Approaching the Chiral Limit with Dynamical Overlap Fermions

T. Kaneko for the JLQCD collaboration

¹High Energy Accelerator Research Organization (KEK)

²Graduate University for Advanced Studies

Joint Meeting of Pacific Region Particle Physics Communities, Oct. 31, 2006

イロト イ押ト イヨト イヨト

1.1 introduction: JLQCD collaboration

- JLQCD: studying lattice QCD using computers at KEK
- members:

KEK: S.Hashimoto, TK, M.Matsufuru, M.Okamoto, N.Yamada
RIKEN: H.Fukaya
YITP: T.Onogi
Tsukuba: S.Aoki, K.Kanaya, A.Ukawa, T.Yoshie
Hiroshima: K-I.Ishikawa, M.Okawa

- -2005: w/ Hitachi SR8000/F1 (1.2TFLOPS) $N_f = 2$, $a^{-1} \simeq 2$ GeV, plaq. + NP clover $N_f = 2 + 1$, $a \rightarrow 0$, Iwasaki + NP clover (w/ CP-PACS Collab.)
 - heavy sea quark masses $m_{
 m ud} \gtrsim m_{s, {
 m phys}}/2$
 - chiral symmetry breaking \Rightarrow haven't calculated $B_K, ...$

・ 同 ト ・ ヨ ト ・ ヨ ト …

introduction

1.2 new supercomputer system @ KEK

new machines were installed at KEK this year

1.3 JLQCD's new project

large-scale simulations with dynamical overlap fermions

- target simulation parameters:
 - $a \lesssim 0.125 \text{ fm}, \quad L \gtrsim 2 \text{ fm}$
 - lightest $m_{ud} \lesssim m_{s, \rm phys}/4$
 - O(10,000) HMC trajectories
 - $N_f = 2, 2 + 1 \text{ QCD}$

• this talk: overview of first production run in two-flavor QCD

 $a\sim 0.125$ fm, $L\sim 2$ fm, $m_{ud}\gtrsim m_{s,{
m phys}}/6$

for details, see proceedings for Lattice 2006:

S.Hashimoto, N.Yamada, H.Matsufuru, H.Fukaya, TK

• talk by Matsufuru: extension to $N_f = 2 + 1$ QCD

- 1. introduction
- confi guration generation -
- 2. lattice action
- 3. simulation algorithm
- 4. production run
- 5. static potential
- 6. meson masses / decay constant
- 7. summary

イロト イポト イヨト イヨト

lattice action algorithm production run

2.1 lattice action: quarks

• quark action = overlap w/ std. Wilson kernel

$$S_q = \bar{q} D_{ov} q,$$

$$D_{ov} = \left(m_0 + \frac{m}{2}\right) + \left(m_0 - \frac{m}{2}\right) \gamma_5 \operatorname{sgn}[H_w(-m_0)], \quad m_0 = 1.6$$

• w/ std. Wilson kernel $H_{
m W}$ \Rightarrow (near-)zero modes of $H_{
m W}$

• zero modes \Rightarrow discontinuity in S_q

 \Rightarrow reflection/refraction (Fodor-Katz-Szabo, 2003)

• extended modes w/ small mobility edge λ_c

 \Rightarrow spoil locality of $D_{\rm ov}$

• near-zero modes \Rightarrow expensive approx. for $sgn[H_W]$

イロト 不得 トイヨト イヨト

lattice action algorithm production run

2.2 gauge action

- preparatory study for $N_f = 0$
 - plaquette / admissibility / lwasaki gauge actions
 - no extended zero modes at $a \sim 0.125 \text{ fm}$
 - Iwasaki gauge: local: reduced density $\rho(\lambda)$ extended: $\lambda_c \approx 600 \text{ MeV}$
 - exp.locality of $D_{\rm ov}$

