Kaon B-parameters

for Generic $\Delta S = 2$ Four-Quark Operators in Quenched Domain Wall QCD

Yousuke Nakamura

for CP-PACS Collaboration:

S.Aoki, M.Fukugita, K-I.Ishikawa, N.Ishizuka, Y.Iwasaki, K.Kanaya, Y.Kuramashi, J.Noaki, M.Okawa, Y.Taniguchi, A.Ukawa, Y.Yoshié

The Joint Meeting of Pacific Region Particle Physics Communities (@Sheraton Waikiki Hotel, Honolulu, Hawaii, Oct 29 - Nov 3, 2006)

Plan of talk

Introduction

- Generic $\Delta S = 2$ four quark operators in the physics Beyond Standard Model
- Calculation of perturbative renormalization factors

Simulation Results

Measurement of

$$R_{i} \equiv \frac{\langle \overline{K^{0}} | O_{i}(\mu) | K^{0} \rangle}{\langle \overline{K^{0}} | O_{1}(\mu) | K^{0} \rangle}, B_{i} \equiv \frac{\langle \overline{K^{0}} | O_{i}(\mu) | K^{0} \rangle}{C_{i} \langle \overline{K^{0}} | \overline{s} \gamma_{5} d | 0 \rangle \langle 0 | \overline{s} \gamma_{5} d | K^{0} \rangle}, i = 2, \dots, 5$$

Introduction

- Purpose
 - Focus on the indirect CP violation in neutral kaon physics determine parameter
 ϵ using first principle of QCD ⇒ examination of SM, constraints on the physics BSM
- **Indirect CP violation parameter** ϵ

$$\epsilon \sim \frac{e^{\frac{i}{4}\pi}}{\sqrt{2}\Delta M_K} \operatorname{Im}\left(\frac{1}{2m_K} \langle \bar{K}^0 | H_{eff}^{\Delta S=2} | K^0 \rangle\right)$$
$$H_{eff}^{\Delta S=2} = \frac{G_F^2}{16\pi^2} M_W^2 F_{\operatorname{Inami-Lin}} C(\mu) O_{\operatorname{LL}}(\mu)$$

Bag parameter for SM

$$\langle \bar{K^0} | \bar{s} \gamma^{\mu} (1 - \gamma_5) d\bar{s} \gamma^{\mu} (1 - \gamma_5) d | K^0 \rangle = \frac{8}{3} B_K F_K^2 m_K^2$$
$$B_K \equiv \frac{\langle \bar{K^0} | \bar{s} \gamma^{\mu} (1 - \gamma_5) d\bar{s} \gamma^{\mu} (1 - \gamma_5) d | K^0 \rangle}{\frac{8}{3} \langle \bar{K^0} | \bar{s} \gamma^{\mu} (1 - \gamma_5) d | 0 \rangle \langle 0 | \bar{s} \gamma^{\mu} (1 - \gamma_5) d | K^0 \rangle}$$

$\Delta S = 2$ transition in super symmetric model

Effective Hamiltonian
M. Ciuchini et al., JHEP 9810(1998)008 $H_{eff}^{\Delta S=2} = \sum_{i=1}^{5} C_i O_i + \sum_{i=1}^{3} \tilde{C}_i \tilde{O}_i \qquad C_i, \tilde{C}_i : \text{Wilson coefficients}$ $O_1 = \bar{s}^{\alpha} \gamma_{\mu} (1 - \gamma_5) d^{\alpha} \bar{s}^{\beta} \gamma_{\mu} (1 - \gamma_5) d^{\beta}, O_2 = \bar{s}^{\alpha} (1 - \gamma_5) d^{\alpha} \bar{s}^{\beta} (1 - \gamma_5) d^{\beta}$ $O_3 = \bar{s}^{\alpha} (1 - \gamma_5) d^{\beta} \bar{s}^{\beta} (1 - \gamma_5) d^{\alpha}, O_4 = \bar{s}^{\alpha} (1 - \gamma_5) d^{\alpha} \bar{s}^{\beta} (1 + \gamma_5) d^{\beta}$ $O_5 = \bar{s}^{\alpha} (1 - \gamma_5) d^{\beta} \bar{s}^{\beta} (1 + \gamma_5) d^{\alpha}$

