Searches for the Rare Decays $B^+ \rightarrow l^+ v \gamma$ and $B^0 \rightarrow l^+ l^+ \gamma (l=e,\mu)$

Edward Chen BaBar Collaboration DPF 2006 November 1, 2006

Radiative leptonic decays $B^+ \rightarrow l^+ v \gamma$

- Radiative leptonic decay is not helicity suppressed, unlike the purely leptonic decay
 - BF: predicted to be \sim (1–5) \times 10⁻⁶
 - Previous exp. limits ~<10⁻⁵
 - Additional theoretical uncertainty
- Using a factorization approach (KPY*), the tree-level decay width is:

$$\Gamma(B^+ \to l^+ \nu \gamma) = \alpha \frac{G_F^2 |V_{ub}|^2 m_B^5}{288\pi^2} f_B^2 \left(\frac{Q_u}{\Delta_B} - \frac{Q_b}{m_b} \right)^2$$

- The variable λ_B is the first inverse moment of the *B* light-cone distribution amplitude
 - It shows up in *B* to two-body hadronic decays such as $B \rightarrow \pi \pi$.

 B^+

- Not measured, and taken to be on the order of λ_{QCD}
- Thus, a measurement of the radiative leptonic BF could be useful in constraining λ_{B}

*Korchemsky, Pirjol, and Yan, PRD 61 114510, '00 (Thanks to Dan Pirjol, in particular, for his help)

November 1, 2006

DPF 2006: Beyond the SM Parallel Session

 V_l

Analysis scheme

- Use 232M *BB* pairs on-peak data (+off-peak, MC)
- Signal MC generated using KPY model
- Reconstruction:
 - Signal side B: Highest CM E lepton, photon
 - "Recoil" side B: Sum up the remaining 4-momenta
 - Loose reconstruction
 - Signal neutrino is assumed to be only missing particle

Analysis scheme II

- Event selection criteria:
 - Signal side: lepton, photon energies, angle, cos θ_{BY}
 - Recoil B side: total recoil energy and momentum
 - Neutrino reconstruction: missing E missing |p|
 - Miscellaneous: Event shape, π^0 veto
 - Two-photon rejection: longitudinal momentum, etc.
- Iterative cut optimization procedure
- Binned ML fit to extract signal count

Backgrounds

- Model backgrounds with MC if possible
 - BB background
 - $b \rightarrow c / v$
 - $b \rightarrow u / v$
 - Treat 7 exclusive modes separately $(\pi^+ \pi^0, \rho^+ \rho^0, \omega \eta, \eta')$
 - Other BB background
 - Continuum background
 - $e^+e^- \rightarrow q\overline{q}$ (where q = udsc)
 - $e^+e^- \rightarrow \tau^+\tau^-$
 - $e^+e^- \rightarrow \mu^+ \mu^- \gamma$ (Radiative dimuon, muon mode)
 - Generic two-photon background (unmodeled by MC!)
 - $e^+e^- \rightarrow e^+e^-X$
 - Forced to use a low-statistics off-peak data sample in our fit!

Signal extraction fit

- After all event selections:
 - Use recoil $B m_{ES}$ and neutrino E-|p| (Δ_{EP}) to separate signal from remaining background
 - $m_{ES} \equiv \sqrt{(E_{beam}^2 p_B^2)}$

November 1, 2006

Signal extraction fit II

- Define a signal region (S) and three sideband regions (B1,B2,B3)
- Signal, continuum, and *BB* background have different relative counts (shapes) in these regions
- Signal efficiency in S region: 3% (2%) for electron (muon)

November 1, 2006

Signal extraction fit III

	Region eve				
	S	B1	B2	B 3	Sample
Δ _{EP} m _{co}	sig sia	sig side	side sia	side side	shapes
Signal (BF = 3×10 ⁻⁶)	21.2	3.7	3.1	0.9	BFx10
$b \rightarrow U V$ 7-mode MC	45.5	15.9	51.3	37.1	
Gen <i>B</i> MC	22.4	40.2	85.7	317.3	
Off-peak (Cont MC)	41.4 (14.1)	239.7 (67.8)	79.0 (10.5)	294.5 (117.4)	3000 2200 1500 1000 0,0