↓ employ Iwasaki gauge

T.Kaneko

• exp. locality for $N_f = 2$

< □ > < 同

lattice action algorithm production run

2.3 extra-Wilson fi elds

- even w/ impr.gauge action
 - $\Rightarrow \lambda[H_W]$ can cross zero
 - \Rightarrow time consuming reflection/refraction
- suppress (near)zero modes by extra fields
 Vranas, 2000; RBC, 2002 (DWF); JLQCD, 2006 (ovr)
 - two flavors Wilson fermion ⇒ suppress zero modes
 - two flavors of twisted mass ghost ($\mu = 0.2$) \Rightarrow suppress effects of higher modes

Boltzmann weight $\propto \frac{\det[H_W(-m_0)^2]}{\det[H_W(-m_0)^2 + \mu^2]}$

- extra-fi elds : mass $\propto a^{-1}$
 - \Rightarrow do not change the continuum limit

lattice action algorithm production run

2.3 extra-Wilson fi elds

- extra-fields: fix global topology during HMC
 - do NOT forbid local topological fluctuations
 - effects have to be studied (Brower et al., 2003)

lattice action algorithm production run

3.1 algorithm: multiplication of $D_{\rm ov}$ / solver

- multiplication of $D_{\rm ov} \Rightarrow {\rm sgn}[H_{\rm W}]$
 - $\sigma[H_W] \Rightarrow [\lambda_{\min}, \lambda_{\text{thrs}}] \cup [\lambda_{\text{thrs}}, \lambda_{\max}]$
 - low mode preconditioning eigenmodes w/ $\lambda \in [\lambda_{\min}, \lambda_{thrs}] \Rightarrow$ projected out
 - Zolotarev approx. of $sgn[H_W]$ for $\lambda \in [\lambda_{thrs}, \lambda_{max}]$ $N = 10 \Rightarrow accuracy of |1 - sgnH_W^2| \lesssim 10^{-7}$
- $D_{\rm ov}$ solver
 - 4D nested solver
 - inner: partial fraction + multi-shift CG (Frommer et al., 1995)
 - outer: relaxed CG (Cundy et al., 2004)

factor ${\sim}2$ faster than unrelaxed CG

• haven't tried recursive preconditioning (Cundy et al., 2004)

lattice action algorithm production run

3.2 HMC w/ 4D solver

Hasenbusch preconditioning (Hasenbusch, 2001)

$$\det[D_{ov}(m)^{2}] = \det[D_{ov}(m')^{2}] \det\left[\frac{D_{ov}(m)^{2}}{D_{ov}(m')^{2}}\right] = "\mathsf{PF1"} \cdot "\mathsf{PF2"}$$

- multiple time scale in MD (Sexton-Weingargen, 1992)
- switch off reflection/refraction step \Rightarrow about factor 3 faster

- hierarchy in force PF2 ≪ PF1 ≪ gauge ≈ ex-Wilson
- 3 nested loops for MD
 - PF2: outer-most loop
 - PF1: intermediate
 - gauge, ex-Wilson: inner-most

イロト イポト イヨト イヨト

Approaching the chiral limit with dynamical overlap fermions

lattice action algorithm production run

3.3 HMC w/ 5D $D_{\rm ov}$ solver

• 5D solver (Boriçi, 2004; Edwards et al., 2005)

- 5D representation of overlap (Boriçi, 1999)
- even-odd preconditioning: implemented
- Iow mode preconditioning: not yet
- HMC w/ 5D solver

$$\det[D_{\rm ov}(m)^2] = \det[D_{\rm ov,5D}(m')^2] \det\left[\frac{D_{\rm ov,5D}(m)^2}{D_{\rm ov,5D}(m')^2}\right] \det\left[\frac{D_{\rm ov}(m)^2}{D_{\rm ov,5D}(m')^2}\right]$$

= "PF1" · "PF2" · "noisy Metropolis test"

- suffi ciently high " N_s " to achieve reasonable $P_{\rm HMC}$
- factor 2 faster than HMC w/ 4D solver

