Torwards a complete 4-dim Lagrangian form Heterotic string theory

by

René Reinbacher, Rutgers University

Michael R. Douglas, Robert L. Karp, Sergio Lukic

Motivation |

We are interested in compactifications of het. string theory to $N = 1$, 4-dim effective theories. In particular, we want to write an effective Lagrangian.

To find such 4-dim supersymmetric theories, one can the following:

- 1. Choose a space time $M^{10}=X\times M^4$, M^4 is 4-dim Mink. Take X to be CY-space (complex Kaehler manifold with trivial canonical bundle) In particular, we want to find a Ricci-flat metric $g_{i\bar{j}}$ on X . If we fix a Kaehler class $H=[g_{i\bar{j}}]$, a theorem of Yau ensures the existence of a unique such metric.
- 2. Solve hermitian Yang-Mills equation on X , that is, find a gauge potential A_i , such that

$$
F_{ij}(A) = 0
$$
, $F_{\bar{i}\bar{j}}(A) = 0$, $g^{i\bar{j}}F_{i\bar{j}}(A) = 0$.

Such A_i can be interpreted as connection of holomorphic vector bundle V .

Theorems of Donaldson-Uhlenbeck-Yau show, that if V is a holomorphic bundle, which is stable with respect to H , then there exists a unique such solution $A_i.$

3. Find the field content of the 4-dim theory. It is determined by the zero modes ψ^α of the Dirac operator on $X.$ This amounts to find harmonic differential forms ψ valued in V , i.e. solutions of

$$
0 = (\bar{\partial} + \bar{A})\psi = (\bar{\partial} + \bar{A})^*\psi,
$$

where * denotes the adjoint operator. These modes can be described algebraically as the sheaf cohomology of V .

4. Find 4-dim superpotential, that is, the wedge products of differential forms ψ_{α} . This also can be done algebraically, e.g. rank three case, one needs to evaluate the map

$$
H^1(X, V) \otimes H^1(X, V) \otimes H^1(X, V) \to H^3(X, \wedge^3 V) = \mathbb{C}.
$$

5. Find the Kaehler potential for eff. 4-dim theory, or at least, the Kaehler metric which gives normalization for the 4-dim particles.

For example, let consider the normalization for the massless 4-dim fields which correspond to the moduli of the hermitian Yang-Mills gauge potential. Consider a deformation δA of a solution A_0 to the HYM equation

$$
A'=A_0+\delta A.
$$

That is, A' solves the HYM equations as well. These deformations correspond to harmonic representatives of the cohomology classes of $H^1(X, V \otimes V^*)$ and give rise in 4-dim. to complex scalar fields ϕ . After dimensional reduction of the 10-dim Yang-Mills action, on obtains

$$
S_{kin}(\phi)=\sum\int_X d^6 tr(\delta_p A_i,\delta_{\bar q}A_{\bar j})g^{i\bar j}\int_{M_4} d^4 x \partial_\mu \phi_p\partial^\mu \phi_{\bar q}^*
$$

where p,\bar{q} run over a basis of $H^1(X, V \otimes V^*)$ and denote the projections to the $(1, 0)$ -form and $(0, 1)$ -form part of δA respectively. $g_{i\bar{j}}$ is the Ricci flat metric on $X.$

In this talk I present our method on how to obtain numerical solutions to hermite Yang-Mills equation for stable bundles which can be applied on any compact Kaehler manifold.

I show how to apply this method to a stable rank three bundle V on a quintic.

In addition, I present a method on how to compute the Kaehler metric

$$
g_{p\bar{q}}=\int_X d^6 tr(\delta_p A_i,\delta_{\bar{q}} A_{\bar{j}})g^{i\bar{j}}
$$

numerically. There are generalizations of this method that can be applied to obtain the normalization of all 4-dim fields.

Review Ricci flat metrics

A a warm up, lets review the numerical computation of Ricci flat metrics on quintics, as described yesterday by Robert Karp. The basic idea is to consider embeddings of a quintic into a complex projective space of high dimension N

$$
X\subset \mathbb{P}^N.
$$

Projective spaces have a set a large set of Kaehler metrics, described by the Kaehler potentials

$$
K_h = log\left(\sum_{i\bar{j}} h^{i\bar{j}} Z_i \bar{Z}_j\right), i\bar{j} = 0, \ldots N.
$$

Note that the dimension of the family of Kaehler potential grows like N^2 , hence for large N there is a large such family. The idea is, as suggested by Yau, Tian, Luo and Donaldson, that the pull-back of the "correct" Kaehler metric given by $K_{h_{\boldsymbol{c}}}$ is a good approximation to the Ricci flat metric and agrees with it in the limit $N \to \infty$.