*Offpeak data was kept blinded, with continuum MC used for cut optimization

November 1, 2006

Signal extraction fit IV

- Perform ML fit to extract event counts for signal and each type of background
 - Based on four-region shapes for each type
 - Include the statistical uncertainties on the shapes
 - Important for off-peak subtraction
- Also perform a joint fit to both modes

Systematics

- Experimental systematics
 - Tracking efficiency (signal lepton only)
 - PID (signal lepton only)
 - Neutral reconstruction (signal photon)
 - Cut efficiencies
 - Shape (Δ_{EP}/M_{ES})
- Number of *B*'s
 - B counting
 - Charged to neutral B ratio
- B background-specific
 - $b \rightarrow u / v$ theoretical uncertainties (7 exclusive SL modes)
 - X_u/v BF systematic
- Theoretical model for signal

Results

- We present the final measurements in terms of ΔBF , rather than BF, the total branching fraction
 - ΔBF is the branching fraction for the accepted region:
 - Lepton CM energy between 1.875 and 2.85 GeV
 - Photon CM energy between 0.45 and 2.35 GeV
 - Lepton-photon angle cosine less than -0.36
 - Largely eliminates any systematic due to choice of signal model
- In addition to two-sided limits, we quote 90% Bayesian CL upper limits
 - Prior flat in positive BF
 - Prior flat in positive amplitude, i.e. flat in sqrt(BF)

November 1, 2006

	Central value	Statistical uncertainty	Systematic uncertainty	Theory
Muon mode (×10 ⁻⁶)	-1.33	+1.74 -2.20	+0.80 -0.87	0.03
Electron mode (×10 ⁻⁶)	0.11	+1.73 -2.13	+0.61 -0.59	0.08
Joint fit (×10 ⁻⁶)	-0.25	+1.33 -1.53	+0.60 -0.64	0.07

- As stated in the previous slide, the region is:
 - Lepton CM energy between 1.875 and 2.85 GeV
 - Photon CM energy between 0.45 and 2.35 GeV
 - Lepton-photon angle cosine less than -0.36

November 1, 2006

	Muon	Electron	Joint
Prior flat in BF	<2.10×10 ⁻⁶	<2.84×10 ⁻⁶	<2.25×10 ⁻⁶
Prior flat in amplitude	<1.47×10 ⁻⁶	<2.18×10 ⁻⁶	<1.71×10 ⁻⁶

Constraints on λ_B

- In the KPY model, we can obtain full BF measurements
- Use full BF UL to constrain λ_B , and:
 - |V_{ub}|: Use PDG 2006 result:
 - (4.31 ± 0.30)×10⁻³
 - **f**_B: HPQCD collab lattice result (2005):
 - 0.216 ± 0.22 (GeV)
- Paper will provide full BF results only for the joint fit

Mode (prior)	UL on full BF	Lower limit on λ_B (MeV)*
Muon (flat BF)	<5.2×10⁻ ⁶	>541
Muon (flat amp)	<3.7×10⁻ ⁶	>655
Electron (flat BF)	<5.9×10⁻ ⁶	>508
Electron (flat amp)	<4.5×10 ⁻⁶	>585
Joint (flat BF)	<5.0×10 ⁻⁶	>554
Joint (flat amp)	<3.8×10 ⁻⁶	>641

*Using central values for $|V_{ub}|$ and f_{B}

A Search for $B^0 \rightarrow I^+ I^- \gamma$

 SM BF prediction: 8(6)x10⁻¹⁰ for e(μ) mode

- G. Eilam, et al. Phys.Lett.B391:461-464,1997

- Reconstruct *B*⁰ candidate using lepton pair and a photon.
- Count number of signal events in a signal box of ΔE and m_{ES}
 - Background estimated from sideband areas.
 - Set world's first upper limit @ 90% CL:

BR(B⁰→e⁺e⁻γ) < 0.7×10⁻⁷ BR(B⁰→μ⁺μγ) < 3.4×10⁻⁷ ICHEP 06 (hep-ex/0607058)

