Measurement of CP-violating phase ϕ_s at DØ

A. Rakitin Lancaster University Representing DØ Collaboration

October 29 – November 3 DPF 2006 Conference Honolulu, Hawaii

http://www-d0.fnal.gov/~rakitin/DPF06.pdf

B_s Meson System

Schrödinger equation:

$$\frac{d}{dt} \begin{pmatrix} |\overline{B}_{S}(t)\rangle \\ |B_{S}(t)\rangle \end{pmatrix} = \left(M - \frac{i}{2}\Gamma\right) \begin{pmatrix} |\overline{B}_{S}(t)\rangle \\ |B_{S}(t)\rangle \end{pmatrix}$$
$$\implies \frac{|B_{S,H}\rangle = p|B_{S}(t)\rangle - q|\overline{B}_{S}(t)\rangle}{|B_{S,L}\rangle = p|B_{S}(t)\rangle + q|\overline{B}_{S}(t)\rangle}$$

$$-\Delta M_{s} = M_{H} - M_{L} \approx 2|M_{12}^{s}|$$
$$-\Delta \Gamma_{s} = \Gamma_{L} - \Gamma_{H} \approx 2|\Gamma_{12}^{s}|\cos\phi_{s},$$

where
$$\phi_s = \arg\left(-\frac{M_{12}^s}{\Gamma_{12}^s}\right) - CP$$
-violating phase

Semileptonic Asymmetry a_{SL}

- Assume flavor-specific decay $B_s \to f(\overline{B_s} \to \overline{f})$, *e.g.* semileptonic $B_s \to \ell \overline{\nu_\ell} X$: \implies No "wrong-sign" decays $\langle \overline{f} | B_s \rangle = \langle f | \overline{B_s} \rangle = 0$
- Assume no direct CP-violation in $b \to c$, *i.e.* $\Gamma(B_s \to f) = \Gamma(\overline{B_s} \to \overline{f})$
- Then a good quantity to characterize CP-violation in *B*-mixing is the asymmetry:

$$a_{SL} = \frac{\Gamma(\overline{B_{S}}(t) \to f) - \Gamma(B_{S}(t) \to \overline{f})}{\Gamma(\overline{B_{S}}(t) \to f) + \Gamma(B_{S}(t) \to \overline{f})} = \operatorname{Im} \frac{\Gamma_{12}^{S}}{M_{12}^{S}} = \frac{\Delta \Gamma_{S}}{\Delta M_{S}} \tan \phi_{S}$$

 Within SM, non-zero a_{SL} corresponds to CP-violation in mixing this mode not yet observed in *B* decays!

a_{SL} – Probe for New Physics

a_{SL} is small:

- Magnitude $|\Gamma_{12}^s/M_{12}^s| = O(m_b^2/m_t^2) \ll 1 \text{model independent}$
- Phase $\arg(\Gamma_{12}^s/M_{12}^s) = O(|V_{us}|^2 m_c^2/m_b^2) \ll 1 \text{ in SM only}$ $\implies |V_{us}| = \lambda = 0.22 - \text{Wolfenstein CKM parameter}$
- Γ_{12}^{s} governs decays (tree-level) not sensitive to New Physics
- *M*^s₁₂ governs oscillations (loop-level) sensitive to New Physics (*e.g.* squark - gluino loops in SUSY)
- New Physics can change the phase of M_{12}^s thus increasing a_{SL}

a_{SL} is sensitive to New Physics

Integrated Asymmetry A_{SL}

- Measurement of a_{SL} does not demand initial state flavor tagging or resolution of fast $B_s \overline{B_s}$ oscillations
- Can use untagged decay rate $\Gamma^{unt}(B_{s} \to f) = \Gamma(\overline{B_{s}} \to B_{s} \to f) + \Gamma(B_{s} \to f)$
- Time-integrated asymmetry:

$$A_{SL} = \frac{\int \Gamma^{unt}(\overline{B_{S}}(t) \to f) dt - \int \Gamma^{unt}(B_{S}(t) \to \overline{f}) dt}{\int \Gamma^{unt}(\overline{B_{S}}(t) \to f) dt + \int \Gamma^{unt}(B_{S}(t) \to \overline{f}) dt} = \frac{1}{2} a_{SL} \frac{x_{S}^{2} + y_{S}^{2}}{1 + x_{S}^{2}} \approx \frac{1}{2} a_{SL},$$

where $x_s = \Delta M_s / \Gamma_s >> 1$, $y_s = \Delta \Gamma_s / (2\Gamma_s) < 1$ [Nierste, hep-ph/0406300]

Experimentally $A_{SL} = \frac{N(B_S \rightarrow \ell^+ X) - N(B_S \rightarrow \ell^- X)}{N(B_S \rightarrow \ell^+ X) + N(B_S \rightarrow \ell^- X)}$ – lepton charge asymmetry

of semileptonic B_s decays

Measurement of ϕ_s

I am going to talk about three different constraints on ϕ_s :

- From dimuon asymmetry $A_{SL} = \frac{N(bb \rightarrow \mu^+ \mu^+ X) N(bb \rightarrow \mu^- \mu^- X)}{N(b\bar{b} \rightarrow \mu^+ \mu^+ X) + N(b\bar{b} \rightarrow \mu^- \mu^- X)}$
- From B_s semileptonic asymmetry $A_{SL}^s = \frac{N(B_s \rightarrow \mu^+ D_s^- X) N(B_s \rightarrow \mu^- D_s^+ X)}{N(B_s \rightarrow \mu^+ D_s^- X) + N(B_s \rightarrow \mu^- D_s^+ X)}$
- From time dependent polarization amplitudes in $B_s \rightarrow J/\psi \phi$ decay

All three measurements have been performed at DØ experiment at Tevatron

Tevatron Collider at Fermilab

FERMILAB'S ACCELERATOR CHAIN

- $36 \times 36 \ p\bar{p}$ bunches, $10^{12} (10^{10}) \ p (\bar{p})$ per bunch
- Bunches collide every 396 ns at CM energy 1.96 TeV
- Record $\perp_{inst} = 1.72 \times 10^{32} \text{ cm}^{-2} \text{ sec}^{-1}$
- $\int \bot dt = 27 \text{pb}^{-1}/\text{week}$
- Total integrated $\angle > 1.4 \text{ fb}^{-1}$ (~1.3 fb⁻¹ on tape, ~330-1300 pb⁻¹ used)
- High Energy Physics Frontier until LHC turn-on

A. Rakitin, Lancaster University, Oct 29 - Nov 3, DPF 2006

DØ Detector

- Multi-purpose detector
- Silicon and fiber tracker in
 - 2 T solenoid, coverage $|\eta| < 3$
 - Huge tracking density capability
 - Precise vertexing and tracking
- Calorimeter (EM + hadronic), coverage |η| < 4.2
- Muon system (central + forward), coverage |η| < 2
 - Very low punch-through
 - Strong suppression of cosmic background
- Two magnets solenoid and toroid

DØ Muon System

LANCASTER UNIVERSITY

5*M* dimuon events collected (1 fb⁻¹)
 Detector asymmetries diminished by reversing solenoid and toroid polarities approximately once a week.