Operator $\tilde{O}_{1,2,3}$ are obtained from the $O_{1,2,3}$ by exchange $L \leftrightarrow R$ the physics beyond the SM involves the four quark operators with more general chiral structures than the SM

Lattice QCD calculations

D The ratio of BSM- to SM- matrix elements

$$R_i(\mu) \equiv \frac{\langle \overline{K^0} | O_i(\mu) | K^0 \rangle}{\langle \overline{K^0} | O_1(\mu) | K^0 \rangle}, \qquad i = 2, \dots, 5$$

B-parameter for SM

$$B_{1}(\mu) = B_{K}(\mu) \equiv \frac{\langle \overline{K^{0}} | O_{1}(\mu) | K^{0} \rangle}{\frac{8}{3} \langle \overline{K^{0}} | \overline{s} \gamma_{\mu} \gamma_{5} d | 0 \rangle \langle 0 | \overline{s} \gamma_{\mu} \gamma_{5} d | K^{0} \rangle}$$

B-parameters for BSM

$$B_{i}(\mu) \equiv \frac{\langle \overline{K^{0}} | O_{i}(\mu) | K^{0} \rangle}{C_{i} \langle \overline{K^{0}} | \overline{s} \gamma_{5} d | 0 \rangle \langle 0 | \overline{s} \gamma_{5} d | K^{0} \rangle}, \qquad i = 2, \dots, 5$$

convention factors : $C_{i} \equiv \{\frac{5}{3}, -\frac{1}{3}, -2, -\frac{2}{3}\}$

Some systematic errors are expected to cancel out in the *R_i* and *B_i*

Perturbative renormalization factors

Chiral symmetry in the Domain Wall fermion

⇒ The renormalization patterns of four quark operators are same as in the continuum

- *O*₁ is renormalized multiplicatively
- **•** mixing between O_2 and O_3
- **•** mixing between O_4 and O_5

One loop renormalization factors with mean field improvement

Y.N&Y.Kuramashi PRD73(2006)094502

$$O_i^{\overline{\text{MS}}}(\mu) = \frac{1}{(1 - w_0)^2 Z_w^2} Z_{ij}(\mu a) O_j(1/a)^{\text{lat}}$$

Where matching scale is $\mu = 1/a$

Numerical values of Z_{ij} with mean field improvement

	(0.7287	0	0	0	0)
	0	0.6845	-0.00156	0	0
$Z_{ij}^{\text{Plaquette}}(\mu = 1/a) =$	0	-0.0352	0.8682	0	0
	0	0	0	0.6325	-0.0414
		0	0	-0.0689	0.7564)
	(0.8062	0	0	0	0)
	0	0.8124	-0.00679	0	0
$Z_{ij}^{\text{Iwasaki}}(\mu = 1/a) =$	0	-0.0156	0.9241	0	0
	0	0	0	0.7847	-0.0427

Plaquette gauge action : $\beta = 6.0$, $a^{-1} = 2.12$ **GeV**, $\tilde{M} = 1.311$

- **Iwasaki gauge action :** $\beta = 2.6$, $a^{-1} = 2.00$ GeV, $\tilde{M} = 1.420$
- *O*₁ is renormalized multiplicatively, mixing between *O*₂ and *O*₃, *O*₄ and *O*₅
- The Iwasaki gauge action shows the smaller 1-loop correction than the Plaquette gauge action.

