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Description of Problem

• Some interesting physics involve B decays into K*

• K* is seen through its decay to Kπ

• Normally (eg, for rates) the K* peak dominates Kπ 
non-resonant

• What about cases where the interesting quantity 
involves a cancelation or interference (e.g., FBA or 
CPV)? 

• “Background” subtraction by going to side bins is not 
an option
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Factorization, where?
Kπ  Dalitz plot in B → Kπγ   



• ChPT allows us to compute non-resonant in region I
(new theory, see below)

• Do not know how to compute non-resonant elsewhere 

• Problems:

• Results depend on arbitrary cut-off  (0.5GeV?)

• Q ∼ mb ≠ ∞ ⇒ regions not well separated

• mb ≠ ∞ ⇒ K* → Kπ  may produce soft π
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• Cannot ignore K* in region I

• Model: 

• keep K* in regions I and II, ignore III (order λ = √Λ/Q)

• for K* → K π use Breit-Wigner (BW)

• region I factorizable: include continuum from ChPT

• region I non-factorizable: use K* BW

• Any better ideas??
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Result 1: FBA zero
• Recall:                  Forward-Backward Asymmetry zero

at special q2 (invariant mass of lepton pair)

• sensitive to short distance “Wilson coefficients:”

• For                   there is a zero in FBA too, but now 
location depends on invariant        mass,

• Slope of this function is sensitive to same short distance 
Wilson coefficients ⇒ fit simultaneously (better 
constrained experimentally?)   

B → K∗!!

q2
0 = −2mBmb

Re(Ceff
7 (q2

0))
Re (Ceff

9 (q2
0))

(1 + τ(αs)) + δfact

B → Kπ""
Kπ

q2
0 = q2

0(mKπ)



As we’ll see, zero in FBA is from condition

C9 + 2mb
n · q

q2
C7 − a(MKπ) = 0

Wilson coefficients light-cone direction of K

γ* momentum

correction from
factorizable SCET

(easy-to-include radiative corrections have been 
omitted here, but included in full calculation to NNLO)Let F be defined by

Then
q2
0(MKπ) =

m2
B

F
− M2

Kπ

F − 1
F ≈ 5

1 2 3 4 5 6
F

-0.4

-0.2

0

0.2

0.4

0.6

q0
2

mB2

!
F0

"
F#

"
F#

"
F#

Small MKπ

Large MKπ

dq2
0

dMKπ
= − 1

F − 1
, F ≈ const

More generally (see figure): if F 
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• These show FBA-zero as function of Kπ mass

•             normalizes leading order (right figure shows 
extreme case, large corrections or “hard” form factor)

• Ecut shows model dependence from range of validity of 
chiral perturbation theory

• Dotted blue: ignore factorizable corrections: 
still parallel!
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• Recall S defined for each γ polariztion (i = L,R):

• Need interference between L and R handed photons 
(none for decay into K*)
Lowest order in 1/m ⇒ only L photons ⇒ S=0

• Ligeti et al (PRD 71, 011504(R) (2005)), 

Result 2: CPV in B ➛ Kπγ   

d2Γ(B0(t)→ KSπ0γi)
dEπdM2

Kπ

∝ e−Γ̄t {1 + Ci cos ∆mt− Si sin∆mt}

SKSπ0γ = −2 sin 2β
{ms

mb
+ hs cos φs

}

hs ∼
1
3

C9

C7

Λ
mb

∼ 0.05− 0.10 from charm loop & power 
counting
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Plan of (rest of) Talk

• Fast review of SCETII results/factorization (B→ KnXSγ(*)) 

• Chiral Perturbation Theory for Soft amplitudes in SCET

• Applications

• Generic symmetry relations, and their violation

• ITP* Zeroes in FBA

• Will not go back to CPV in B → Kπγ

*if time permits



SCET - factorization 
and χPT (or ChPT)

O → T ⊗ OS ⊗ OC + Onf + · · ·

Match arbitrary operator O (in Heff) into SCETII

Below: Establish Soft Pion Theorem for B→nπ in matrix  
element of soft operator OS and relations for
matrix elements of Onf



