The near Detectors (ND280) of the T2K neutrino long baseline experiment

Thomas Kutter , LSU

APS + JPS 2006 Meeting Hawaii, November 1, 2006

Outline

- Neutrino Physics introduction
- Overview of the T2K physics
 - experiment + measurements
- The T2K near detectors
 - On-axis detector
 - Off-axis detector
- Summary and Outlook

Neutrino mixing

Mixing	Quarks	Leptons
1-2 θ ₁₂	13 °	32 °
2-3 θ_{23}	2.3 °	45 °
1-3 θ ₁₃	~ 0.5°	<12°

Physics Motivation

- Sizes of neutrino mixing angles $\theta_{\text{23}}, \theta_{\text{13}}, \delta$?
 - Symmetry of 2nd and 3rd generation?
 - E.g. how close is θ_{23} to $\pi/4$?
 - How small is the mixing of 1st and 3rd generation?
 - Does $\nu_{\mu} \rightarrow \nu_{e}$ exist ? Does ν_{3} contain ν_{e} ?
 - Do sterile neutrinos exist?
 - + Fraction in disappearance of ν_{μ}
 - How large is the phase δ ?
 - CP violation in the neutrino sector?
 - What does the v mass hierarchy look like?
 - How large are matter effects ?
- High precision measurements to look for unexpected

Measurements

Oscillation Probabilities $\Delta m_{12}^2 \ll \Delta m_{23}^2 \approx \Delta m_{13}^2$

• v_{μ} disappearance $P(v_{\mu} \rightarrow v_{\mu}) \approx 1 - \cos^{4}\theta_{13} \sin^{2}2\theta_{23} \sin^{2}(1.27\Delta m_{23}^{2})/E_{\nu})$

Measurements

Oscillation Probabilities $\Delta m_{12}^2 \ll \Delta m_{23}^2 \approx \Delta m_{13}^2$ • v_{μ} disappearance $P(v_{\mu} \rightarrow v_{\mu}) \approx 1 - \cos^4 \theta_{13} \sin^2 2\theta_{23} \sin^2(1.27 \Delta m_{23}^2)/E_{\nu})$ • v_e appearance $P(v_{\mu} \rightarrow v_e) \approx \sin^2 \theta_{23} \sin^2 2\theta_{13} \sin^2(1.27 \Delta m_{13}^2)/E_{\nu})$

Measurements

 $\begin{array}{ll} \textbf{Oscillation Probabilities} & \Delta m_{12}^{2} << \Delta m_{23}^{2} \approx \Delta m_{13}^{2} \\ \bullet \ v_{\mu} \ \textbf{disappearance} \\ P(v_{\mu} \rightarrow v_{\mu}) \approx 1 - \cos^{4} \theta_{13} \sin^{2} 2\theta_{23} \sin^{2}(1.27 (\Delta m_{23}^{2}) / E_{\nu}) \\ \bullet \ v_{e} \ \textbf{appearance} \\ P(v_{\mu} \rightarrow v_{e}) \approx \sin^{2} \theta_{23} (\sin^{2} 2\theta_{13} \sin^{2}(1.27 (\Delta m_{13}^{2}) / E_{\nu})) \end{array}$

•
$$\delta \mathcal{P}$$
 in v_e appearance

$$A_{CP} = \frac{P(v_\mu \to v_e) - P(\overline{v}_\mu \to \overline{v}_e)}{P(v_\mu \to v_e) + P(\overline{v}_\mu \to \overline{v}_e)} \approx \frac{\Delta m_{12}^2 \sin 2\theta_{12}}{4 E_v \sin \theta_{13}} \sin \delta$$

T2K strategy

→ Narrow energy spectrum Choose E_v at oscillation maximum for L \approx 300km

T2K strategy

 \rightarrow Narrow energy spectrum Choose E, at oscillation maximum for L \approx 300km

Sub-GeV v suited for water Cherenkov detection dominated by CC-QE: $v + n \rightarrow \mu + p$ Good E, reconstruction; μ , e identification

Intrinsic background: v_e / v_μ (peak) ~ 0.002

T2K Overview

• Muon monitors at ~ 140m

 \rightarrow spill-by-spill monitoring of π beam direction and intensity

- Near detector at ~ 280m
 - \rightarrow 0° definition
 - \rightarrow E_v, π^0 production
- Intermediate detector at ~ 2km (possible future extension)
 → ultimate systematics
- Far detector at 295 km
 → Super-Kamiokande (50 kton)

JPARC

	T2K	K2K	NUMI
E (GeV)	50	12	120
Int. (10 ¹² ppp)	330	6	40
Rate (Hz)	0.29	0.45	0.53
Power (MW)	0.75	0.005	0.41

400 MeV Linac (200 MeV) 1 MW 3 GeV RCS 0.75 MW 50 GeV MR (30GeV)

~1×10²¹ pot/year

T2K Collaboration

11 countries, 58 institutions, ~200 collaborators

NEUT: Neutrino interaction MC

- \bullet Info from CC-QE lepton enough to obtain ${\rm E}_{_{\rm V}}$
- backgrounds: CC single π events where π is missed (e.g. below threshold) \rightarrow smears out E spectrum
- π^0 production and only one photon is detected

Sensitivity

 v_e appearance

dominant background sources:

- beam v_e contamination
- NC single π° production

Assume: $5 \times 10^{21} \text{ POT} \quad \Delta m_{23}^2 = 2.5 \times 10^{-3} \quad \sin^2 2\theta_{23} = 1$ Sin² $2\theta_{13} \approx 0.01$ sensitivity (90% C.L.) requires <10% in background uncert.