Simulation parameters

Same parameters as in previous CP-PACS calculation of ϵ'/ϵ

PhysRevD68(2003)014501

- **Domain Wall fermion with wall height** M = 1.8
 - $m_f a = 0.02, 0.03, 0.04, 0.05, 0.06$
 - **Degenerate quark mass for** *d* **and** *s*
- Plaquette gauge action at $\beta = 6.0$
 - $a^{-1} \approx 2.12$ GeV from Sommer scale r_0
 - lattice size: $N_{\sigma}^3 \times N_t \times N_5 = 16^3 \times 32 \times 16$
 - **•** 180 **configurations**
- **J** Iwasaki gauge action at $\beta = 2.6$
 - $a^{-1} \approx 2.00$ GeV from Sommer scale r_0
 - lattice size: $N_{\sigma}^3 \times N_t \times N_5 = 16^3 \times 32 \times 16$ and $24^3 \times 32 \times 16$
 - 400 configurations for $N_{\sigma}^3 = 16^3$ 400 or 200 configurations for $N_{\sigma}^3 = 24^3$

Simulation Results for R_i

D The ratio of BSM- to SM- matrix elements

$$R_{i}(\mu) \equiv \frac{\langle \overline{K^{0}} | O_{i}(\mu) | K^{0} \rangle}{\langle \overline{K^{0}} | O_{1}(\mu) | K^{0} \rangle} \Rightarrow \left[\frac{1}{M_{K}^{2}} \right]_{\exp} \left[m_{M}^{2} \frac{\langle \overline{K^{0}} | O_{i}(\mu) | K^{0} \rangle}{\langle \overline{K^{0}} | O_{1}(\mu) | K^{0} \rangle} \right]_{\operatorname{lat}}, \quad i = 2, \dots, 5$$

- $\langle \overline{K^0} | O_1 | K^0 \rangle \propto m_K^2$ \Rightarrow the ratio diverges in the chiral limit
- The factor of m_M^2 is to keep the ratio finite in the chiral limit
 - \square *m_M* is the pseudo scalar mass on the lattice
 - **\square** $[M_K]_{exp}$ is the experimental value of kaon mass
- Fitting functions
 - **quadratic form :** $R_i = b_0 + b_1 m_f a + b_2 (m_f a)^2$
 - **logarithmic form :** $R_i = b_0 + b_1 m_f a + b_2 m_f a \log(m_f a)$

The Joint Meeting of Pacific Region Particle Physics Communities (@Honolulu, Hawai, Oct 29 - Nov 3, 2006) - p.10/20

	Plaquette	Iwasaki		
	$16^3 \times 32 \times 16$	$16^3 \times 32 \times 16$	$24^3 \times 32 \times 16$	
R_1	1	1	1	
R_2	-17.64(49)(12)	-19.03(32)(2)	-18.53(12)(1)	
R_3	4.57(13)(3)	5.03(08)(0)	4.91(03)(0)	
R_4	26.77(60)(6)	29.69(39)(2)	29.39(15)(0)	
R_5	8.10(18)(2)	9.00(12)(1)	8.80(05)(0)	

Small volume dependence

■ 10% disrepancies for R_4 and R_5 between Iwasaki and Plaquette could be $O(a^2)$ effects

 $|\langle \overline{K^0}|O_i(\mu)|K^0\rangle|$ (i = 2, ..., 5) are much larger than $|\langle \overline{K^0}|O_1(\mu)|K^0\rangle|$

Comparison with the overlap results R.Babich et.al. hep-lat/0605016

The Joint Meeting of Pacific Region Particle Physics Communities (@Honolulu, Hawai, Oct 29 - Nov 3, 2006) - p.12/20

- **Consistent results for** *R*₂ **and** *R*₃
 - **Large discrepancies for** *R*₄ **and** *R*₅
- **Possible source for the discrepancies**
 - **S** Renormalization method
 - **1**-loop perturbation vs Non-perturbative RI/MOM scheme

