due to multiple contractions and normal-ordering.

Da = da + i
√

2π+Sa ,

Dȧ = dȧ + i

√
2

π+
πi(γiS)ȧ − 1

π+
(γiS)ȧ(Sγi∂θ)

+
4∂2θȧ

π+
− 2∂π+∂θȧ

(π+)2

T =
1

2

πmπm

π+
− 1

2π+
Sc∂Sc + i

√
2

π+
Sc∂θc + i

√
2

(π+)3/2
πi(Sγi∂θ)

− 1

(π+)2
(Sγi∂θ)2+

4∂2θċ∂θċ

(π+)2
− 1

2

∂2 ln π+

π+

where πm≡ i∂xm + θγm∂θ

dα= pα + i∂xm(γmθ)α +
1

2
(γmθ)α(θγm∂θ)

This coincides with the system constructed by hand by Berkovits and Marchioro,

hep-th/0412198 ! We have derived it from the first principle.

covsupbr-28



Under OPE, they close as

Dȧ(z)Dḃ(w) =
−4δȧḃT (w)

z − w
, other OPE’s = regular

2 BRST operator:

Q̂ =

∫
dz

2πi

(
λ̃αDα + cT − (λ̃γ+λ̃)

b

Π+

)

λ̃α = unconstrained bosonic spinor ghosts
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2 Derivation of Q for PS formalism:

Essentially the same as for the superparticle case (slightly more involved).

1. Remove b, c and T : (omit
∫

dz/2πi)

eXQ̂e−X = ↗δb + Q̃

δb = (2/Π+)λ̃ȧλ̃ȧb , Q̃ = λ̃aDa + λȧDȧ , λȧλȧ = 0

X = bBc , bB = −Π+

4
(lȧDȧ) , λ̃ȧlȧ = 1 , lȧlȧ = 0

2. Make further similarity transformations

eZeY Q̂e−Y e−Z = Q + ↗δ
Y = −1

2
S1

aS
2
a ln π+ , Z = i

daS
2
a√

2
+

4(∂θȧλȧ)(∂θḃrḃ)

π+

δ =
√

2 iλ2
aS

1
a

Q = λαdα , λγmλ = 0
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4 Challenge for the Supermembrane Case

It is extremely challanging and intersting to see if our idea can be applied to the

supermembrane in 11D.

4.1 Constraint algebra at the classical level

Fundamental Action

S=

∫
d3ξL , L = LK + LWZ (ξI = (t, σi) , I = 0 ∼ 2 , i = 1, 2)

LK= −1

2

√
−g (gIJΠM

I ΠN
J − 1) , (M = 0 ∼ 10)

LWZ= −1

2
εIJKWIMN

(
ΠM

J ΠN
K + ΠM

J W N
K +

1

3
W M

I W N
J

)
∼ O(Θ6)

where

ΠM
I ≡ ∂Iy

M − W M
I , W M

I ≡ iΘ̄ΓM∂IΘ , W MN
I ≡ iΘ̄ΓMN∂IΘ

Θ ≡ θ̃ − θ , yM ≡ xM − iθ̄ΓM θ̃
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First class algebra of the constraints in semi-LC gauge Γ+θ̃ = 0:

{Dα̇(σ), Dβ̇(σ
′)}D = (T δα̇β̇ + Tmγm

α̇β̇
)δ(σ − σ′) , all the rest = 0

where T and Tm=1∼9 are linear in the bosonic reparametrization constraints

T = KMKM + det (ΠM
i ΠjM) = 0 , Ti = KMΠM

i = 0

where KM≡ kM − εijWiMN

(
ΠN

j + 1
2
W N

j

)

¨ (T , Tm) define the same constraint surface as (T, Ti), but the system is

first-order reducible: ∃Zm
p̄ Tm = 0, (p̄ = 1 ∼ 7)

⇒ One needs care in constructing the BRST operator in such a case.

¨ Unfortunately it is hard to construct the “free field basis”.
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5 Summary and Future Problems

Summary:

¨ Basic idea

xm, (θ¸, p¸)

(θ̃¸, p̃¸)

8 second class
8 κ-sym

8 semi-LC conditions

Sa
32 8

(λ̃¸, ω̃¸) = (λ¸, ω¸) ⊕ 5 bosonic pairs

λγmλ = 0

11 pairs

m (b, c)

16 pairs
form quartet and decouple
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¨ κ sym. ∼ √ of T sym.
fermionic local sym−→ QBRST sym.

s ss κ invariance is more generic

and explains

– why T need not appear explicitly in PS formalism

– why background field eq. is obtained either from κ invariance or from

conformal invariance.

¨ The basic idea seems to work also for the supermembrane.

Quantization requires more work.

More conditions on λA than just λCΓMλ = 0.
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Future Problems:

¨ Path-integral derivation of the covariant rules, including the multiloop mea-

sure.

¨ Understand the origin and the structure of the new non-minimal “topological”

PS formalism (Berkovits, hep-th/0509120; Berkovits and Nekrasov, hep-th/0609012) .

¨ Further analysis of supermembrane. Dimensional reduction to string case ?

¨ Extract physics: Application to curved backgrounds, in particular AdS5 ×
S5.

– Spectrum: superparticle, superstring.

– Integrability in AdS5 × S5 background.

Wish to report on further progress in the near future
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