Magnet polarity

- Reversing magnet polarity helps reduce detector asymmetries in muon reconstruction
- Systematics is also diminished

Dimuon A_{SL} Measurement

(1st constraint on ϕ_s)

- Collect sample of N events with two muons of the same charge
- Divide it into 8 categories according to:
 - $rightarrow Toroid polarity, <math>\beta$
 - $<\!\!\!<\!\!\!\!<\!\!\!\!\!<\!\!\!\!<\!\!\!\!\!>$ Sign of muon pseudorapidity, γ
 - Muon charge, q
- Number of events in each category:

 $n_q^{\beta\gamma} = \frac{1}{4}N\varepsilon^{\beta}(1+qA_{SL}^{raw})(1+\gamma A_{det})(1+q\gamma A_{fb})(1+q\beta A_{q\beta})(1+\beta \gamma A_{\beta\gamma})(1+q\beta \gamma A_{ro})$ where

- N number of signal events in the sample
- ε^{β} fraction of integrated luminosity with toroid polarity β ($\varepsilon^{+} + \varepsilon^{-} = 1$)
- A_{SL}^{raw} integrated raw charge asymmetry we want to measure
- A_{fb} detector forward-backward asymmetry (more μ go in proton direction)
- A_{det} north-south asymmetry of the detector
- A_{ro} range-out asymmetry (decrease of acceptance of μ bent towards toroid)
- $A_{\beta\gamma}$ detector forward-backward asymmetry remaining after toroid polarity flp
- $A_{q\beta}$ change in muon reconstruction efficiency after toroid polarity flp
- Fit for 8 $n_q^{\beta\gamma} \implies$ obtain 8 linear equations with 8 unknowns

Dimuon A_{SL} Results

Numbers of events:

Tor*Sol polarity	-1	+1
N ⁺⁺	177,950	156,183
N	176,939	156,148
N+	1,175,547	1,029,604

Raw asymmetry:

 $A_{SL}^{raw} = -0.013 \pm 0.012(stat) \pm 0.008(syst)$

Must be corrected for fraction of flavor-specific *B* decays: $A_{SL} = f \times A_{SL}^{raw}$ Using Monte Carlo:

- Signal: $\overline{b} \to \mu^+; b \to \overline{b} \to \mu^+$
- Background that dilutes asymmetry: $\overline{b} \to \mu^+; b \to c \to \mu^+$
- Background with false asymmetries: $b \rightarrow c \rightarrow K^+ \rightarrow \mu^+$
 - Reaction $K^- + N \rightarrow$ hyperon + π has no analog $K^+ + N$ therefore $K^+ \rightarrow \mu^+$ more often

Dimuon A_{SL} Results

<u>Check:</u> Measured ratio of number of same-sign *B* pairs to number of opposite-sign *B* pairs: χ (meas. $D\emptyset$) = 0.136 ± 0.001 ± 0.024 is comparable to χ (*PDG*) = 0.1281 ± 0.0076

 \implies So that we know that sample composition is correct

Corrected asymmetry:

 $A_{SL} = -0.0044 \pm 0.0040(stat.) \pm 0.0028(syst.)$

(DØ Conference Note 5042)

SM loop prediction: $A_{SL} = -0.00050 \pm 0.00011$ [hep-ph/0406300]

Current precision is an order of magnitude away from SM precision.

Sample Composition

• Two different integrated asymmetries for B_d and B_s mesons – A_{SL}^d and A_{SL}^s

• In hadronic environment the measured dimuon asymmetry is some

combination of both:
$$A_{SL} = \frac{f_d Z_d A_{SL}^d + f_S Z_S A_{SL}^s}{f_d Z_d + f_S Z_S} \approx 0.6A_{SL}^d + 0.4A_{SL}^s,$$

where $Z_q = \frac{1}{1 - (\Delta \Gamma_q / 2\Gamma_q)^2} - \frac{1}{1 + (\Delta M_q / \Gamma_q)^2}$ [Grossman *et al.*, hep-ph/0605028]

• In $\Upsilon(4S)$ resonance $A_{SL} = A_{SL}^d$

This plot is for illustrational purposes only, because some measurements include A_{SI}^{s} and some - do not

A. Rakitin, Lancaster University, Oct 29 - Nov 3, DPF 2006

A^s_{SL} Extraction:

Knowing A_{SL} and A_{SL}^d one can extract A_{SL}^s :