More formally, the embedding is given the global sections s_{α} of the k tensor power of the hyperplane bundle $\mathcal{O}_X(1)$ using the evaluation map

$$
x \to (s_1(x), \ldots, s_N(x)) \in \mathbb{C}^N.
$$

Donaldson showed recently that the "correct" Kaehler metric on \mathbb{P}^N is given by the fixed point $T(h)=h$ of the T-operator

$$
T(h)_{\alpha\bar{\beta}} \equiv \frac{N+1}{vol(X)} \int_X dV \; \frac{s_\alpha \bar{s}_{\bar{\beta}}}{\sum h^{\alpha\bar{\beta}} s_{\alpha\bar{\beta}}}.
$$

and that $T^n(h)$ converges for $n\to\infty.$

Solution to hermitian Yang-Mills equation

To apply this strategy to solve for the hermitian Yang-Mills connection A_i , recall that on a complex vector bundle V , there is a correspondence between a hermitian metric $(,)$: $\bar{V}\otimes V\rightarrow 0$ $\mathbb{C}^{\infty}(X)$, which in a frame $\{e_b\}$ gives $H_{a\bar{b}}=(e_a,e_b)$ and its corresponding metric connection $A_i = H^{-1}\partial_i H$.

Instead of solving for the hermitian Yang-Mills connection A_i , we solve for the hermite-Einstein metric H in the gauge $\bar{A}=0$

Hence we want to find a large family of metrics on the holomorphic vector bundle V (with fixed rank r). We consider the bundle $V \otimes \mathcal{O}_X(k)$ with M global sections such that the map $X \rightarrow$ $G(r, M)$ defines an embedding into the Grassmanian $G(r, M)$.

More precisely, after choosing a local frame for V , a basis of sections determines a $M\times r$ matrix $\{z^a_{\alpha}\}_{\alpha=1,...,M}^{a=1,...,r}.$ It is defined up to a $GL(M)$ change of basis and up to a $GL(r)$ change of frames, hence gives for each $x \in X$ we obtain a point in the Grassmanian $G(r, M)$.

Now we get a set of natural metrics on $V(k)$

$$
H = (zG^{-1}z^{\dagger})^{-1}.
$$

parameterized by $M \times M$ matrix G. Again, one wants to find a natural metric of this form which is a good approximation to hermite-Einstein metric and agrees with it in the large volume limit.

To find this metric, we define a generalized T-operator (DKLR)

$$
T(G) = \frac{N}{Vr} \int_X z (z^* G^{-1} z)^{-1} z^* dV.
$$

and conjecture that for any stable bundle V it convergence to a fixed point G_{∞} . We test this conjecture for $T\mathbb{P}^{2}$, a rank three bundle on \mathbb{P}^2 and rank three bundles on quintics. Such fixed point G_{∞} leads to a natural metric on V for any k

$$
H_k = H^{(k)} \otimes h^{-k},
$$

where $H^k = (z G_\infty^{-1} z^\dagger)^{-1}$ and h is a metric on $\mathcal{O}_X(1)$.

Wang proofs that for $k \to \infty$, H_{∞} obeys the weak hermite Einstein equations

$$
\frac{i}{2\pi}\bigwedge F_{(H_{\infty})} + \frac{1}{2}S(\omega)I_V = \left(\frac{deg(E)}{Vr} + \frac{\bar{s}}{2}\right) \cdot I_V,
$$

where $\bigwedge F_{(H_\infty)}$ is the contraction of curvature form of V with respect to the Kaehler form $\omega = 2i\pi Ric(h)$ on X , $S(\omega)$ is the scalar curvature of X and $\bar{s} := \frac{1}{V}\int_X S(\omega) \frac{\omega^n}{n!}$ $\frac{\omega^{\prime\prime}}{n!}$. In particular, if ω corresponds to the Ricci flat metric, $S(\omega)$ vanishes everywhere and H_{∞} solves the hermite-Einstein equation.

Example: Hermite Einstein metric on V

Recall that the quintic Q is given by the vanishing locus of a degree five polynomial in $\{Z_i\}$, the homogenous coordinates on $\mathbb{P}^4.$ We consider the vector bundle V defined by the exact sequence

$$
\mathcal{O}_Q(-4) \to \mathcal{O}_Q^{\oplus 4}(-1) \to V,
$$

where $\mathcal{O}_Q(1)$ is the restriction of the hyperplane bundle. In particular, V is given by four global section s_i in $H^0(Q,\mathcal{O}_Q(3))$. We chose (for simplicity)

$$
s = (Z_0^3, \ldots, Z_3^3).
$$

 V is stable with vanishing first Chern class, hence corresponds to a valid string compactification. It is not a twist of the tangent bundle T_Q .

