Neutrino Flux Measurements in SNO's Phase III

> Sean McGee University of Washington for the SNO Collaboration

Neutrino Flux Measurements in SNO's Phase III

> Sean McGee University of Washington for the SNO Collaboration

Introduction

- What is SNO
- What is Phase III
- Signals and Backgrounds
- Preliminary Spectral Analysis
- Pulse Shape Analysis techniques being pursued
- Final days of SNO
- Future

Sudbury Neutrino Observatory

1000 tonnes D₂O

Support Structure for 9500 PMTs, 60% coverage

12 m Diameter Acrylic Vessel -

1700 tonnes Inner Shielding H₂O -

5300 tonnes Outer Shield H_2O –

2000 m below the surface (6000 m.w.e.)

Nucl. Inst. and Meth. A449, p172 (2000)

Sudbury Neutrino Observatory

1000 tonnes D₂O

Support Structure for 9500 PMTs, 60% coverage

12 m Diameter Acrylic Vessel -

1700 tonnes Inner Shielding H₂O -

5300 tonnes Outer Shield H_2O –

2000 m below the surface (6000 m.w.e.)

Nucl. Inst. and Meth. A449, p172 (2000)

V Reactions in SNO

e⁻

$$\frac{\mathbf{c}}{\mathbf{c}} \mathbf{v}_e + \mathbf{d} \rightarrow \mathbf{p} + \mathbf{p} + \mathbf{d} \mathbf{e}$$

- good measurement of v_e energy spectrum - some directional info $\propto (1 - 1/3 \cos \theta)$

- some unectional into $\propto (1 - 1/3 \cos \theta)$ - v_e only

NC
$$v_x + d \rightarrow p + n + v_x$$

- measures total ${}^8B \nu$ flux from the Sun - equal cross section for all ν types

ES
$$V_x + e^- \rightarrow V_x + e^-$$

- low statistics
- mainly sensitive to v_e , some v_μ and v_τ
- strong directional sensitivity

I. Pure D_2O

CC, ES, some NC $n + d \rightarrow t + \gamma \dots (E\gamma = 6.25 \text{ MeV}, \epsilon_n \sim 14\%)$ Nov. 2, 1999 to May 28, 2001 "strong evidence for flavor transformation of solar v_e "

I. Pure D_2O II. $D_2O+NaCI$

(2 tonnes dissolved salt)

CC, ES, some NC

CC, ES, enhanced NC n + ${}^{35}CI \rightarrow {}^{36}CI + \Sigma\gamma$

(E $_{\Sigma\gamma}$ = 8.6 MeV, $\epsilon_n \sim 41\%$ above threshold) isotropy of shower used for better NC event separation

I. Pure D_2O II. $D_2O+NaCI$

(2 tonnes dissolved salt)

CC, ES, some NC

CC, ES, enhanced NC n + ${}^{35}CI \rightarrow {}^{36}CI + \Sigma\gamma$

(E $_{\Sigma\gamma}$ = 8.6 MeV, $\epsilon_n \sim 41\%$ above threshold) isotropy of shower used for better NC event separation

$$\phi_{CC} = 1.68 \, {}^{+0.06}_{-0.06} (\text{stat.}) {}^{+0.08}_{-0.09} (\text{syst.})$$

$$\phi_{NC} = 4.94 \, {}^{+0.21}_{-0.21} (\text{stat.}) {}^{+0.38}_{-0.34} (\text{syst.})$$

$$\phi_{ES} = 2.35 \, {}^{+0.22}_{-0.22} (\text{stat.}) {}^{+0.15}_{-0.15} (\text{syst.})$$

(In units of $10^6 \,\text{cm}^{-2} \text{s}^{-1}$)

I. Pure D_2O II. $D_2O+NaCI$ III. $D_2O+NCDs$

(³He proportional counters)

CC, ES, some NC CC, ES, enhanced NC CC, ES, NC $n + {}^{3}He \rightarrow p + t$ $\epsilon_{n} \sim 26\%$

NC and CC signals uncorrelated (event by event separation)

I. Pure D_2O II. $D_2O+NaCI$ III. $D_2O+NCDs$

(³He proportional counters)

CC, ES, some NC CC, ES, enhanced NC CC, ES, NC $n + {}^{3}He \rightarrow p + t$

 $\varepsilon_n \sim 26\%$ NC and CC signals uncorrelated

(event by event separation)

Effectively a different experiment!

