

Presence and Absence of Degeneracies in the LBL NuOscExp

Masafumi Koike (Saitama Univ.) Masako Saito (Saitama Univ.)

JPS + APS-DPF November 1, 2006, Honolulu

Neutrino Oscillation

Evolution equation of neutrinos

$$i\frac{\mathrm{d}}{\mathrm{d}t} \begin{pmatrix} \nu_{\mathrm{e}} \\ \nu_{\mu} \\ \nu_{\tau} \end{pmatrix} = \frac{1}{2E} \begin{bmatrix} U \begin{pmatrix} 0 & & \\ & \delta m_{21}^2 & \\ & & \delta m_{31}^2 \end{pmatrix} U^{\dagger} + \begin{pmatrix} a & & \\ & 0 & \\ & & & 0 \end{pmatrix} \end{bmatrix} \begin{pmatrix} \nu_{\mathrm{e}} \\ \nu_{\mu} \\ \nu_{\tau} \end{pmatrix} \quad \equiv H \begin{pmatrix} \nu_{\mathrm{e}} \\ \nu_{\mu} \\ \nu_{\tau} \end{pmatrix}$$

Quadratic mass differences

$$\begin{split} \delta m_{ij}^2 &\equiv m_i^2 - m_j^2 \\ \delta m_{21}^2 &\simeq 8 \times 10^{-5} \,\mathrm{eV}^2, \\ \left| \delta m_{31}^2 \right| &\simeq (2 - 2.5) \times 10^{-3} \,\mathrm{eV}^2 \end{split} \tag{Fogli et al. 2005}$$

 $\begin{cases} \delta m^2_{31} > 0 & \text{``Normal'' hierarchy} \\ \delta m^2_{31} < 0 & \text{`'Inverted'' hierarchy} \end{cases}$

• Mixing matrix, mixing angles and CP phase(s)

 $U = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta_{CP}} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta_{CP}} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & e^{i\phi_1} \\ & e^{i\phi_2} \end{pmatrix}$ $c_{ij} \equiv \cos\theta_{ij} \quad s_{ij} \equiv \sin\theta_{ij}$ $\sin^2\theta_{12} \sim 0.3 , \quad \sin^2\theta_{23} \sim 0.45 , \quad \sin^2\theta_{13} \lesssim 0.04 \quad \text{(Fogli et al. 2005)}$ Matter effect $a = 2\sqrt{2}G_{\rm F}n_{\rm e}E = 7.63 \times 10^{-5} \, {\rm eV}^2 \frac{\rho}{{\rm g\,cm}^3} \frac{E}{{\rm GeV}}$

• Unknowns to date: θ_{13} , $\operatorname{sgn} \delta m_{31}^2$, $\delta_{\rm CP}$, ϕ_1, ϕ_2

Scope of this Talk

Situations considered

- θ_{13} is constrained in advance of the future generation of long-baseline experiment.
- The value of θ_{13} is not too small $(\sin^2 2\theta_{13} \gtrsim 0.01)$ so that the *CP*-violation effect is accessible.

- Carter			Two-step strategy		
		θ_{13}	$\operatorname{sgn} \delta m_{31}^2$	$\delta_{ m CP}$	
)	R	leactor			
	L	ong base	line		

Purpose

- Provide a perspective of the presence and absence of the degeneracies regarding hierarchy $(\operatorname{sgn} \delta m_{31}^2)$ and δ_{CP} .
- Discuss the way to get out of this degeneracy.

Oscillation Probabilities

Oscillation Probabilities

Oscillation Probabilities

Distinguishability of Hierarchies

Oscillation Peaks

Ring of the Peaks

Movement on the Rings

Crosspoints of Rings

The Road of the Rings

Analytic Expressions

AKS (Arafune-Koike-Sato) approximation

J. Arafune, MK, J. Sato (1997)

$$\frac{\mathrm{d}\nu}{\mathrm{d}t} = H\nu = (H_0 + H_1)\nu$$

$$\begin{split} \nu(x) &= S(x)\nu(0) \\ S(x) &= e^{-iH_0x} \operatorname{Texp}\left[-i\int_0^x \mathrm{d}s \, H_1^{(\mathrm{I})}(s)\right] \quad \left(H_1^{(\mathrm{I})}(x) \equiv e^{iH_0x} H_1 e^{-iH_0x}\right) \\ &= e^{-iH_0x} - e^{-iH_0x} \operatorname{i} \int_0^x \mathrm{d}s \, H_1^{(\mathrm{I})}(s) + \cdots \\ P(\nu_{\alpha} \to \nu_{\beta}) &= \left|S_{\beta\alpha}\right|^2 \quad (\{\alpha, \beta\} \in \{e, \mu, \tau\}) \end{split}$$