We want to find a hermitian matrix G_{∞} such that $T(G_{\infty})=G_{\infty}$ where T is our generalized T -operator. To find the global sections of $V(k)$ we consider

$$
\mathcal{O}_Q(k-4) \to \mathcal{O}_Q^{\oplus 4}(k-1) \to V(k),
$$

which implies the exact sequence

$$
H^0(Q, \mathcal{O}_Q(k-4)) \to H^0(Q, \mathcal{O}_Q^{\oplus 4}(k-1)) \to H^0(Q, V(k)).
$$

In particular for $k = 2$ we find

$$
H^{0}(Q, V(2)) = H^{0}(Q, \mathcal{O}_{Q}^{\oplus 4}(1))
$$

that is four sets of all linear polynomials in the projective coordinates of \mathbb{P}^4 . If we choose the canonical frame $\{\hat{e}_i\}_{i=0}^4$ for $\mathcal{O}_Q^{\oplus 4}(-1)$, the relation for the frame of V over the coordinate patch $Z_0 \neq 0$ can be expressed in inhomogenous coordinates $w_i = Z_i/Z_0$ as

$$
\hat{e}_0=-\sum_{i=1}^3 w_i^3\hat{e}_i.
$$

Then, the explicit matrix z that give the embedding $X \rightarrow$ $Gr(3, 20)$ is given by

$$
\left(\begin{array}{cccccc} 1..w_4 & 0 & 0 & -w_1^3 & -w_1^4 & -w_1^3w_2 & -w_1^3w_3 & -w_1^3w_4 \\ 0 & 1..w_4 & 0 & -w_2^3 & -w_1w_2^3 & -w_2^4 & -w_3w_2^3 & -w_4w_2^3 \\ 0 & 0 & 1..w_4 & -w_3^3 & -w_1w_3^3 & -w_2w_3^3 & -w_3^4 & -w_4w_3^3 \end{array}\right)
$$

Iterating the generalized T-operator, we reach the fixed point of

the generalized T -map after 12 or 15 iterations (computation is still slow and not optimized).

One numerical result I want to mention is our computation for different rank three bundle on the Fermat quintic. Using the balanced metric H_1 on $V(1)$ and the Ricci flat Kaehler metric $\omega^{i\bar{j}}$ we evaluate the Hermitian Yang-Mills equations. We find that

$$
\omega^{i\bar{j}}F_{i\bar{j}}\sim 1.31\cdot\mathbf{I}_{3\times3},
$$

where the theoretical value of the constant is $4/3$. That is, we indeed found a solution of hermite-Einstein metric on V and get an implicit test of the Ricci flatness of $\omega^{i\bar{j}}$. The error is about 11%.

Moduli space of V

Recall that our bundle V is determined by four global sections $s = (Z_0^3)$ $\{0,2,3,\ldots,Z_3^3\}$. A complex deformation corresponds simply to change of sections

$$
s'=s+\delta s_V,
$$

where δs_V is an element of $H^0(Q,\mathcal{O}_Q(3))^4$. Actually, removing all trivial deformations, which are of the form

$$
s_i\to s_i+\sum_j\alpha_i^js_j
$$

where α_i^j $\frac{\partial}{\partial i}$ are constants, allows to give an explicit basis for the tangent space of the moduli space $\mathcal M$ at V . Any tangent vector $\delta s \in T_V \mathcal{M}$ can be expressed as

$$
\delta s_V = \sum_{ij} a_{ij} m_j e_i
$$

where a_{ij} are constants, $\{e_i\}$ form the canonical basis of \mathbb{C}^4 and $\{\,m_j\,\}_{j=1}^{31}$ is the set of all degree three monomials in $\,\{Z_i\}\,$ modulo Z_0^3 $z_0^3, \ldots, Z_3^3.$

A variation of δs_V leads to δz_V , a variation of the embedding of $X \to Gr(3, 20)$. In particular we obtain a different fixed point of the T -operator

$$
G'=G+\delta G_V.
$$

Using the condition $T(G_V) = G_V$ allows to solve for $\delta_V G$.

Recall that the hermite Einstein metric on V was given by

$$
H = (zG^{-1}z^{\dagger})^{-1}h^{-k},
$$

hence we can explicitly solve for $\delta_V H$. To compute the Kaehler metric one has to find $\delta_V A$ in the physical gauge where the connection one forms are antihermitian. This can be done solving the equation

$$
H=C^{\dagger}C.
$$

The connection one forms are given by

$$
A_{\bar{i}} = C(\bar{\partial}_{\bar{i}}C^{-1}).
$$

We solve for $\delta_V A$ and compute the normalization matrix

$$
g_{p\bar{q}}=\int_X d^6 tr(\delta_p A_i,\delta_{\bar{q}} A_{\bar{j}})g^{i\bar{j}}.
$$