Prospects for Solar Neutrino Observation in KamLAND

Joint Meeting of Pacific Region Particle Physics Communities Oct. 30, 2006 Itaru Shimizu (Tohoku Univ.)

Solar Neutrinos : Prediction and Measurement

Prediction

Measurement

SSM (Standard Solar Model)

Super-Kamiokande, <u>SNO</u> NC/CC discrimination CI (Homestake) Ga (Gallex/GNO, SAGE)

Neutrino Oscillation Parameter which Reconcile all Experiments

Reactor Neutrino Observation

2 flavor neutrino oscillation

$$P(\nu_e \to \nu_e) = 1 - \sin^2 2\theta \sin^2\left(\frac{1.27\Delta m^2 [\text{eV}^2]l[m]}{E[\text{MeV}]}\right)$$

most sensitive region

$$\Delta m^2 = (1/1.27) \cdot (E[\text{MeV}]/L[m]) \cdot (\pi/2)$$
$$\sim 3 \times 10^{-5} \text{eV}^2$$

→ LMA solution

Good condition to confirm solar neutrino oscillation

Kamioka Liquid Scintillator Anti-Neutrino Detector

Physics Target in KamLAND

observed energy (MeV) 0.4 2.6 8.5 1.0 solar neutrino geo neutrino supernova neutrino reactor neutrino solar neutrino reactor neutrino ν_x geo neutrino prompt ν_x ν_e р delayed mean capture time ~ 200 µsec on proton neutrino detection by electron scattering anti-neutrino detection by inverse beta-decay

Precise Measurement of Oscillation Paramter

Reactor Future Prospect

oscillation ratio = $(N_{obs} - B.G.) / N_{exp}$

Systematic	%
Fiducial volume _{dominar}	4.7
Energy threshold	2.3
Efficiency of cuts	1.6
Livetime	0.06
Reactor power	2.1
Fuel composition	1.0
v _e spectra	2.5
Cross section	0.2
Total	6.5

Fiducial volume uncertainty will be reduced by full volume calibration (now planing)

full volume calibration \rightarrow systematic uncertainty $\sim 4\%$

Future Solar Neutrino Measurement

low energy solar neutrino observation

KamLAND II (Solar Neutrino Phase)

KamLAND singles spectra

⁷Be ν observation

B.G. reduction requirement ~ 1 μ Bq / m³

Energy Spectra after Purification

assuming 10⁻⁶ reduction of ²¹⁰Pb, ⁸⁵Kr and ⁴⁰K

expected event rate (no oscillation) 0.3 < E < 0.8 MeV

'Be v	79.9 event / day
pep v	3.8 event / day
CNO v	16.3 event / day

Source Calibration below 1 MeV

calibration below 1 MeV ↓ ⁶⁸Ge, ¹³⁷Cs, ²⁰³Hg

Event Reconstruction in Low Energy

Event Reconstruction in Low Energy

External Background

External Gamma-ray Background

External gamma-ray B.G. is studied by MC

²⁰⁸TI (2.62 MeV γ) Rock, PMT, stainless, ... ⁴⁰K (1.46 MeV γ) EVOH film, Kevlar rope, ...

fiducial R 4 m cut is enough

Muon Spallation Background

	Life time	Q value	Hagner et al. (ev/d/kton)	
¹⁰ C	27.8 sec	3.65 MeV (β+)	139	
¹¹ C	29.4 min	1.98 MeV (β+)	1039 serious for pep /	B.G. CNΟ ν
⁷ Be	76.9 day	0.478 MeV (EC)	231	

¹¹C Rejection by Neutron Events

nuclear spallation reaction by cosmic-ray muons

¹¹C rejection by triple coincidence
(1) cosmic-ray muon
(2) neutron (mean capture time ~ 210 μsec)
(3) ¹¹C (lifetime = 29.4 min)

point-like rejection (not track-like) using neutron vertex information

$${}^{12}C + X \rightarrow {}^{11}C + n + Y + \cdots$$

 $X = \gamma, n, p, \pi^-, \pi^+, e, \mu$ n production rate ~ 95% (Galbiati et al., hep-ph/0411002)

Electronics for ¹¹C Tagging Prototype

no dead time for high multiplicity events (spallation neutrons) after muons

Energy Spectra after ¹¹C Rejection

pep and CNO v (0.8 < E < 1.4 MeV)

CNO Neutrino Flux

CNO neutrino flux has large uncertainty from $^{14}N(p, \gamma)^{15}O$ cross section and heavy element abundance in the sun

Summary

 Reactor neutrino experiment contributed to solutions in solar neutrino problem.

KamLAND experiment

- oscillatory shape of reactor anti-neutrinos

- precise measurement of oscillation parameter
- We will observe ⁷Be, pep and CNO solar neutrino in KamLAND II.
- In the near future, observation of low energy solar neutrino will provide a greater understanding of the sun.