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The Dark Matter Problem

s The energy density of the universe is mostly unidentified
+ Baryons: 5%
+ Dark Matter: 20%
+ Dark Energy: 75%

+ The dark matter is likely to be “WIMPs”’: weakly interacting
massive particles in the 100 GeV - TeV range

+ 1 pb annihilation cross section gives correct relic density

* The evidence for this standard cosmological model is
overwhelming

+ CMB, big-bang nucleosynthesis, large scale structure, clusters...
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To Solve the Dark Matter Problem
We Must Do Three Things

> 1.) Demonstrate that the dark matter in the
galaxy is made of particles

&

2.) Create dark matter candidates in the
controlled environments of accelerators

s 3.) Demonstrate that these two are the same

e

To accomplish this we need to combine data from
astrophysics and accelerators

+ Any one of these three would be a discovery of
fundamental importance!
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Alternative Scenarios for WIMPs
(which might be observed at the LHC)

* The WIMP is all / part / none of the dark matter

* The WIMP is stable / unstable to a superWIMP

+ The underlying physics is SUSY / extra dimensions / TBD

+ Cosmology was standard / exotic to temperatures of 100 GeV

s The dark matter halo of the galaxy is clumpy / smooth

s The velocity distribution of dark matter is smooth / has features

s> We need the data that will distinguish all of these possibilities.
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Direct Detection of Dark Matter

+ Nuclear recoils
+ ~50 keV deposited

+ many techniques
4 semiconductors
a scintillators
2 liquid noble gases
4 bubble chambers
a TPCs N |

s Most measure only the RRE=—'] § |
recoil energy BiE—

+ Recoil direction is more
difficult, but possible

CDMS fridge + icebox @ Soudan mine
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Indirect Detection of Dark Matter

[

Indirect detection
+ annihilations in galactic halo

+ energetic particles
a photons (gamma rays)
4 antiprotons, antideuterons
4 positrons

Gamma rays, incl. lines!
+ satellites (EGRET, GLAST
+ ACTs (HESS, VERITAS, MAGIC)

4 follow-up of GLAST sources?
Antiprotons, positrons
+ PAMELA, AMS, BESS
Neutrinos
+ AMANDA, IceCube, ANTARES

[

[

GLAST satellite
with schematic of
LAT instrument

[

electron-positron pair
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Dark Matter in the Gamma Ray Sky

Milky Way Halo simulated by
Taylor & Babul (2005)

All-sky map of gamma ray emission
from dark matter annihilations

dark matter substructure exhibits:
1. characteristic y-ray spectrum
2. spatially extended emission




Substructure In the Galactic Halo

s Spectrum of halo sub-
structure like MA-2

s Density profiles are 1/r,
giving “surface brightness” 100 £
proportional to 1/r '

+ With a size of 1 degree,
resolved by GLAST!

s Detectable objects can be
low-mass (1026 M_sun),
tidally stripped (100 pc) and
nearby (few kpc)

10

number of clumps

200 GeV

S 10 S0 100
detection significance ¢
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Gamma Ray Spectrum from
Dark Matter Annihilations

a Hadronization produces :M I 1I'DI'DTé'II";I L] LI lrl'l'l' T LI 'I'I"I'I"I'I L] I:
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pions, decaying into " - -- proton slope —1.9 7

high energy photons Dot oot ]

.==.—-- PSR slope —4/3, 10 GeV cutoff
+ Spectrum is difficult to ' .

mimic astrophysically

+ Gamma-ray pulsars are
the most troublesome

+ 25% mass measurement
at 100 GeV possible
+ Bright GLAST sources
separable from pulsars,
molecular clouds,
blazars, SN remnants...

+ Gamma ray spectrum
AND spatial extent
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Particle Physics with GLAST

s Astrophysical uncertainties dominate: we would in fact like to
measure the dark matter density using collider inputs

+ Not much information in spectral shape - universal over
hadronic channels including W's, Z's

+ One exception: annihilation to taus gives very hard spectrum, but
this is difficult to arrange in SUSY

s There may be information in branching ratios -
astrophysical densities cancel

+ line / continuum ratio is the line branching fraction, a function
only of the parameters in the Lagrangian

+ line ratio 2 gamma vs. Z gamma is similar

Edward A. Baltz (KIPAC, SLAC) DPF 2006 / JPS 2006, Honolulu October 31, 2006



Laboratory Creation of Dark Matter

* LHC

+ find particles up to 2+ TeV in
missing energy events

s Linear collider
+ mass reach not as high
+ precision measurements

+ Make a connection to
astrophysical searches
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Simulation of event in ATLAS @ LHC
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Much of the discussion is generic to WIMPs,
but we take examples from SUSY models

+ EAB, M. Battaglia, M. Peskin and T. Wizansky hep-ph/0602187

s Study 4 “benchmark” SUSY points
+ LCC1-4, chosen by ALCPG: dark matter and ILC-500

* For each of 4 points, identify measurements possible at colliders
+ masses, polarized production cross-sections, FB asymmetries

+ For each of 4 points, generate several million SUSY models
consistent with simulated measurements
+ 24 parameters — most general MSSM conserving flavor and CP

