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“Most” of the time,  details of b quark wavefunction 
are unimportant - only averaged properties (i.e.       ) 
matter “Fermi motion”

Theorists love inclusive decays ...
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Decay:  short distance (calculable)
Hadronization:  long distance 
(nonperturbative) - but at leading order, 
long and short distances are cleanly 
separated and probability to hadronize is 
unity

... the basic theoretical tools are more than a decade old 

= {π, K, ...}
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Exclusive semileptonic decays on the lattice

provide good determinations of CKM matrix elements.

Tune Vub to get correct B➞πlν.

The global CKM fit: results!
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Outline  
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• Overview of Fermilab/MILC semileptonic program

• Constrained curve fitting

• Constrained curve fitting and the shape of semileptonic 

form factors.
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Current Fermilab/MILC semileptonic projects and writeups.
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D➔{π,K}lν Phys. Rev. Lett. 94:011601, 2005 

B➔Dlν Okamoto, Lattice 05

B➔D*lν Laiho, Lattice 06

B➔πlν Masataka Okamoto, Lattice 05
Van de Water, Lattice 06

B➔Kl+l- Jain, Lattice 06
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Table 1: Available MILC fine, coarse and medium-coarse gauge configurations. The pion masses
on the fine and coarse lattices are given in Ref. [11]. Data from the medium-coarse lattices has not
yet been analyzed, however, we were able to measure the pion masses corresponding to the heaviest
two valence quark masses with propagators stored at FNAL. The remaining three medium-coarse
pion masses are estimates based upon the heavier masses and the behavior on the coarse lattices.

approx.
a(fm) L ml ms mπ(MeV) # configs.
0.09 40 0.0031 0.031 — 600
0.09 28 0.0062 0.031 336 600
0.09 28 0.0124 0.031 467 600
0.125 24 0.005 0.05 254 600
0.125 20 0.007 0.05 300 800
0.125 20 0.01 0.05 357 800
0.125 20 0.02 0.05 494 600
0.125 20 0.03 0.05 600 600
0.125 20 0.04 0.05 – 600
0.125 20 0.05 0.05 – 600
0.15 20 0.00484 0.0484 212 600
0.15 16 0.0097 0.0484 327 600
0.15 16 0.0194 0.0484 453 600
0.15 16 0.0290 0.0484 550 600
0.15 16 0.0484 0.0484 700 600

3

Fine

Coarse

Long-term plan is to analyze all of these on the 
MILC lattices with a=0.15, 0.125, and 0.09 fm.
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B->D* RUN PARAMETERS:

Fine Lattices:

  Coming soon

Coarse Lattices:

t_sink - t_source = 12
t_source = 0, 16, 32, 48 
smeared heavy clover daughter quark
local heavy clover parent quark
local staggered spectator quark
full QCD only
heavy kappas = (0.074, 0.086, 0.093, 0.119, 0.114, 0.122)

Medium-Coarse Lattices:

t_sink = 10?
t_source = 0, 24 (also 12, 36?)
full QCD only

AVAILABLE 3pt DATA:

Coarse Lattices:

0.02/0.05 ensemble -- t_source = 0, 16, 32, 48
0.01/0.05 ensemble -- t_source = 0, 16, 32, 48
0.007/0.05 ensemble -- t_source = 0, 16, 32, 48

Medium-Coarse Lattices:

0.0194/0.0484 ensemble (In progress) 
0.0290/0.0484 ensemble (In progress)

Staggered chiral PT, 
Laiho and Van de Water, 

Phys. Rev. D73:054501, 2006

Laiho, Lattice 06

Currently working on a run at 
a=0.15 fm, to obtain an estimate of 
discretization errors, before moving 
on to a=0.09 fm.

b c
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B->pi RUN PARAMETERS:

Coarse Lattices:

t_sink = 12
t_source = 0, 32 (also 16, 48?)
local pion
smeared B
full QCD only

Medium-Coarse Lattices:

t_sink = 10?
t_source = 0, 24 (also 12, 36?)
local pion
smeared B
full QCD only

AVAILABLE 3pt DATA:

Coarse Lattices:

0.02/0.05 ensemble -- t_source = 0, 16, 32, 48
0.01/0.05 ensemble -- t_source = 0, 32
0.007/0.05 ensemble -- t_source = 0, 32

Medium-Coarse Lattices:

0.0194/0.0484 ensemble -- t_source = 0,32 @ t_sink = 12; t_source = 0 @ t_sink = 8,10 
0.0290/0.0484 ensemble -- t_source = 0 @ t_sink = 8,10,12

Van de Water, Lattice 06

Currently working on a run at a=0.15 
fm, to obtain an estimate of 
discretization errors, before moving 
on to a=0.09 fm;
studying optimal ways of performing 
unitarity-based fits (see later).
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B→ K!+!− from Lattice QCD
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Figure 1: Penguin diagrams contributing to B→ K!+!−

1. Introduction

As flavor-changing neutral current processes, rare decays provide for precision tests of the

Standard Model. The rare semi-leptonic decay B→ K!+!−, in particular, is interesting as it tests

the SM in the b-sector and because its total branching fraction has recently been measured. Belle

has found [1] that B(B→ K!+!−) = (0.75± 0.35)× 10−6. Additionally, a determination of the

differential decay rate for this process, which is essential for a precision comparison with SM

theory, should soon be within the reach of the current generation of B factories.

2. Continuum Theory

The leading-order contributions to the B→ K!+!− rate come from the electroweak penguin

diagrams shown in Figure 1. Carrying out an operator product expansion yields effective hamilto-

nians for b→ !s and b→ Zs transitions given by [2]
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where the F(xi)’s are known functions of xi≡m2
i /m

2
W . Hence, the hadronic matrix elements needed

for B→ K!+!− are 〈B |!! |K 〉 and 〈B |% !&q& |K 〉. These have the standard parameterizations
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where f+, f0, and fT are form factors which depend on q2 and for which we seek a lattice prediction.
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Jain, Lattice 06

Standard Model effects are small.  
(Proceed through penguins.)  
Possibility of seeing Beyond-the-
Standard-Model effects?
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New operators and form factors in 
the Standard Model.
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Figure 4: Form factors contributing to B→ !+!−

8. Conclusion and Outlook

Though our analysis is still being developed, the above work demonstrates a potentail frame-

work for making a lattice prediction of the form factors leading to B→ K!+!−. The first step in

improving our analyis will be to study the systematic errors introduced by fitting. We plan to study

in detail the robustness of our procedure, as well as to explore alternate methods such as fitting

to ratio of correlators as has been done elsewhere in our collaboration. It is hoped that by using

multiple time-sources, as well as combining smeared and unsmeared data, we can reduce the sta-

tistical noise in our data, allowing us to better constrain excited states and to improve the quality

of our fits. This analysis will also need to be repeated on other MILC ensembles so that we can

study the lattices spacing and light-quark mass dependence of our results. Additionally, we will

need to include the perturbative corrections to the relevant matrix elements, and perform a chiral

extrapolation down to the physical light quark mass.

6
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We also perform model-independent one-dimensional (y) fits where the data in every of the
100 q2/m2

π bins were fitted independently. The resulting distribution is shown in Fig.6. The
normalization f+(0) = 1 is assumed. The visible non-linearity can be observed in Fig.7, where
the ratio f+(t)/f+(0)/(1 + λ+q2/m2

π) is presented. The parabolic curve represents the fit with
the quadratic non-linearity in the form-factor.
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Figure 6: The value of f+(t)/f+(0) obtained
in the model-independent fits.
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Figure 7: The value of
f+(t)/f+(0)/(1 + λ+q2/m2

π). The fit with
non-linear contribution is shown.

This non-linearity can not be explained by a possible scalar contribution (that also results
in the enhancement of the number of events at large values of q2). The row 4 of the Table
1 represents a search for the scalar term with the vector form-factor set to be linear. The
resulting value of fS/f+(0) is compatible with zero.

We also perform a model-independent fit to extract simultaneously f+(t) and fS(t). The
resulting distribution for the value fS(t)/f+(0) is shown in Fig.8. The value of the scalar
contribution is compatible with zero with strong enhancement of the errors at small values of
t. This enhancement is explained by the dependence of the scalar contributions (Eq. 2) on the
Dalitz variables. One can observe that the leading term |S|2 is proportional to t and vanishes
at t → 0.

The last row of the Table 1 represents a fit with both scalar contribution and the quadratic
term in the vector form-factor.

We also do not see any tensor contribution in our data (rows 3 and 5 in the Table 1).

6

!ISTRA

K → π"ν D → π"ν B → π"ν

Lattice data extend 
over only a fraction 
of the q2 range on 
the physical 
B➙πlν decay.