- Previous measurements of A_{SL}^d :
 - BABAR: 0.0016 ± 0.0066 [Phys.Rev.Lett.96, 251802 (2006)]
 - BELLE: -0.0011 ± 0.0106 [Phys.Rev.D73,112002 (2006)]
 - CLEO: 0.014 ± 0.042 [Phys.Rev.Lett.86, 5000 (2001)]

Average: $A_{SL}^d = +0.0011 \pm 0.0055$ [hep-ph/0605028]

- Hence $A_{SL}^{s} = -0.008 \pm 0.011$ [hep-ph/0605028]
- Also, A^s_{SL} = N(B_S→μ⁺D⁻_SX)-N(B_S→μ⁻D⁺_SX)/N(B_S→μ⁻D⁺_SX) was directly measured at DØ (2nd measurement constraining φ_s)

LANCASTER UNIVERSITY

(2nd constraint on ϕ_s)

Signature: $B_s \rightarrow \mu \nu_\mu D_s, D_s \rightarrow \phi \pi, \phi \rightarrow K^+K^-$

Main cuts:

- Proper lifetime of $B_s > 0$ to reject $c \overline{c}$ background
- Charge correlation $q_{\mu} \cdot q_{\pi} < 0$ to reject combinatorial background
- Inv. mass window 1.004 GeV/ $c^2 < m(K^+K^-) < 1.034$ GeV/ c^2 to select ϕ events

 \implies 27K $D_{\rm s}$'s

Similar procedure for extracting A_{SL}^{s} with 8 linear equations and 8 unknowns

A^s_{SL} Measurement

Eight sub-samples:

Fitted with fixed means and widthes of the peaks, fixed background slopes

- Muons from charge asymmetric *K* decay:
 - Inelastic cross-section $\sigma(K^-N) > \sigma(K^+N)$
 - K^+ last longer, $K^+ \rightarrow \mu^+ \nu$ more often

- Suppressed by requirement $q_{\pi} \cdot q_{\mu} < 0$
- Different inelastic interaction of π^+ and π^- with detector material
 - Inelastic $\sigma(\pi^- N) > \sigma(\pi^+ N)$ by 1.3 ± 0.3% in 1 2 GeV/*c* [PDG 2006]
 - More π^- may get lost, hence the whole events
 - $<\!\!\! < \!\!\! >$ Induced asymmetry less than 2×10^{-4}
 - Has no effect at present accuracy level

A^s_{SL} Results

Raw asymmetry:

 $A^{raw} = 0.0102 \pm 0.0081(stat.)$

Similarly to dimuon asymmetry must be corrected for fraction of flavor-specific B_s decays: $A_{SL}^s = f^s \times A^{raw}$

- Signal: $B_s \rightarrow \mu D_s X$ and $B_s \rightarrow \tau D_s X \rightarrow \mu D_s X$
- Background: $B_s \rightarrow D_s D_s X, D_s \rightarrow \mu v X$
- Background: *b* or $c \rightarrow D_s$, another *b* or $c \rightarrow \mu$

Corrected asymmetry:

 $A_{SL}^{s} = 0.0123 \pm 0.0097(stat.) \pm 0.0017(syst.)$

(DØ Conference Note 5143, to be submitted to PRL)

- World first direct measurement of A^s_{SL}
- Constrains $\frac{\Delta\Gamma_s}{\Delta M_s}$ tan $\phi_s = 0.0245 \pm 0.0193(stat.) \pm 0.0035(syst.)$

SM prediction for $2 \cdot A_{SL}^s = (0.000021 \pm 0.000004)$ [hep-ph/0406300] New Physics may significantly increase this value, up to 0.005

$B_{s} ightarrow J/\psi \phi$ Analysis

(3rd measurement of ϕ_s)

