A picture book of neutrino physics with superbeams

> Danny Marfatia University of Kansas

with Barger, DiercKxsens, Diwan, Huber, Lewis, Viren (hep-ph/0607177) with Barger, Huber, Winter (hep-ph/0610301)

Options for a U.S. long-baseline program

NOVA - 1:

- off-axis beam from FNAL, L=810 km to 20 kt
 TASD
- · beam energy is tuned to 1st osc. max.
- neutrino mode only

Sensitive only to $\theta_{13} \Rightarrow$ upgrade required

Possible upgrades:

NOVA - II:

upgrade FNAL proton infrastructure (HINS)
run in neutrino and antineutrino modes
2nd detector (liquid Ar TPC at original site)
2nd detector (50 Kt water CherenKov)
at same L but different OA angle (2nd osc. max.)
at same L/E but shorter L (diff. matter effect)

Wide band beam:

minor upgrade in FNAL proton infrastructure (without HINS)
run in neutrino and antineutrino modes
300 Kt water Cherenkov detector at DUSEL
energy spectrum information

Off-axis studied extensively. Consider WBB

Performance indicators:

1. θ_{13} discovery potential - exclusion of $\theta_{13} = 0$

2. discovery of mass hierarchy - suppose Δm_{31}^2) o how well can Δm_{31}^2 (o be excluded?

3. CP violation - exclusion of CP conserving values, $\delta = 0, \pi$

Assumptions: • protons with E = 28 GeV· 300 kt (fiducial mass) water Cherenkov detector • π° suppression (factor of 15 below 2 GeV 2 above 2 GeV) · 1% uncertainty for each type of signal · 10% uncertainty in background • I MAW for 5 years in neutrino mode • 2 MW for 5 years in antineutrino mode $\Delta m_{21}^2 = (8 \pm 0.8) \times 10^{-5} \text{ eV}^2$ $\theta_{12} = 0.55 \pm 10\%$ $\theta_{23} = \pi/4 \pm 5\%$ $\Delta m_{31}^2 = (2.5 \pm 0.125) \times 10^{-3} eV^2$ 5% uncertainty in the matter density

Discovery potential for $\sin^2 2\theta_{13} \neq 0$

Definition of CP fraction

Discovery potential for a normal hierarchy

Discovery potential for CP violation

Discovery reach for the octant of θ_{23}

3σ sensitivities, L = 1300 Km

3σ sensitivities, L = 1300 Km

Bottom line

WWB (O-6 GeV) + 1 MW in neutrino mode for 5 years + 2 MW in antineutrino mode for 5 years + 300 kt water Cherenkov detector + L = 1300 km (FNAL to Homestake) or L = 1500 km (FNAL to Henderson) = nonzero θ_{13} + mass hierarchy + CP violation at 3σ C.L. for $\sin^2 2\theta_{13}$ > 0.008

Eight-fold degeneracy broken to octant degeneracy without external input

Comparison with NOVA and T2KK

Setup	POT <i>i</i>	$\nu/{ m yr} t_{ u}$	[yr]	POT	$\bar{\nu}/{ m yr}$	t_p [yr]	P_{Target} [MW]	$L [\rm km]$	Detector technology	$m_{\rm Det}$ [kt]	$\mathcal{L} \; [\mathrm{Mt}\mathrm{MW}10^7\mathrm{s}]$
$NO\nu A$	$10 \cdot 10$	0^{20}	3	$10 \cdot$	10^{20}	3	1	810	Liquid argon TPC	100	1.02
WBB+WC	$22.5 \cdot 1$	10 ²⁰	5	$45 \cdot$	10^{20}	5	$1 (\nu) + 2 (\bar{\nu})$	1290	Water Cherenkov	300	7.65
WBB+LAr	$22.5 \cdot 1$	10^{20}	5	$45 \cdot$	10^{20}	5	$1 (\nu) + 2 (\bar{\nu})$	1290	Liquid argon TPC	100	2.55
T2KK	$52 \cdot 10^{-10}$	0^{20}	4	$52 \cdot$	10^{20}	4	4	295 + 1050	Water Cherenkov	270 + 270	17.28

30 sensitivities

---- NOvA WBB-WC WBB-LAr T2KK Which physics concept?

For equal exposures

• NOVA better for nonzero θ_{13} and CPV

• WBB experiments better for mass hierarchy

• WBB and T2KK equivalent for CPV

• WBB-LAr better than WBB-WC if cost/kt of LAr is smaller than cost/2.5 kt of water