November 1, 2006

Conclusions

- $B^+ \rightarrow l^+ v \gamma$:
 - Some of our BF UL's are tighter than the upper end of SM predictions
 - e.g. 3.7×10⁻⁶ for muon mode (flat amp prior)
 - Standard model BF predictions: 1-5×10⁻⁶
 - Future prospects (~1 ab^{-1}):
 - Our best BF stat. uncertainty (joint fit): ~3×10⁻⁶
 - At ~1 ab^{-1} , this would be ~1×10⁻⁶
 - Should be able to make a SM observation with a Super *B* factory data set
 - Generic two-photon MC generator?
- $B^0 \rightarrow l^+ l^- \gamma$:
 - First limits set for these decay modes
 - At ~1 ab^{-1} , expect limit to improve by a factor of 3

Backup slides follow here

November 1, 2006

Signal side variables

- In Y(4S) CM frame: take highest energy lepton and highest energy photon in event.
 - GL accuracy studies of signal show this selection yields: Correct electron 99% of time, correct photon 91%, both 90%
 - Slightly higher when analysis cuts are applied to the energies
- Signal lepton CM energy
- Signal photon CM energy
- $\cos \theta_{i\gamma}$: CM angle between lepton, photon
- cos θ_{BY}: implied angle between signal "B" and LP combo

Generator-level truth-matched electron-mode MC

- gLAT: lateral moment of signal photon shower shape
- Fiducial cut on photon lab angle

18

November 1, 2006

$\cos \theta_{BY}$

 p_{ly}

- θ_{BY} is the angle between the lepton-photon and the implied signal B:

$$\cos \theta_{BY} = \frac{(E_{\text{beam}}/2 - E_{\ell} - E_{\gamma})^2 - |\vec{p}_{\ell\gamma}|^2 - |\vec{p}_B|^2}{-2|\vec{p}_B||\vec{p}_{\ell\gamma}|}$$

November 1, 2006

Recoil B reconstruction

- After choosing signal lepton and photon, remaining particles are assigned to the recoil *B* candidate
 - Charged tracks: pion mass
 - Calorimeter clusters: photons
- Compute standard kinematic variables for this inclusively reconstructed *B*:
 - m_{ES}: Beam-constrained recoil *B* mass
 - $-\Delta E$: Total recoil *B* energy beam energy
 - Both of these variables are standard for exclusive analyses

Neutrino reconstruction

Neutrino reconstruction II

- Beam-constrained neutrino energy: $E_{nu} \equiv E_{beam} - (E_{LP})$
 - Compare with: $E_{miss} \equiv 2^*E_{beam} - E_{LP} - E_{recoil}$
- Δ_{EP} ≡ E_{nu} |scaled p_{nu}| is a useful variable for identifying the presence of a signal neutrino
 - Using scaled quantities yields improved resolution
- We require the reconstructed neutrino to point into the detector
 - Fiducial cuts on the lab polar angles of both the scaled and unscaled neutrino vectors.

November 1, 2006

Two-photon background

- Studies showed *excess* events in off-peak data vs. continuum MC (esp. in the electron mode)
 - Suspected to be predominantly from a high-multiplicity tail of two-photon events
 - Difficult to confirm precisely, or model, because we don't have a generic-two-photon generator

November 1, 2006

Two-photon background II

• Plan of attack:

- Define additional selection variables sensitive to qualitative characteristic features of two-photon physics
 - Longitudinal momentum imbalance, low overall invariant mass
 - · Use sidebands to study the effect
- In the signal extraction fit, use *off-peak* data to measure the contribution of continuum background in the *on-peak* data
 - Sacrifices considerable statistical precision due to low off/on-peak luminosity ratio (1 to 10)
 - In contrast:
 - » Continuum MC : ~1 to 1.5
 - » Generic B background: ~ 2-2.5 to 1
 - Also this means that our off-peak data was blinded as well!