Aha! Large mass in SCET

• In SCETII we usually say the hadronic mass has to 
be small

• The reason is to make hadrons collinear

• But we can have MX ∼
√

ΛQ

Collinear meson with energy E ~ Q and mass ~Λ 

plus soft meson with energy E ~Λ and mass ~Λ
This is “Region I” in Dalitz plot



Jeff
µ = c1(ω) q̄n,ωγ⊥

µ PL bv + [c2(ω)vµ + c3(ω)nµ] q̄n,ωPR bv

+b1L(ωi) J
(1L)
µ (ωi) + b1R(ωi) J

(1R)
µ (ωi)

+ [b1v(ωi)vµ + b1n(ωi)nµ] J (10)(ωi)

In SCETI  for b➝ulν (sim. for b➝sγ, etc), the effective 
current is

The O(λ) operators are

J (1L,1R)
µ (ω1, ω2) = q̄n,ω1

Γ(1L,1R)
µα

[

1
n̄·P

igBα
⊥n

]

ω2

bv,

J (10)(ω1, ω2) = q̄n,ω1

[

1
n̄·P

igB/⊥n

]

ω2

PL bv,

which will give (leading order) factorizable 
operators in SCETII 

O(λ)

O(λ0)



SCETII Factorizable Ops

J fact
µ = − 1

2ω

∫
dxdzdk+b1L(x, z)J⊥(x, z, k+)((q̄Y )k+n/γ⊥µ γλ

⊥PR(Y †bv))(q̄n,ω1

n̄/

2
γλ
⊥qn,ω2)

− 1
2ω

∫
dxdzdk+b1R(x, z)J‖(x, z, k+)((q̄Y )k+n/γ⊥µ PR(Y †bv))(q̄n,ω1

n̄/

2
PLqn,ω2)

− 1
ω

∫
dxdzdk+[b1v(x, z)vµ + b1n(x, z)nµ)]J‖(x, z, k+)((q̄Y )k+n/PL(Y †bv))(s̄n,ω1

n̄/

2
PLqn,ω2)

Focus on these: soft operators
(a)

k+

b

s q

q

n n
_

They can mediate 
B → nπ (if π’s are soft)



There are also “spectator” 
contributions

(b)

k+

b

s q

q

n n
_

!"

qn_

Jµ
sp =

∫ 1

0
dzbsp(z)

∫
dk−Jsp(k− −

q2

n · q
)(q̄k−γµn̄/n/PLbv)(s̄n,zω

n̄/

2
PLqn,−z̄ω)

These are important corrections (for FBA-zero), 
but are trivially computed: 
expanding Jsp in n.q/q2 then integral over k− makes local the 
soft matrix element  (PRL84:4545,2000)

( So ignore for now) 



Light-Cone Wave Functions
∫

dz−
4π

e−
i
2 k+z−〈0|q̄i(z−)Yn(z−, 0)bj

v(0)|B̄(v)〉 =

− i

4
fB
√

mB

{
1 + v/

2
[n̄/n · vφ+(k+) + n/n̄ · vφ−(k+)]γ5

}

ij

Recall, for B to vacuum matrix element:

So the (simple) questions are:
1. How is this generalized for B to several 
soft pions?
2. What new non-perturbative functions are 
introduced?

Answers:

Easy

None

To my knowledge this is the only known example of a 
computable GPD! (but my knowledge is very limited)



HMχPT: Lightning Review

Effective theory incorporating chiral and HQ symmetries.
Use meson fields:

M =





1√
2
π0 + 1√

6
η π+ K+

π− − 1√
2
π0 + 1√

6
η K0

K− K̄0 − 2√
6
η





H(Q)
a =

1 + v/

2

[
P ∗(Q)

aµ γµ − P (Q)
a γ5

]
(P (b)

1 , P (b)
2 , P (b)

3 ) = (B−, B̄0, B̄s),

Σ→ LΣR† , ξ → LξU† = UξR†

ξ = eiM/f , Σ = ξ2

H(Q)
a → H(Q)

b U†
ba

Under chiral SU(3)L×SU(3)R 

M.B. Wise Phys. Rev. D45 (1992) 2188
G. Burdman and J. Donoghue Phys. Lett. B280 (1992) 287

T.-M. Yan, et al, Phys. Rev. D46 (1992 ) 1148



The effective Lagrangian is well known, constrained by symmetry:

L =
f2

8
Tr

(
∂µΣ∂µΣ†) + λ0Tr

[
mqΣ + mqΣ†]− iTr[H̄(Q)avµ∂µH(Q)

a ]