- Clean signal selection
- Predominantly CP-even final state
- Angular analysis is needed to disentangle small CP-odd component
- Time-evolution of polarization amplitudes A_0 , A_{\parallel} (CP-even) and A_{\perp} (CP-odd) depends on width difference $\Delta\Gamma_s$ and CP-violating phase ϕ_s

$B_{s} \rightarrow J/\psi \phi$ Results

 $\Delta\Gamma_{\rm s} = 0.17 \pm 0.09 \pm 0.03 \ {\rm ps^{-1}}$ $\phi_{\rm s} = -0.79 \pm 0.56 \pm 0.01$ [DØ Conference Note 5144]

- Most precise direct measurement of $\Delta\Gamma_s$
- First measurement of ϕ_s
- Consistent with SM prediction: $\Delta\Gamma_s = 0.10 \pm 0.03 \text{ ps}^{-1}, \phi_s \approx 0.005$

we obtain

$$\Delta\Gamma_{s} = 0.15^{+0.09}_{-0.08} \text{ ps}^{-1}$$

$$\phi_{s} = -0.56^{+0.44}_{-0.41}$$

Combined constraints on $\Delta\Gamma_s$ and ϕ_s

/ps

<0.5

0.4

0.3

 $tan(\delta \phi) = -0.01 \pm 0.16 \text{ ps}$

 $\square D \varnothing (B_s \rightarrow J/\psi \phi)$

charge

from

[DØ Conference Note 5189]

 $\Delta\Gamma_s \tan \phi_s = A^s_{SL} \cdot \Delta M_s = -0.01 \pm 0.16 \text{ ps}^{-1}$

(assuming $\Delta M_{\rm s} = 17.3 \pm 0.3 \text{ ps}^{-1}$, CDF)

constraint

asymmetry measurement

Adding

DØ - combined

 $\mathbf{B}_{c} \rightarrow \mathbf{J}/\psi \phi$

SM

A_{al} constraint

 $\Delta \Gamma = \Delta \Gamma_{SM} \times |\cos(\delta \phi)|$

(radians

Summary

- DØ constrained CP-violating phase ϕ_s in three analyses
- 1st: Dimuon asymmetry measured at DØ to be

 $A_{SL} = -0.0044 \pm 0.0040(stat.) \pm 0.0028(syst.)$

- Express measured dimuon $A_{SL} = \frac{f_d Z_d A_{SL}^a + f_S Z_S A_{SL}^s}{f_d Z_d + f_S Z_S} \approx 0.6 A_{SL}^d + 0.4 A_{SL}^s$, where Z_q were given earlier
- By using A_{SL}^d measured at BaBar,Belle,CLEO we can extract $A_{SL}^s = -0.008 \pm 0.011$
- 2nd: A_{SL}^{s} directly measured at DØ in semileptonic B_{s} decays

 $A_{SL}^{s} = 0.0123 \pm 0.0097(stat.) \pm 0.0017(syst.)$

• 3rd: $B_s \rightarrow J/\psi \phi$ analysis (measurement rather than constraint):

 $\Delta\Gamma_{\rm s} = 0.17 \pm 0.09 \pm 0.03 \text{ ps}^{-1}$ $\phi_{\rm s} = -0.79 \pm 0.56 \pm 0.01$

Summary

Combining first two results we obtain constraint on CP-violating parameter:

$$\frac{\Delta\Gamma_{S}}{\Delta M_{S}}$$
 tan $\phi_{s} = -0.0006 \pm 0.0091$

[DØ Conference Note 5189]

- Consistent with zero => too early to report evidence of CP-violation in mixing in *B* decays
- Adding to the results from $B_s \rightarrow J/\psi \phi$ analysis we get

$$\Delta\Gamma_{\rm s} = 0.15^{+0.09}_{-0.08} \ {\rm ps^{-1}} \qquad \phi_{\rm s} = -0.56^{+0.44}_{-0.41}$$

[DØ Conference Note 5189]

• This is consistent with SM prediction