イロト イ押ト イヨト イヨト

lattice action algorithm production run

4.1 production run: parameters

- $N_f = 2 \text{ QCD}$
- Iwasaki-gauge + overlap + extra-Wilson ($\mu = 0.2$)
- $\beta = 2.30 \Rightarrow a \approx 0.125 \text{ fm}$

preparatory studies at $\beta = 2.35, 2.50$

- 1000 traj., $a \simeq 0.10 0.11$ fm
- $16^3 \times 32$ lattice $\Rightarrow L \simeq 2$ fm
- 6 sea quark masses $\in [m_{s, \text{phys}}/6, m_{s, \text{phys}}]$ $m_{\text{sea}} = 0.015, 0.025, 0.035, 0.050, 0.070.0.100$
- τ = 0.5 : 1 HMC trajectory larger τ is better? (*RBC*, 2006; ALPHA, 2006)
- Q = 0 (runs w/ $Q \neq 0$ are on-going)

▲□▶ ▲冊▶ ▲三▶ ▲三▶ 三三 ののの

lattice action algorithm production run

4.2 runs w/ 4D solver HMC

Hasenbusch preconditioning + multiple time scale

$$\det[D_{\rm ov}(m)^2] = \det[D_{\rm ov}(m')^2] \det\left[\frac{D_{\rm ov}(m)^2}{D_{\rm ov}(m')^2}\right] = "{\sf PF1"} \cdot "{\sf PF2"}$$

 $\begin{array}{ll} \mathsf{PF2} \ : \ N_{\mathrm{MD}} \ \text{times / traj.} & \mathsf{PF1} \ : \ (N_{\mathrm{MD}} \cdot R_{\mathrm{PF}}) \ \text{/ traj.} \\ \\ \mathsf{gauge, extra-Wilson} \ : \ (N_{\mathrm{MD}} \cdot R_{\mathrm{PF}} \cdot R_{\mathrm{G}}) \ \text{/ traj.} \end{array}$

$m_{\rm sea}$	$N_{\rm MD}$	$R_{\rm PF}$	$R_{\rm G}$	m'	traj.	$P_{\rm HMC}$	$M_{\rm PS}/M_{\rm V}$	time[min]
0.015	9	4	5	0.2	2800	0.89	0.34	6.1
0.025	8	4	5	0.2	5200	0.90	0.40	4.7
0.035	6	5	6	0.4	4600	0.74	0.46	3.0
0.050	6	5	6	0.4	4800	0.79	0.54	2.6
0.070	5	5	6	0.4	4500	0.81	0.60	2.1
0.100	5	5	6	0.4	4600	0.85	0.67	2.0

イロト 不得下 イヨト イヨト

ъ

lattice action algorithm production run

4.3 basic properties of HMC

area preserving

- a few spikes per O(5,000) trajectories: P_{spike} < 0.1 %
- $\langle \exp[-\Delta H] \rangle = 1$ in all runs
- does not need "replay" trick

reversibility

 $\Delta U = \sqrt{\sum |U(\tau + 1 - 1) - U(\tau)|^2 / N_{\text{dof}}}$

- ϵ : stop. cond. for MS/overlap solver
 - $\Delta U \lesssim 10^{-8}$: comparable to previous simulations

イロト イポト イヨト イヨト

lattice action algorithm production run

4.4 autocorrelation

 au_{int} VS m_{sea}

- plaquette: local
 - \Rightarrow small m_q dependence
- $N_{\text{inv,H}}$: long range \Rightarrow rapid increase as $m_q \rightarrow 0$

• accumulate 10,000 trajectories $\simeq 100$ conf

 \Rightarrow precise determination of matrix elements:

< 🗆 > < 🗇 >

프 🖌 🛪 프 🕨

lattice action algorithm production run

4.5 runs w/ 5D solver HMC

$m_{\rm sea}$	$N_{\rm MD}$	$R_{\rm PF}$	$R_{\rm G}$	m'	traj	$P_{\rm HMC}$	time[min]	$traj_{total}$
0.015	13	6	8	0.2	6480	0.68	2.6	9280
0.025	10	6	8	0.2	4800	0.82	2.2	10000
0.035	10	6	8	0.4	4810	0.87	1.5	9410
0.050	9	6	8	0.4	4730	0.87	1.3	9530
0.070	8	6	8	0.4	4390	0.90	1.1	8890
0.100	7	6	8	0.4	3260	0.91	1.0	7860

- $N_{\rm MD}$: mild dependence of on $m_{\rm sea}$
 - $\Leftrightarrow N_{\rm MD} \propto 1/m_{\rm sea} \text{ for "Berlin wall"}$ in CPU time
- whole BG/L (10 racks) \times 1 month \Rightarrow 4000 traj. at all m_{sea}
- 8000-10000 traj.

lattice action algorithm production run

4.6 on-going calculations

simultions with $Q \neq 0$

$m_{\rm sea}$	Q	$N_{\rm MD}$	$R_{\rm PF}$	$R_{\rm G}$	m'	traj _{total}	$P_{\rm HMC}$
0.050	-2	9	6	8	0.4	3480	0.89
0.050	-4	9	6	8	0.4	380	0.88

measurements

Q	0								
$m_{\rm sea}$	0.015	0.025	0.035	0.050	0.070	0.100	0.050		
conf	928	1000	941	953	889	786	348		
pot.	780	920	910	880	800	760	260		
had.	173	410	403	310	243	319	—		

- using configurations every 10 trajectories
- static potential: ≈ current statistics
- hadron correlators: on going

ヘロト ヘ戸ト ヘヨト ヘヨト

э

- 1. introduction
- 2. lattice action
- 3. simulation algorithm
- 4. status
- preliminary results -
- 5. static potential
- 6. meson masses / decay constant

7. summary

イロト イポト イヨト イヨト

static quark potential meson masses / decay constant

5.1 static quark potential

• V(r): smeared Wilson loops $W(r,t) = c(r) \exp[-V(r) t]$

• r_0 : $V(r) = V_0 - \alpha/r + \sigma r \Rightarrow r_0 = \sqrt{(1.65 - \alpha)/\sigma}$

T.Kaneko

Approaching the chiral limit with dynamical overlap fermions

static quark potential meson masses / decay constant

5.2 lattice spacing from r_0

systematic error in r_0

- choice of fit range: small ($\lesssim 1$ %) and included
- fi xed Q: small (?)

chiral extrapolation

- $\bullet \ a_{r_0} = A_{r_0} + B_{r_0} m_{\text{sea}}$
- $r_0 = 0.49 \text{ fm} \Rightarrow a = 0.1184(12) \text{ fm}$

Approaching the chiral limit with dynamical overlap fermions

T.Kaneko

5.3 β shift

- inclusion of dynamical fermion
 - \Rightarrow smaller β with *a* fixed \Rightarrow unphysical phase trans. (?)

(T.Blum et al., 1994; F.Farchioni et al., 2004; JLQCD, 2004)

• in our simulations : due to overlap and extra-Wilson

- due to overlap: $\Delta\beta \approx 0.10$
- due to extra-Wilson: $\Delta\beta \approx 0.05$
- significantly smaller than tad.impr. clover $\Delta\beta \approx 0.40$

Approaching the chiral limit with dynamical overlap fermions

イロト イポト イヨト イヨ

6.1 meson masses: effective mass

very preliminary!!

independent conf.: ~ 20 conf at $m_{\rm sea} = 0.015$, $\gtrsim 50$ conf at $m_{\rm sea} \ge 0.025$