Final cuts

Cut variable	Muon	Electron
Signal photon lab angle	[0.326,2.443]	[0.326,2.443]
Scaled neutrino lab angle	[0.3,2.443]	[0.3,2.443]
Unscaled neutrino lab angle	[0.3,2.443]	[0.3,2.443]
Signal lepton cos lab angle (+ charge)	(-1.0,0.78)	(-0.74,0.78)
Signal lepton cos lab angle (- charge)	(-1.0,0.78)	(-0.94,0.7)
cos (thrust angle)	<0.86	<0.98
R2 _{All}	<0.5	<0.5
Fisher discriminant (electron mode)		>-2.7
Fisher discriminant (muon mode)	>-2.8	
Cosine (lepton-photon angle)	>-0.36	<-0.42
Cosine (B-Y angle) (Y = lepton-photon)	(-1.05,1.0)	(-1.1,1.1)
Signal lepton CM Energy (GeV)	(1.875,2.775)	(2,2.85)
Signal photon CM Energy (GeV)	(0.45,2.35)	(0.65,2.35)
Signal photon shower shape lateral moment	<0.55	<0.55
Electron two-photon parameter		<2.34
Muon two-photon parameter	<2.88	
ΔE (GeV)	(-2.5,0.7)	<0.9
Signal photon π^0 veto region (GeV)	(<=116) (>=148)	(<=123) (>=147)
Δ_{EP}, m_{ES}	Fit	Fit

November 1, 2006

Monte Carlo sample breakdown

•In a "signal" region, # of exp. events (on-peak lumi):

Monte Carlo sample	Electron mode			Muon mode
Signal (BF = 3×10-6)	21.2	3% efficiency	13.1	1.9% efficiency
Total background	82.0		93.0	
Total exclusive $b \rightarrow u lv$	45.5		35.3	
$B^{0} \rightarrow \pi^{-} h_{V_{I}}$	1.5		1.5	
$B^{0} \rightarrow \rho^{-} h^{+} v_{I}$	6.5		6.4	
$B^{+} \rightarrow \eta \downarrow^{+} v_{\prime}$	12.6		12.9	
$B^{+} \rightarrow \eta' P_{V_{I}}$	0.4		0.1	
$B^{+} \rightarrow \omega / v_{i}$	0.7		1.2	
$B^{+} \rightarrow \pi^{0} \stackrel{h}{\sim} V_{I}$	23.2		12.9	
$B^{+} \rightarrow \rho^{0} h^{+} v_{i}$	0.7		0.3	
Other B background	22.4	0% fakes, 55% X_u lv, 40% b \rightarrow clv, 5% misc	21.7	32% fakes, 35% X_u lv, 33% b \rightarrow clv
СС	12.9	0% fakes	9.6	70% fakes
uds	1.3	0% fakes	26.4	91% fakes
τ+τ-	0.0		0.0	

November 1, 2006

Selection variable marginal distributions

Signal extraction fit V

- Unblinding: fit for the total measured event counts in each of the four regions
- Fit parameters:
 - Signal BF
 - Magnitude of generic *B* background, freely floated
 - Three SL BF's, constrained to measurements:
 - $B^0 \rightarrow \pi^0 l^{+} v_{l}, B^0 \rightarrow \rho^0 l^{+} v_{l}, B^{+} \rightarrow \eta l^{+} v_{l}$
 - The other four BF's are related by isospin and SU(3) factors
 - Continuum background scale is fixed.

28

Systematics results

Muon	Electron	Joint			
Multiplicative					
1.3%	1.3%	1.3%			
3.5%	2.2%	2.1%			
1.6%	1.6%	1.6%			
1.1%	1.1%	1.1%			
9.4%	9.4%	9.4%			
6.0%	5.0%	6.0%			
Additive (×10 ⁻⁶) [units of full BF]					
0.8	0.5	0.6			
0.7	0.3	0.4			
0.8	0.9	0.8			
1.1	0.5	0.7			
+1.74 _2.16	+1.28 -1.23	+1.34 -1.32			
	Muon Multipl 1.3% 3.5% 1.6% 1.1% 9.4% 6.0% Additive (×10-6) 0.8 0.7 0.8 1.1 +1.74 -2.16	MuonElectronMultiplicative 1.3% 1.3% 3.5% 2.2% 1.6% 1.6% 1.1% 9.4% 9.4% 9.4% 6.0% 5.0% Additive (×10-6) [units of full BF] 0.8 0.7 0.3 0.8 0.9 1.1 0.5 $+1.74$ -2.16			

November 1, 2006