Study the predictions of properties relevant to dark matter, given
the collider measurements at each benchmark point

s+ (Calculated with ISAJET 7.69 and DarkSUSY 4.1

[

[
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cross section LCC1 Value (fb) ILC 500
ot = xiv) LR 4315 (0.58) =+  11%
RL  13.1(0.711)  +  3.5%
olete” = 079 LR 172.2 £ 21%
RL 20.6 + 7.5%*
olete” = %) LR 189.9 o 2.0%
RL 5.3 + 10.2%*
olete” —+ 7)) LR 45.6 + 7%
RL 142.1 + 4%
olete = ter) LR 573 (0.696)  + 6%
RL  879.9 (0.960) +  1.5%
olete™ — 41) LR 9.8 +
RL 11.1 +

mass/mass splitting LCC1 Value LHC  ILC 500 ILC 1000
m(X9) 95.5 + 4.8 0.05

m(Xy) — m(Y) 86.1 + 1.2 0.07

m(X9) — m(\Y) 261.2 + Q¢ 4.0

m(30) — m(7?) 280.1 £ 2.0 2.2

m(XT) 181.7 + - 0.55

m(X7) 374.7 + - - 3.0

m(r) 31 £ - 0.05

m(er) — m(X?) 47.6 + 1.0 0.2

m(fir) — m(x0) 475 + 1.0 0.2

m(71) — m(\Y) 38.6 + 5.0 0.3

BR(XS — €e)/ BR(X5 — 77) 0.077 + 0.008

m(er) — m(79) 109.1 + 1.2 0.2

mfiz) — m(¥°) 109.1  + 1.2 1.0

m(72) — m(\}) 112.3 + - 1.1

m(7.) 1862+ - 1.2

m(h) 113.68 + 025 0.05

m(A) 3044+ f  (>20) 15

m(ug), m(dg) 548. + 19.0 16.0

m(3g), m(cr) 548. + 190 16.0

m(iir), m(dy) 564.,570. £  17.4 9.8

m(3), m(¢cr) 570., 564. £+ 174 9.8

m(by) 514. + 75 5.7

m(by) 539. + 79 6.2

m(t) 401. + (> 270) - 2.0

m(g 611. + 8.0 6.5




Results: LCC1

+ “Bulk” region: most superpartners are light
+ LHC discovers a large number of the superpartners

+ ILC discovers (in two stages: 500 GeV and 1 TeV) most of the
remaining ones, and measures cross sections

s In this case alone, the ILC-TeV can infer relic density with
comparable precision to future CMB measurements (Planck
satellite, 0.5% accuracy)

+ Direct detection dominated by heavy Higgs - need this
measurement (ILC TeV) or constraint from e.g. SuperCDMS

s Annihilation cross section is small - dominated by b bbar with
large helicity suppression
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LCC1: Prediction of Relic Density and
Direct Detection Cross Section

1 I 1 T ] I 1 ] T I 1 1 I 'I T o [ 1 L 1 T ] L] L L] l
| Lcet ! | LCCH | LHC+ILC-1000
800 |- LHC+ILC—1000 -
] 15 |- _
x x
O - Lo B
o o
2 600 |- 4 9
2 1 2
@ | - 3
o S 10} )
© - 1 © i
2 400 - 4 2
=) =]
r 1 ¢
& - LHC+ILC-500 {1 & gL LHC -
200 |- ~
- LHC+ILC-500 -
0 [ I L [ L 0 [ [ 1 L I
0.16 0.18 0.2 0.22 10-9 10-8
Qh? og(x+p) (pb)

probability distribution functions for dark matter quantities given possible

accelerator measurements and assuming a supersymmetric model
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Results: LCC2

* “Focus point” region: gauginos, higgsinos are light,
sfermions are all inaccessible to any collider
+ LHC discovers most gauginos + Higgsinos, one Higgs boson

+ |ILC discovers the remaining gauginos / Higgsinos, measures
various cross sections

s Relic density estimate has 10% accuracy with ILC TeV
+ CMB measurement is doing collider physics!

Direct detection is dominated by light Higgs

s Annihilation cross section is large — dominated by W pairs
+ promising for gamma ray experiments

&
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LCC2: LHC

bino
(correct solution)
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Results: LCC3

*» “Coannihilation” region: light stau very close to neutralino

+ LHC discovers some gauginos and light sfermions, multiple
Higgs bosons, stau may be possible

+ |ILC discovers chargino, light stau, remaining charged sleptons
+ Relic density estimate has ~20% accuracy with ILC TeV
s Direct detection is dominated by heavy Higgs
s Annihilation cross section is moderate - dominated by b bar
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probability density dP/dx
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The Situation in 2012 for LCC2

* LHC has seen missing energy events, and measured masses for
new particles including a dark matter candidate

+ What is the underlying theory? Spins are difficult to measure.
+ The standard cosmology chooses the SUSY bino solution

s+ GLAST has obtained a 4+ year sky survey, and has observed
anomalous gamma ray sources

+ Mass is in the same range
+ Evidence for dark matter clustering?

s Direct detection experiments have detected ~70 events,
measured mass to 30%

+ Mass is consistent with LHC
+ Measure the local dark matter density, assuming the SUSY solution
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Using Direct Detection to
Measure Particle Properties
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Astrophysical Prediction for Particle Physics
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H, A can only be directly discovered at the ILC-1000

direct detection (with ~4 inverse zb) provides strong evidence before this
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Local Flux of Neutralinos
LCC2 LCC3
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effective WIMP flux (standard halo) effective WIMP flux (stondard halo)

input data: collider + number of counts in direct detection experiment

determine WIMP flux with no astrophysical / cosmological assumptions
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Dark Matter Annihilation Rate
LCC2 LCC4
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input data: collider + number of counts in GLAST for one clump

determine J with no astrophysical / cosmological assumptions
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Summary

> Solving the dark matter problem requires detecting dark matter in
the galaxy, studying its properties in the laboratory, and being
able to make the connection between the two

» Experimental approaches are complementary:
accelerators, direct detection, indirect detection

+ We need LHC and ILC and CDMS and GLAST

» We can learn about fundamental physics in astrophysical
settings, and learn about our galaxy at high-energy colliders
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