Future work

Non-Perturbative renormalization for DWF using Schödinger functional method

Y.Taniguchi hep-lat/0604002

Simulation Results for *B_i*

B-parameter for SM

$$B_{1}(\mu) = B_{K}(\mu) \equiv \frac{\langle \overline{K^{0}} | O_{1}(\mu) | K^{0} \rangle}{\frac{8}{3} \langle \overline{K^{0}} | \overline{s} \gamma_{\mu} \gamma_{5} d | 0 \rangle \langle 0 | \overline{s} \gamma_{\mu} \gamma_{5} d | K^{0} \rangle}$$

B-parameters for BSM

$$B_{i}(\mu) \equiv \frac{\langle \overline{K^{0}} | O_{i}(\mu) | K^{0} \rangle}{C_{i} \langle \overline{K^{0}} | \overline{s} \gamma_{5} d | 0 \rangle \langle 0 | \overline{s} \gamma_{5} d | K^{0} \rangle}, \qquad i = 2, \dots, 5$$

convention factors : $C_i \equiv \{\frac{5}{3}, -\frac{1}{3}, -2, -\frac{2}{3}\}$

Quark mass dependence of *B_K*

Fitting function :

$$B_K = B(1 - 3cm_f a \log(m_f a) + bm_f a)$$

The solid symbols denote the interpolated results at $m_s a/2$

Quark mass dependence of $B_i = \frac{\langle \overline{K^0} | O_i(\mu) | K^0 \rangle}{C_i \langle \overline{K^0} | \overline{s} \gamma_5 d | 0 \rangle \langle 0 | \overline{s} \gamma_5 d | K^0 \rangle}$

Fitting function

- **• quadratic fit :** $B_i = b_0 + b_1 m_f a + b_2 (m_f a)^2$
- **J** logarithmic fit : $B_i = b_0 + b_1 m_f a + b_2 m_f a \log(m_f a)$

\square B_i at the physical point with quadratic fit

	Plaquette	Iwasaki		
	$16^3 \times 32 \times 16$	$16^3 \times 32 \times 16$	$24^3 \times 32 \times 16$	
B_1	0.6135(91)	0.5839(45)	0.5817(11)	
B_2	0.5653(58)(4)	0.5600(36)(2)	0.5413(13)(0)	
B_3	0.7337(78)(5)	0.7386(50)(3)	0.7160(19)(0)	
B_4	0.7132(78)(19)	0.7285(50)(2)	0.7172(17)(7)	
<i>B</i> ₅	0.6474(83)(15)	0.6640(45)(3)	0.6466(15)(6)	

Solume and gauge action dependences are small

• Comparison with the other fermion results

Overlap:R.Babich et.al. hep-lat/0605016, Wilson:A.Donini et.al. PLB470(1999)233

- Large discrepancies for B₂, B₃ and B₄ between our results and the other fermion results.
- **Consistency for** *B*₅
- Possible sources of discrepancies
 - **Solution** Renormalization method
 - **1**-loop perturbation vs Non-perturbative RI/MOM scheme
 - $\langle \overline{K^0} | \overline{s} \gamma_5 d | 0 \rangle$ itself could be different

Summary

- **•** Measurements of matrix elements for generic $\Delta S = 2$ four quark operator
 - **DWF + Plaquette on** $16^3 \times 32 \times 16$ lattices at $a^{-1} \approx 2$ GeV
 - **DWF** +Iwasaki on $16^3 \times 32 \times 16$ and $24^3 \times 32 \times 16$ lattices at $a^{-1} \approx 2$ GeV
- $|\langle \overline{K^0} | O_i(\mu) | K^0 \rangle | \ (i = 2, ..., 5) \text{ much larger than } |\langle \overline{K^0} | O_1(\mu) | K^0 \rangle |$
 - Small volume dependences
- Comparison with the previous works using different fermion actions
 - **•** Large discrepancies for some matrix elements
 - Difference of renormalization methods could be a large source of discrepancies
 - 1-loop perturbation vs Non-perturbative RI/MOM scheme

Future work

Non-Perturbative renormalization for DWF using Schödinger functionalmethodY.Taniguchi hep-lat/0604002