With standard 
methods, 
discretization errors 
go like O(ap)2,

signal goes like 
exp(-Eπt).

Proposals to address:

*) Moving NRQCD (Davies, Lepage, et 
al.) 

*) Calculate in charm region, extrapolate 
to bottom (Abada et al.)

*) Gibbons: global simultaneous fit of all 
experimental and lattice data.

*) Unitarity and analyticity (Lellouch, 
Fukunaga-Onogi, Arnesen et al., 
Becher-Hill, ...) 

Uncertainties in lattice and 
experiment both highly q2 dependent.
Harder and more important to 
understand shape.
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in the enhancement of the number of events at large values of q2). The row 4 of the Table
1 represents a search for the scalar term with the vector form-factor set to be linear. The
resulting value of fS/f+(0) is compatible with zero.

We also perform a model-independent fit to extract simultaneously f+(t) and fS(t). The
resulting distribution for the value fS(t)/f+(0) is shown in Fig.8. The value of the scalar
contribution is compatible with zero with strong enhancement of the errors at small values of
t. This enhancement is explained by the dependence of the scalar contributions (Eq. 2) on the
Dalitz variables. One can observe that the leading term |S|2 is proportional to t and vanishes
at t → 0.

The last row of the Table 1 represents a fit with both scalar contribution and the quadratic
term in the vector form-factor.

We also do not see any tensor contribution in our data (rows 3 and 5 in the Table 1).
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!ISTRA

K → π"ν D → π"ν B → π"ν Always have to make some 
assumptions about shape to obtain 
any fit.

If any crazy shape were allowed, 
we could never fit anything.

Constrained curve fitting allows the possibility of  an infinite 
number of free parameters in fits, while formalizing 
assumptions about their values.
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Figure 5. A constrained fit to a local-local B me-
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quark propagators. The energies of the three
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The statistical errors in the data points are too
small to be resolved in the plot.

by G.
We begin with two assumptions. The first is

that the Monte Carlo data set is sufficiently large
that G has Gaussian statistics (Central Limit
Theorem). Then the probability density for ob-
taining a particular G given a particular theory,
specified by ρ, is

P (G|ρ) ∝ e−χ2(ρ)/2 (9)

where χ2 is defined as in Eq. (2).1

What we need ultimately is the probability that
a particular set of parameters ρ is correct given
the Monte Carlo data— that is, we need P (ρ|G),
not P (G|ρ). P (ρ|G) is connected to P (G|ρ) by
Bayes Theorem:2

P (ρ|G) =
P (G|ρ)P (ρ)

P (G)
∝ P (G|ρ)P (ρ). (10)

1This is not strictly correct since the correlation matrix
σ2

t,t′
in χ2 will in general depend upon ρ, while in practice

we use a fixed Monte Carlo estimate of it.
2This formula follows from the trivial identity for proba-
bilities: P (ρG) = P (G|ρ) P (ρ) = P (ρ|G)P (G).

Here P (G) is the probability of obtaining a par-
ticular G from any theory; it is ρ independent.
More important is P (ρ) which is the probability
that a particular set of parameters ρ is correct in
the absence of any new data. It contains what
we know about the parameters before we begin
the fit. This is called the “prior” distribution, or
simply the prior.

Our second assumption is that the prior distri-
bution can be approximated by the Gaussian

P (ρ) = e−χ2
prior(ρ)/2 (11)

where χ2
prior is defined as in Eq. (6). The a priori

assumption therefore is that ρi ≈ ρ̃i ± σ̃ρi
. With

this assumption our final probability function is

P (ρ|G) ∝ e−χ2
aug(ρ)/2 (12)

where χ2
aug is the augmented χ2 introduced in

Section 2.2.
The choice of a Gaussian for the prior distribu-

tion is arbitrary; other choices might well be ap-
propriate. There is, however, an argument that
suggests Gaussians. Beyond specifying an aver-
age value for each parameter and a standard de-
viation, we want the prior distribution to be as
unbiased as possible. In general the least biased
choice for a probability density is the one that
minimizes the information content, or, equiva-
lently, maximizes the entropy,

S ≡ −
∫

P (ρ) log P (ρ) dρ. (13)

Given the constraints 〈ρ〉 = ρ̃ and 〈ρ2〉 − 〈ρ〉2 =
σ̃2, a simple variational calculation shows that
the entropy is maximized by the Gaussian

P (ρ) =
1√
2πσ̃

e−(ρ−ρ̃)2/2σ̃2

. (14)

This argument is less compelling than it seems,
however, because it relies upon the implicit (and
arbitrary) assumption that all ρ’s are equally
likely in the absence of any information about the
mean or standard deviation. A different parame-
terization implies a different assumption.