Conditions of applicability

(i)
$$\delta m_{21}^2 \ll \delta m_{31}^2$$
, (ii) $a \ll \delta m_{31}^2$, (iii) $\frac{aL}{2E} \ll 1$
 $\left(\frac{\rho}{[\text{g cm}^3]}\frac{E}{[\text{GeV}]} \ll \frac{\delta m_{31}^2}{7.56 \cdot 10^{-5} [\text{eV}^2]}\right) \left(\frac{\rho}{[\text{g cm}^3]}\frac{L}{[\text{km}]} \ll 5200\right)$
Short baseline approximation

Oscillation Probability

• AKS (Arafune-Koike-Sato) second-order approximation (omitted in part)

$$\begin{split} P(\nu_{\mu} \to \nu_{\rm e}; E) &= 4l \Big[C(E) \sin^2 \Theta(E) + D(E) \Big], \\ C(E) &= 1 + 2 \frac{\Delta_{\rm m}}{\Delta_{31}} (1 - 2s_{13}^2) - \Delta_{21} \frac{j}{l} \sin \delta - \Delta_{21} \frac{\Delta_{\rm m}}{\Delta_{31}} \frac{j}{l} \Big(\sin \delta + \frac{\Delta_{31}}{2} \cos \delta \Big) \\ &+ \frac{\Delta_{21}^2}{2} \Big[\frac{j}{l} \cos \delta + (1 - 2s_{12}^2) \Big] \frac{j}{l} \cos \delta + 3 \frac{\Delta_{\rm m}^2}{\Delta_{31}^2} \\ \Theta(E) &= \frac{\Delta_{31}}{2} - \frac{\Delta_{\rm m}}{2} (1 - 2s_{13}^2) + \frac{\Delta_{21}}{2} \Big(\frac{j}{l} \cos \delta - s_{12}^2 \Big) \\ &- \frac{\Delta_{21}}{2} \frac{\Delta_{\rm m}}{\Delta_{31}} \frac{j}{l} \Big(\cos \delta + \frac{\Delta_{31}}{2} \sin \delta \Big) + \frac{\Delta_{21}^2}{2} \Big[\frac{j}{l} \cos \delta + \frac{1}{2} (1 - 2s_{12}^2) \Big] \frac{j}{l} \sin \delta \end{split}$$

$$D(E) = \frac{\Delta_{21}^2}{4} \frac{j^2}{l^2} \sin^2 \delta$$

$$\left(\Delta_{ij} = \frac{\delta m_{ij}^2 L}{2E}, \quad \Delta_{\rm m} = \frac{aL}{2E} \qquad l = c_{13}^2 s_{13}^2 s_{23}^2, \quad j = c_{13}^2 s_{13} c_{23} s_{23} c_{12} s_{12} \right)$$

Peak of the Oscillation Probability

AKS (Arafune-Koike-Sato) second-order approximation (omitted in part)

$$\begin{split} E_{\text{peak},n} &= \frac{|\delta m_{31}^2|L}{2\Pi} \left\{ 1 \mp \frac{\Delta_{\text{m}}}{\Pi} (1 - 2s_{13}^2) \left(1 - \frac{4}{\Pi^2} \right) \mp Rs_{12}^2 \pm R\frac{j}{l} \left(\cos \delta \pm \frac{2}{\Pi} \sin \delta \right) \\ &\mp \frac{\Delta_{\text{m}}}{2} R\frac{j}{l} \left[\left(1 + \frac{8}{\Pi^2} - \frac{64}{\Pi^4} \right) \sin \delta \pm \frac{2}{\Pi} \left(1 - \frac{8}{\Pi^2} \right) \cos \delta \right] \\ &\pm R^2 \frac{\Pi}{2} \frac{j}{l} (1 - 2s_{12}^2) \left(\sin \delta \mp \frac{4}{\Pi} \cos \delta \right) + \frac{\Delta_{\text{m}}^2}{\Pi^2} \left(1 - \frac{12}{\Pi^2} + \frac{48}{\Pi^4} \right) \\ &+ R^2 \frac{j^2}{l^2} \left(\pm \Pi \cos \delta \sin \delta + 1 - 3 \cos^2 \delta + \frac{4}{\Pi^2} \sin^2 \delta \right) \bigg\} \end{split}$$