+
i

2
Tr[H̄(Q)aH(Q)

b ]vµ
[
ξ†∂µξ + ξ∂µξ†

]
ba

+
ig

2
Tr[H̄(Q)aH(Q)

b γνγ5]
[
ξ†∂νξ − ξ∂νξ†

]
ba

+ · · ·

Symmetry also constrains representation of operators. For example, the left
handed current

Lν
a = q̄aγνPLQ

Lν
a =

iα

2
Tr[γνPLH(Q)

b ξ†ba] + ...,

is an expansion in the HQχPT:

Symmetry does not give us α.  Get it from B → vac: α = fB
√

mB



Back to task: we want to represent

Oa
L,R(k+) =

∫
dx−
4π

e−
i
2 k+x− q̄a(x−)Yn(x−, 0)PR,LΓbv(0)

in HQχPT.  These (L & R) transform as (3L,1R) and (1L,3R)

Oa
L(k+) =

i

4
Tr[α̂L(k+)PRΓH(Q)

b ξ†ba]

Oa
R(k+) =

i

4
Tr[α̂R(k+)PLΓH(Q)

b ξba]

so in analogy with example of current, we have (up to “...”)

α̂L,R(k+) = a1L,R + a2L,Rn/ + a3L,Rv/ +
1
2
a4L,R[n/, v/]Now for the tedious stuff: most general form:

and use H(Q)v/ = −H(Q) and take B → vac matrix element to fix remaining functions:

α̂L(k+) = α̂R(k+) = fB
√

mB [n̄/φ+(k+) + n/φ−(k+)]

Subtleties with T-ordering ignored here, but see Nucl. Phys. B755, 199 (2006) for details 



Have verified this in exact solution of ‘t Hooft model
(large N QCD in 1+1)

Incidentally, in that model 

B-shape function = (l.c. wave function)2

Nucl. Phys. B755, 199 (2006) 

f(k−) = κ[ψ(Λ̄− k−)]2θ(Λ̄− k−)



Applications



“Violations” to Symmetry 
Relations

 •Non-factorizable operators give very specific 
relations between helicity amplitudes

•Some helicity amplitudes of non-factorizable 
operators vanish

•Corrections: from non-vanishing amplitudes 
from factorizable operators

•Some vanish, unless additional soft pion



So, ignore for now factorizable operators. 
Then:

Define

εµ
± = 1√

2
(0, 1,∓i, 0) , εµ

0 = 1√
q2

(|"q|, 0, 0, q0) , εµ
t = 1√

q2
(q0, 0, 0, |"q|).

Hnf
+ (B̄ →MnXS) = 0

Hnf
t (B →MnXS)

Hnf
0 (B →MnXS)

=
c2(v · ε∗t ) + c3(n · ε∗t )
c2(v · ε∗0) + c3(n · ε∗0)

HV−A
− (B →MnXS)
HT
−(B →MnXS)

=
c(V−A)
1 (EM )

c(T )
1 (EM )

HV−A
0 (B →MnXS)
HT

0 (B →MnXS)
=

c(V−A)
2 (v · ε∗0) + c(V−A)

3 (n · ε∗0)

c(T )
2 (v · ε∗0) + c(T )

3 (n · ε∗0)

then
(form factor relations)

Jnf
µ = c(i)

1 (ω) q̄n,ωγµ
⊥PL bv + [c(i)

2 (ω)vµ + c(i)
3 (ω)nµ] q̄n,ωPR bv

Hnf
λ (Mn, XS) = 〈MnXS |ε∗µ

λ Jnf
µ |B〉

and

(i = V,A)



Hnf
+ (B̄ →MnXS) = 0Example: we already had

J fact
µ = − 1

2ω

∫
dxdzdk+b1L(x, z)J⊥(x, z, k+)((q̄Y )k+n/γ⊥µ γλ

⊥PR(Y †bv))(q̄n,ω1

n̄/

2
γλ
⊥qn,ω2)

− 1
2ω

∫
dxdzdk+b1R(x, z)J‖(x, z, k+)((q̄Y )k+n/γ⊥µ PR(Y †bv))(q̄n,ω1

n̄/

2
PLqn,ω2)

− 1
ω

∫
dxdzdk+[b1v(x, z)vµ + b1n(x, z)nµ)]J‖(x, z, k+)((q̄Y )k+n/PL(Y †bv))(s̄n,ω1

n̄/

2
PLqn,ω2)

ε∗µ
+

for 1-body, can only produce longitudinal polarized 
meson

⇒ H fact
+ (B̄ → K∗

n → (Kπ)n) = 0
Yet:

H fact
+ (B̄ → KnπS) "= 0

Note: all of this to leading order in λ



B!"B
"

Amplitudes can be computed
using HQχPT:

where SR(pπ) =
g

fπ

ε∗+ · pπ

v · pπ + ∆

SL(pπ) =
1
fπ

(
1− g

e3 · pπ

v · pπ + ∆

)

H fact
+ (B̄ → PnπS) = C

1
2
fBfP mBSR〈b1RJ‖φP 〉

H fact
− (B̄ → PnπS) = 0

H fact
+ (B̄ → Vn(η)πS) = C

fBfV mBmV

2n̄ · pV
(n̄ · η∗)SR〈b1RJ‖φ

‖
V 〉

H fact
− (B̄ → Vn(η)πS) = −CfBf⊥V mB(ε∗− · η∗)SL〈b1LJ⊥φ⊥V 〉

and C is an isospin factor, C=1 for charged, C=1/√2 for neutral



Use this in two examples: B → Kπ"" B → Kπγ&

In particular,
look at FBA in 
and CP violation in 

B → Kπ""
B → Kπγ

FBA: look for zero in  

AFB ∝ Re (HV
−HA∗

− −HV
+ HA∗

+ )

where V, A = vector, axial-vector currents.
Start with nf contribution only: HV

+ = 0, HV
− ∝ c(V )

1

⇒ Re(c(V )
1 ) = 0

(       is constant, real,  and non-vanishing)c(A)
1



c(V )
1 = Ceff

9 + 2mb
n · q

q2
Ceff

7

(plus radiative 
corrections that are 
easy to include)

q2
0 = −2mBmb

Re(Ceff
7 (q2

0))
Re (Ceff

9 (q2
0))

But for B → Kπ"" zero depends on MKπ
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Now include factorizable terms

H(i)
nf = c(i)

1 (n̄ · pK , µ)ζBKπ
⊥

H(i)
f = −1

2
fK(ε∗+ · pπ)

∫ 1

0
dzdxb(i)

1R(z)
∫ ∞

−p+
π

dk+J‖(x, z, k+)S(k+)φK(x)

H(q)
sp =

(4π)2

q2
fK(n̄ · pK)(ε∗− · pπ)

∫ 1

0
dxb(q)

sp (x)φK(x)
∫ ∞

−pπ−

dk−Jsp(k−)S(k−)

The soft functions, S, can be calculated as before, eg

H(i)
f =

1
2
m2

BSR(pπ)
∫ 1

0
dzb(i)

1R(z)ζBK
J (z)

ζBK
J (z)=

fBfK

mB

∫ 1

0
dx

∫ ∞

0
dk+J‖(x, z, k+)φ+

B(k+)φK(x)where

(Note: for sp, expand in n.q/q2)



Recall regions and model:
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• III. Soft K, energetic πn: order λ∼Λ/Q
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In region II use resonant approximation

HV,A
− (B̄0 → K−π+) = HV,A

− (B̄ → K̄∗)
gK∗Kπ(ε∗− · pπ)

M2 −M2
K∗ + iMK∗ΓK∗

HV,A
+ (B̄0 → K−π+) = 0

Also need in I BW model nf soft function

ζBKπ
⊥ (MKπ, Eπ) = n̄ · pK∗ζBK∗

⊥
gK∗Kπ(ε∗− · pπ)

M2 −M2
K∗ + iMK∗ΓK∗



Solve for zeroes in FBA: 

Re [c(V )
1 − asp − af ] = 0
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Summary: chuck-full of results
• SCETII Factorization in B →Kπγ(*) Studied

• Symmetry relations given, e.g., H+ = 0 

• SCET can do MX  large, by adding soft π’s

• HQχPT formulated

• GPDs given entirely in terms of l.c. wave-functions

• Verified in ‘tHooft model (and shape=(l.c.)2 there)

• Uncertainty in CPV in B→Kπγ is large, MKπ dependent

• Simultaneous fit to zero and slope of zero in FBA-zero 
may increase accuracy of determination