$$\delta_{CP} = 0$$

$$\delta_{CP} = \pi/2$$

$$\delta_{CP} = -\pi/2$$

$$\delta_{CP} = \pi$$

Requirements for Near Detectors

- Basic Idea: Predictions of v flux and interactions at far Detector
- Neutrino spectrum at far detector is predicted based on neutrino spectrum at ND280 and corrections (Far/Near ratio)
- Measurements of neutrino interactions in water target
- Profile of v beam \rightarrow determination of off-axis angle (on-axis detector)
 - Neutrino beam direction accuracy <<1 mrad
- $\cdot v_{\mu}$ and v_{e} fluxes, charged current processes (tracking detectors)
 - v_{μ} $n \rightarrow \mu^{-}$ p CCQE $E_{\mu} \leq 1GeV$, $\theta_{\mu} = 0 180 \text{ deg}$
 - Muon momentum scale uncertainty 2%
 - Fermi motion \rightarrow Muon momentum resolution 10%
 - Neutrino flux measurement at ND280 with accuracy 5%
 - μ +/ μ identification
- backgrounds
 - π^0 production cross sections (Pi-Zero, Ecal)
 - Measurement of v_e contamination with 10% uncertainty
 - Detection of recoil protons
 - · Charged pion measurement

ND280m On Axis Detector

10m

purpose: monitor direction of v beam with v on daily basis
Precission: required < 1mrad (=2% in E_v); simulated performance: ~0.1 mrad Vield, Profile, Longterm stability
⇒ robust, stable and massive neutrino monitor to cover a wide region of the beam profile
Technology: sandwiched tracking scintillator and iron planes, surrounded by veto; ~8 tons → ~10000 events per day after cuts

ND280m Off-axis Detector

Tracker: Fine Grained Detector (FGD)

- **Purpose:** measure v beam flux, E_v spectrum, flavor composition through CC v-interactions, backgrounds CC-1 π
- Two FGD's (based on K2K Scibar design)
- 1st: x-y layers of scintillators (~1 ton)
- 2nd: passive water layers (~0.4 tons) interspersed with x-y scintillator layers (~0.55 tons)

- Size of FGD 1: 30 layers of 192 scintillator bars each with 1cm × 1cm scintillator bars with 1mm diameter V11 WLS fiber
 2: 7 x-y layers alternating with 2.5cm thick water layers
 Total weight 1.0 ton/FGD
 0.3 m → to make particles get out of FGD into TPC, especially
- for pions, to measure their momentum before interacting with materials
- Cell size 1 cm ; particle ID from dE/dx lower particle detection threshold for protons down to 200 MeV/c Readout WLS fiber Y11, one end by multi-pixel Si APD's Electronics accept late hits from Michel e-
- Possible future upgrade: water-based scintillator

Tracker: Time Projection Chamber (TPC)

Purpose: measure charged particle momenta, particle ID via dE/dx, measure backgrounds/pion cross section
 3 Ar gas TPC modules: 2.5m × 2.5 m × 90 cm Target: FGDs
 Precission 10% momentum resolution at ~1GeV → space point resolution
 requirements: 2% in muon momentum scale (main systematics in v_µ disappearance)
 <10% for dE/dx measurement

Gas amplification Micromegas

- 6 read-out planes (0.6×2.5 m²)
- Total drift distance 1.25 m
- B=0.2 T E=200V/cm
- Pad size: 0.6 to 0.8 cm
- ~100k channels

Pi-Zero Detector (P0D)

16 cm

Х

30 mm

WLS fibers

- thin (0.6 mm) lead sheets

Electromagnetic CALorimeter (ECAL)

Purpose: π^0 reconstruction around tracker, charge particle ID and reconstruction

- 3 ECAL parts: all are sandwich lead and scintillator (10mm) layers
- 1. around tracker: 32 active, 31 Pb layers (1.8mm), 28.5 tons, ~10X₀
- 2. Around POD: coarser segmentation; 6 active, 5 Pb layers(5mm); 4.5 X₀
- 3. Downstream: 50cm thick; 34 active layers, 33 Pb layers ; 4.2 tons; ~10X₀

Dimensions:

Scintillators with central and embedded S-shape Type fiber readout: micro-pixel Si APDs

Side Muon Range Detector (SMRD)

Purpose: measure momentum for lateral muons, provide trigger on cosmic rays Magnet yoke: 17x870x700 mm³ air gaps between iron plates

SMRD: ~5 layers of gaps instrumented with scintillator slabs; ~3000 slabs

 \rightarrow range out ~95% of lateral muons S-type configuration for fiber readout

S-shape grooves Depth 4 mm Length ~ 2.5 m Y11, double clad,1mm diameter readout: micro-pixel Si APDs on both ends

Photosensors

ND280m: ~ a few 10⁵ m WLS fibers \rightarrow > 10⁵ photosensors Individual fiber readout, magnetic field and limited space Compact multi-pixel Si APD's operating in limited Geiger mode

> MPPC (Hamamatsu, Japan) 100/400 pixels

MRS APD (CPTA, Moscow) 556 pixels

1.0-1.2 mm² Active area Gain ~106 PDE 10-16% Bias voltage 25-70 V Dark rate \leq 1MHz (th = 0.5 p.e.)

Photosensors

Heat test at 80°C

MRS APD

Summary + Outlook

- Overview of physics of T2K experiment
- Physics of near detector (ND280)
- Near detector design and technology
 - On-axis
 - Off-axis: various components

<u>Schedule</u>

Beam line construction started in April 2004 Start of ND280m detectors manufacturing ND280 hall construction start UA1 magnet installation 50 GeV MR commissioning Complete ND280 building Begin installation of ND280 detectors Neutrino beam line + ND280 commissioning T2K physics run on schedule winter 2006/2007 April 2007 May 2008 2008 December 2008 January 2009 April 2009 2009