 $P_{\text{peak},n} \equiv P(\nu_{\mu} \to \nu_{e}, E_{\text{peak},n})$

$$= 4l \left\{ 1 \pm 2\frac{\Delta_{\rm m}}{\Pi} (1 - 2s_{13}^2) - R\Pi \frac{j}{l} \sin \delta - \frac{\Pi}{2} \Delta_{\rm m} R \frac{j}{l} \left[\left(1 - \frac{4}{\Pi^2} \right) \cos \delta \mp \frac{4}{\Pi} \left(1 - \frac{2}{\Pi^2} \right) \sin \delta \right] \right. \\ \left. + R^2 \frac{\Pi^2}{2} \frac{j}{l} \left[\left(1 - 2s_{12}^2 \right) \cos \delta \mp \frac{2}{\Pi} s_{12}^2 \sin \delta \right] + \frac{\Delta_{\rm m}^2}{\Pi^2} \left(1 + \frac{4}{\Pi^2} \right) \right. \\ \left. + \frac{1}{4} R^2 \Pi^2 \frac{j^2}{l^2} \left(1 + \cos^2 \delta \pm \frac{4}{\Pi} \cos \delta \sin \delta + \frac{4}{\Pi^2} \sin^2 \delta \right) \right\} \\ \left. \left(R \equiv \frac{\delta m_{21}^2}{\left| \delta m_{31}^2 \right|} , \quad \Pi \equiv (2n+1)\pi \ (n=0,1,2,\cdots) \right) \right\}$$

Numerical vs. Analytic

Size of Rings

Baseline Length of Ring Separation

Rings, and thus hierarchies, separate at a long baseline $L > L_{crit}$

0

$$L_{\text{crit}} = \frac{1}{a'} \frac{\delta m_{21}^2}{|\delta m_{31}^2|} \frac{1}{1 - 2s_{13}^2} \frac{\Pi}{1 - \frac{12}{\Pi^2} + \frac{64}{\Pi^4}} \left[-\left(1 - \frac{8}{\Pi^2}\right) s_{12}^2 + \sqrt{\left(1 - \frac{12}{\Pi^2} + \frac{64}{\Pi^4}\right) \frac{c_{23}^2 c_{12}^2 s_{12}^2}{s_{23}^2 s_{13}^2} - \frac{4}{\Pi^2} s_{12}^4} \right]$$

$$\approx \frac{1}{a'} \frac{\delta m_{21}^2}{|\delta m_{31}^2|} \frac{\Pi}{\sqrt{1 - \frac{12}{\Pi^2} + \frac{64}{\Pi^4}}} \frac{c_{23} c_{12} s_{12}}{s_{23} s_{13} (1 - 2s_{13}^2)}} \sim \frac{1}{s_{13}} \left(\frac{1}{a'} \equiv \frac{1}{\sqrt{2} G_{\text{F}} n_{\text{e}}} = \frac{5.17 \cdot 10^3 \, [\text{km}]}{\frac{\rho}{[\text{g cm}^{-3}]}} \right)$$
For our example parameter set,
$$\int_{0}^{000} \frac{1}{\sin^2 2\theta_{13}} = 0.10 \quad L_{\text{crit}} = 900 \, \text{km}}{\sin^2 2\theta_{13}} = 0.02 \quad L_{\text{crit}} = 1200 \, \text{km}}$$

$$\int_{0}^{1} \frac{1}{(1 - \frac{12}{\pi^2} + \frac{1}{\pi^2} + \frac{$$

Resolving the Degeneracy

• The way out from the degeneracy (we are discussing)?

- Go for a long-length baseline, $L > L_{crit}$.
- Employ anti-neutrino beams together with neutrino beams.
- Combine two different baseline lengths. ("The Two Towers")
- Push the detection to the lower-energy neutrinos.

Use of Anti-neutrinos

Use of Another Distance

Use of Another Peak

Use of Another Peak

Use of Another Peak

Conclusions, Outlooks

• Determination of neutrino parameters may be complicated due to the degeneracy.

• The peak of the oscillation is a good representative of the whole spectra.

- Peak-matching leads to the mutually "similar" oscillation spectra.
- The analysis of the peak position provides a perspective of the presence and absence of parameter degeneracies in the long baseline experiments.

• The parameter-searching power can be systematically analyzed.

- The road of the rings: Various baseline length
- Blurred rings (to be done): Ambiguities of the oscillation parameters
- Another road of the rings (to be done): Combination of neutrinos and anti-neutrinos