3.2. Error Estimation
Given P (ρ|G) we can compute everything we

want to know using integrals; in principle no min-
imization is needed. For example, we obtain a
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by G.
We begin with two assumptions. The first is

that the Monte Carlo data set is sufficiently large
that G has Gaussian statistics (Central Limit
Theorem). Then the probability density for ob-
taining a particular G given a particular theory,
specified by ρ, is

P (G|ρ) ∝ e−χ2(ρ)/2 (9)

where χ2 is defined as in Eq. (2).1

What we need ultimately is the probability that
a particular set of parameters ρ is correct given
the Monte Carlo data— that is, we need P (ρ|G),
not P (G|ρ). P (ρ|G) is connected to P (G|ρ) by
Bayes Theorem:2

P (ρ|G) =
P (G|ρ)P (ρ)

P (G)
∝ P (G|ρ)P (ρ). (10)

1This is not strictly correct since the correlation matrix
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in χ2 will in general depend upon ρ, while in practice

we use a fixed Monte Carlo estimate of it.
2This formula follows from the trivial identity for proba-
bilities: P (ρG) = P (G|ρ) P (ρ) = P (ρ|G)P (G).
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and quark masses that will minimize the errors in
a large-scale simulation.

2. CONSTRAINED FITS

2.1. The Problem
The central problem is illustrated by the analy-

sis of a meson correlator. Simulations generate a
Monte Carlo estimate, G(t), of the correlator for
a finite number of time steps, say t = 0, 1 . . .23.
Theory tells us that the exact correlator has the
form

Gth(t; An, En) =
∞
∑

n=1

An e−Ent, (1)

where we assume that the energies En are in or-
der of increasing size. The challenge is to fit an
infinite number of amplitudes An and energies En

using only 24 G(t)’s.
Traditional fits minimize χ2(An, En) by vary-

ing An and En, where

χ2(An, En) ≡
∑

t,t′

∆G(t) σ−2
t,t′ ∆G(t′), (2)

and

∆G(t) ≡ G(t) − Gth(t; An, En). (3)

The correlation matrix is estimated from the
Monte Carlo:

σ2
t,t′ ≡ G(t)G(t′) − G(t) G(t′). (4)

Unfortunately this fitting procedure is singular
here since there are more fit parameters, An and
En, than data; the final uncertainties in the fit
parameters are infinite. Additional information
is needed if we are to proceed.

The information we normally add is that the
An’s are well behaved, and therefore contribu-
tions from high-energy states are suppressed at
large t by the exponentials in the correlator,
Eq. (1). Thus there is a tmin above which only
the first one or two terms in Gth make statisti-
cally significant contributions. The standard pro-
cedure therefore is to retain, say, only the first two
terms in Gth and to fit them using only Monte
Carlo results from t ≥ tmin. The trick is to find
the best tmin. Choosing tmin too small biases the
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Figure 1. Fit values for the lowest two energies
from a 2-term fit to a local-local Υ correlator
using different tmin’s. The correct values, from
other analyses, are indicated by the dotted lines.

En’s and An’s away from their true values, in-
troducing systematic errors (because two terms
is not enough in Gth). Choosing tmin too large
gives statistical errors σEn

and σAn
that are too

large, since useful data is discarded. One typi-
cally tries to increase tmin until the statistical er-
rors mask any possible systematic error. Without
a reliable quantitative estimate of the systematic
error, however, any procedure for setting tmin is
necessarily ad hoc.

To illustrate the dependence on tmin, we plot
results for E1 and E2 from 2-term fits with var-
ious tmin’s in Fig. 1. The Monte Carlo data for
these fits was obtained by averaging 840 Υ corre-
lators evaluated at (quenched) β = 6 with local
sources and sinks [2]. The competition between
large systematic errors for small tmin and large
statistical errors for large tmin is particularly ap-
parent for E2 in this plot.