Neutral Current Detectors (cont.)

- NCD array:
 - 36 ³He (signal)
 - 4⁴He (control)
- ${}^{3}\text{He} + n \rightarrow {}^{1}\text{H} + {}^{3}\text{H}$ (Q = 764 keV)
- Primary background is α from surface Po and embedded U and Th

NCD Calibrations

- Multiple AmBe sources (67 n/s hottest)
- Rate cross-calibrated with known ²⁵²Cf source each calibration (know rate to < 1%)
- Point source effectively populates one region of NCD (z dependence)
- Used to calibrate the MC at discrete points
- MC is then used to determine the array efficiency

sample AmBe source run plan

NCD array deployed in a 1 x 1 meter grid

NCD Calibrations

- Multiple AmBe sources (67 n/s hottest)
- Rate cross-calibrated with known ²⁵²Cf source each calibration (know rate to < 1%)
- Point source effectively populates one region of NCD (z dependence)
- Used to calibrate the MC at discrete points
- MC is then used to determine the array efficiency

- Check MC and get neutron efficiency from dispersed source
- Injected 14 kBq ²⁴Na (overall NCD rate started at 0.3 Hz after mixing)
- 2.7 MeV γ photo-disintegrates deuteron
- 15 hr half-life
- Returned to normal running after 9 days

Spectral Analysis

- Neutron signal clearly evident
- Distribution of radioactivity affects the bkg spectrum in ROI
- 4 ⁴He strings to measure bkg
- May be able to improve S/B in ROI with Pulse Shape Analysis (PSA) techniques

Some NCD Pulse Shapes

neutrons

alphas

NCD PSA Paths

- Brute Force (slow)
 - Grid fit on library of real or MC pulses
 - Can use pulse energy to constrain grid region
 - Compare goodness of fit between α and n hypotheses
 - CPU intensive
 - Alpha data important

- Parameter Based (fast)
 - Use pulse parameters to distinguish signal from background
 - Collection Function method
 - Decision Tree method
 - Need large set of real pulses or MC to set cuts or train discriminators

Alpha data important

Both paths would produce pdf's of α or n likelihood.

NCD PSA Paths

- Brute Force (slow)
 - Grid fit on library of real or MC pulses
 - Can use pulse energy to constrain grid region
 - Compare goodness of fit between α and n hypotheses
 - CPU intensive
 - Alpha data important

- Parameter Based (fast)
 - Use pulse parameters to distinguish signal from background
 - Collection Function method
 - Decision Tree method
 - Need large set of real pulses or MC to set cuts or train discriminators

Alpha data important

Both paths would produce pdf's of α or n likelihood.

Of course, SNO also pursuing a CC analysis with PMT data!

Grid Fit (Brute Force Method)

- Libraries of neutron and alpha pulses are constructed
- Real data currently being used
 - -²⁴Na calibration runs for signal (27,000 events)
 - ⁴He string data for background (1,600 events)
- All pulses are normalized and re-binned
- Pulses are shifted to allow for different trigger positions
- Best χ^2 to each library is found

- Make 2D cut in χ^2 space
 - 76% of neutrons accepted
 - 84% of alphas rejected
- Improvement in signalto-background ratio in ROI

