Search for invisible decay of ortho-Positronium

<u>Toshio Namba</u>, G. Koreki, M. Kaneda, S. Asai, and T. Kobayashi

ICEPP, University of Tokyo

1.1 Positronium

- Positronium
 - Simple bound state of e⁺e⁻
 (clean lepton system described by QED)
 - Aka, e^+e^- collider of $\sqrt{s} = 1.02 \text{ MeV}$
 - CM energy is much smaller than LEP (5 orders!), but,

we can use completely hermetic detector

High sensitivity for invisible mode Our goal: $\Gamma_{invisible} = 10^{-8}\Gamma_{3\gamma}$ (previous our limit (1993): 2.8×10⁻⁶)

1.2 ortho-Positronium (o-Ps)

- o-Ps
 - Spin triplet state $({}^{3}S_{1})$
 - Due to its characteristics for C conjugation, decaying to 2 γ is inhibited Long lifetime: τ=142ns

(cf. p-Ps: 125ps)

Advantage to find small couplings

2. New physics from o-Ps invisible decays

TeV scale extra dimension

- R-S brane world with a big compacitification radius
 - Natural solution to the gauge hierarchy problem
- Any massive particle can decay into bulk modes (invisible decay!)
- In the case of (4+2+1)-dimensional space-time (n=2),

$$\Gamma(\text{o-Ps} \rightarrow \gamma^* \rightarrow \text{add dim}) \approx 1.2 \times 10^5 \left(\frac{m_{\text{o-Ps}}}{k}\right)^2 \Gamma_{3\gamma} \qquad \text{Compactification} \\ \approx 1.2 \times 10^{-7} \left(\frac{1 \text{TeV}}{k}\right)^2 \Gamma_{3\gamma} \qquad \text{scale}$$

2. New physics from o-Ps invisible decays (cont.)

- Other exotic particles
 - Mirror world
 Photon-paraphoton mixing
 Search for ε ~ 10⁻⁸ region
 Same level of BBN limit
 - Millicharged particle
 Search for Q/e~10⁻⁵ particles
 Most sensitive experimental search in *m*<511keV region

3. Detector design and setup

Search for

``²²Na source emits β^+ , but no γ -rays related to β^+ are found''

- Detector setup:
 - ²²Na β^+ source ($T_{1/2}$ =2.6y, E_{end} =546keV)
 - SciFi (β⁺ tag)
 - Silica aerogel (β⁺ stopper & o-Ps production)
 - Nal(TI) & Csl(TI) hermetic calorimeter (γ-ray detection)

(especially 2γ's from annihilation)

Important things ``No dead material inside'' & ``thick hermetic calorimeter''

4.1 Detector (β^+ trigger)

- ²²Na, silica aerogel, and SciFi are set in a hole of CsI(TI) calorimeter
- SciFi is squeezed at the source (100μm)
- SciFi guides photons to the outside of the calorimeter
- Two PMTs are attached at the both ends

SciFi & core CsI(TI) scintillator

4.2 Detector (Hermetic calorimeter)

- Total 800kg of scintillators
 - 30 CsI(TI) crystals: 60mm×60mm×400mm
 - 62 NaI(TI) crystals: 94mm×110mm×375mm (Previously used in E68 experiment)
- Their layout is optimized by MC

No escape of 511keV back-to-back γ 's at the level of 10¹⁰ events

Detector overview Bottom half All scintillators arranged Covered by 5mm lead

5. Detector performance

5. Detector performance (3)

Summary

- Search for invisible decay of o-Ps
- Designed and constructed a new detector whose sensitivity is 10⁻⁸
- Now we are almost ready for the data taking, and some basic plots show the detector design is OK
- All data taking will be finished in 4 months, and its result will be reported in the next JPS meeting
 - (sorry for APS people)