• local and exponential smeared source: $\phi(r) = a \exp[-br]$

Approaching the chiral limit with dynamical overlap fermions

T.Kaneko

6.1 meson masses: chiral extrapolation

- with current statistics no significant deviation from simple linear fit
 - $\begin{array}{rcl} M_{\rm PS}^2 &=& B_{\rm PS} \, m_{\rm sea} \\ M_{\rm V} &=& A_{\rm v} + B_{\rm v} \, M_{\rm PS}^2 \\ \Rightarrow \, \chi^2/{\rm dof} \lesssim 1.0 \end{array}$
- $a \operatorname{from} M_{\rho}$ $a = 0.1312(23) \operatorname{fm}$ $\sim a_{r_0} \operatorname{with} 10 \% \operatorname{accuracy}$

FSE?

$$\begin{split} M_{\rm PS} \, L \gtrsim 2.6 \\ \Rightarrow \quad \mathsf{FSE} \propto \exp[-M_{\rm PS} \, L] \approx 1 - 2\% \end{split}$$

 $M_{\rm PS}^2$ VS $m_{\rm sea}$

confi guration generation static quark potential preliminary results meson masses / decay constant

6.2 chiral symmetry breaking

ratio from AWI

$$\rho_{AWI} = \frac{\langle \nabla_4 A_4 P^{\dagger} \rangle}{\langle P P^{\dagger} \rangle} = A_{AWI} + B_{AWI} m + C_{AWI} m^2 + \dots$$

0

• A_{AWI} quad.: -0.00026(11) linear (3 lighter m_{sea}): -0.00001(12) \Rightarrow small symmetry breaking

•
$$B_{AWI}$$

 $Z_A = 2/B_{AWI} = 1.398(5)(23)$

T.Kaneko Approaching the chiral limit with dynamical overlap fermions

< □ > < 同 > < 回 > < 回 > < 回

T.Kaneko

static quark potential meson masses / decay constant

6.3 decay constant

• with NP Z_A from AWI

 $r_0 f_{\rm PS} \, {\sf vs} \, (r_0 \, m_{\rm PS})^2$

at heavy m_{sea}
 consistent with prev. results
 ⇒ small scaling violation (?)

• at small m_{sea} m_{sea} -dep. is not smooth \leftarrow small statistics

6.4 on-going measurement

restarting measurements w/ the following method...

• 100 lowest eigenpairs (λ_k, u_k) of D_{ov} ($\lesssim 3$ min./1conf/BGL)

$$(D_{\rm ov}^{-1})_{\rm L} = \sum_k \frac{1}{\lambda_k} u_k u_k^{\dagger}$$

- low mode preconditioning for Dov solver: 8 times faster
- low mode averaging for 2-pt. function

$$C^{(had)}(x';x)$$

$$= C^{(had)}_{LL}(x';x) + C^{(had)}_{LH}(x';x)$$

$$+ C^{(had)}_{HL}(x';x) + C^{(had)}_{HH}(x';x)$$

$$C^{(had)}_{LL}(x';x): take average over
source points$$

 $M_{\rm PS, eff}$ (only 1250 traj)

Approaching the chiral limit with dynamical overlap fermions

T.Kaneko

7. summary

- JLQCD's dynamical overlap project
 - 4000traj/month at 6 $m_{\rm sea}$'s at $a \approx 0.125$ fm, $L \approx 2.0$
 - action: Iwasaki + overlap + extra-Wilson
 - algorithm: Hasenbusch + multiple time scale MD + · · ·
 - autocorrelation \Rightarrow accumulate 10,000 traj. at each $m_{\rm sea}$
 - preliminary results: no clear sign of chiral log
- future prospects
 - measurements have to be completed w/ LMA spectrum, matrix elements ($f_{\{\pi,K\}}, B_K, f_{\{+,0\}}^{K \to \pi}(q^2),...$)
 - effects due to fi xed topology runs w/ Q≠0 ⇒ Q-dependence fi xed topology ⇒ ε-regime
 - extension to $N_f = 3$ (talk by Matsufuru), larger volumes