Collection Function Technique

- Derive avalanche signal due to ightarrowone electron
 - D(au)
- Model propagation of signal in the NCD (SPICE) $I[D(\tau), z]$
- Pulse shape is just sum of all ulletionization collected at anode

$$S(t) = \int_0^t C(\tau) I[D(t-\tau), z] d\tau$$

SPICE model

Collection Function Technique

$$S(t) = \int_0^t C(\tau) I[D(t-\tau), z] d\tau$$

Fit shape to extract C(τ)
 "Collection Function"

$$C(au) = \left\{egin{array}{cccc} 0 & : & au < t_0 \ a_1 + b_1 au & : & t_0 \leq au < t_1 \ a_2 + b_2 au & : & t_1 \leq au < t_2 \ 0 & : & t_2 \leq au \end{array}
ight.$$

Collection Function Technique

Fit shape to extract C(τ)
 "Collection Function"

- Investigate combinations of Collection Function parameters F(a₁,b₁,a₂,b₂) to optimize separation of signal and background
- Improved S/B in ROI

Discriminant (Boosted Decision Tree)

Motivation

- Decision trees promise better results than Fisher discriminants
- More transparent than Neural Nets
- Decision trees are a "majority vote" of a set of N yes/no cuts
- Promise (or claims):
 - Deal well with many input variables (>100)
 - Deal well with highly correlated variables
 - Less sensitive to training than a net
- Decision trees used by BaBar, D0, MiniBooNE, and now available in ROOT (I. Narsky's code available at: sourceforge.net/projects/statpatrec)

Figure 1: Schematic of a decision tree.

arXiv:physics/0508045

Boosting: feedback mechanism to boost the weights of misclassified training events. AdaBoost Decision Tree seems to be best classifier.

Discriminant (Boosted Decision Tree)

- Need large sample of signal and background to train discriminator
 - Neutrons are easy
 - Limited number of alphas
- Easy (for us) to get sample of ²¹⁰Po (surface) alphas
- Use pulse shape parameters as inputs:
 - Pulsewidth
 - "Risetime"
 - Moments (Skewness, Kurtosis)
- Classifier works well in this limited case
 - 99% neutron efficiency
 - 95% surface alpha rejection

Discriminant (Boosted Decision Tree)

- Need large sample of signal and background to train discriminator
 - Neutrons are easy
 - Limited number of alphas
- Easy (for us) to get sample of ²¹⁰Po (surface) alphas
- Use pulse shape parameters as inputs:
 - Pulsewidth
 - "Risetime"
 - Moments (Skewness, Kurtosis)
- Classifier works well in this limited case
 - 99% neutron efficiency
 - 95% surface alpha rejection
- Classifier trained with predominantly surface alphas still discriminates real data well
- Should improve with large sample of embedded alphas

The "Yale α Sample"

- Conceived and organized by MIT collaborators
- 4 days of data-taking: April 24-27, 2006
- Was necessary to etch NCD to get adequate wall thickness
- Varying orientation and tilt to simulate alpha emission from wall
- Covered entire energy range necessary (100 keV few MeV)
- Large sample $(10^5 \alpha' s)$
- Can be used to augment α sample or confirm α MC

Wright Nuclear Structure Lab

Summary

• PSA methods being refined, but early results show good signal-to-background improvement

SNO Schedule

- Data-taking to be completed at the end of November 2006.
- NCD removal would commence shortly thereafter.
- Over 400 days of live-time will have been logged in Phase III.
- Heavy water returned to Canadian government throughout 2007.

- Outgrowth of the highly successful SNO project
- Proposal in 2001
- Funding in 2002

- Groundbreaking 2004
- Occupancy 2005
- Underground
 - Tunneling commenced Nov 2004
 - Completion (wait for it)

SNOLAB Workshop V, 21 August 2006

SNOLAB

Phase I

Existing SNO Facility

> Relocate -Lab Entry -Personnel Facilities

→

Outfitting is expected to

begin early 2007

SNOLAB

Phase I

Existing SNO Facility Phase II

Funding decision expected shortly

Relocate -Lab Entry -Personnel Facilities