2.2. A Solution

Our goal should be to fit all the Monte Carlo
data (tmin = 0) using as many terms as we wish
in Gth. As we add more terms to Gth, how-
ever, the errors on the leading parameters grow
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Figure 2. Fit values for the two lowest energies
from unconstrained fits with different numbers of
terms in Gth. The correlator is a local-local Υ
correlator and is fit for all t’s.

steadily in a traditional analysis, as is evident in
Fig. 2. The reason is easily understood. The
large uncertainties in E1 and E2 for the 8-term
fit, for example, result because the parameters
for higher-energy states are poorly constrained by
the data and therefore wander off to unphysical
values. Thus amplitude A4 ranges between five
and ten times A1 in the 8-term fit, while quark
models suggest that A4 is of order A1 or smaller.
Since the allowed range for A4 affects the error
estimates for other parameters, the errors on E1

and E2 will be unreasonably large so long as the
fitting code assumes that A4 ≈ 10A1 is plausible.
We need some way to teach physics to the fitting
code.

To constrain fit parameters to physically rea-
sonable ranges, we augment the χ2 before mini-
mizing:

χ2 → χ2
aug ≡ χ2 + χ2

prior, (5)

where

χ2
prior ≡

∑

n

(An − Ãn)2

σ̃2
An

+
∑

n

(En − Ẽn)2

σ̃2
En

. (6)

The extra terms in χ2
aug favor An’s in the inter-
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Figure 3. Fit values for the two lowest energies
from constrained fits with different numbers of
terms in Gth. The correlator is a local-local Υ
correlator and is fit for all t’s.

val Ãn ± σ̃An
and En’s in Ẽn ± σ̃En

. The Ãn’s,
σ̃An

’s . . . are inputs to the fitting procedure. We
choose reasonable values for them on the basis of
prior knowledge. This set of input parameters is
referred to collectively as the “priors.”

Having chosen the priors, the procedure for a
constrained fit is to minimize χ2

aug fitting all of
the Monte Carlo data (tmin = 0). The number of
terms in Gth is increased until fit results converge
for the parameters of interest. Unlike tmin, the
number of terms in Gth need not be optimized; it
is simply increased until results converge. This is
illustrated by fit results for E1 and E2 from our
Υ data, which are plotted in Fig. 3 for fits with
different numbers of terms.

The numerics are greatly improved by the con-
straints. For example, one can easily fit 100 terms
in Gth to the Υ data, even though there are only
24 data points. The fit results for all but the first
few parameters simply reproduce the prior infor-
mation in such a highly overparameterized fit.

The error estimates for the fit parameters in
our Υ fits automatically combine both the sta-
tistical errors in the Monte Carlo data, and the
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is simply increased until results converge. This is
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The numerics are greatly improved by the con-
straints. For example, one can easily fit 100 terms
in Gth to the Υ data, even though there are only
24 data points. The fit results for all but the first
few parameters simply reproduce the prior infor-
mation in such a highly overparameterized fit.

The error estimates for the fit parameters in
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Bayes formula:

Probability of your data 
given the fit parameters.

Likelyhood of fit parameters 
before doing the calculation.

Add an infinite number of parameters to the fit 
function, but constrain them to their plausible ranges.

Use “augmented” chi squared:

Likelyhood of fit parameters 
given your data.
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A nice ansatz, the Becirevic-
Kaidalov parameterization:

µ. We calculate the form factors f+,0 as a function of q2, and then extract the CKM matrix

element |Vij| by combining our result with the experimental decay rate
∫ q2

max

q2
min

dq2 (dΓ/dq2)

with q2
max = (mH −mP )2.

For the convenience of future experimental and phenomenological analyses, we present
the results for form factors in terms of the parametrization of Becirevic and Kaidalov [16]
(referred to below as BK),

f+(q2) =
F

(1− q̃2)(1− αq̃2)
, f0(q

2) =
F

1− q̃2/β
, (3)

where q̃2 = q2/m2
H∗ and {F, α, β} are free parameters. The BK parametrization incorporates

most of the known constraints on form factors including the kinematic constraint f+(0) =
f0(0), heavy quark scaling laws predicted by effective theories, and the position of the first
pole at q2 = mH∗ for f+. A disadvantage of the BK parametrization is that it contains
only three parameters, which may be too limiting. Although we need further study to
understand its validity and limitation, recent experimental results for the q2 dependence
of the form factors for the D → Klν decay [17] and B → πlν decay [18] as well as our
numerical data fit the BK parametrization well, suggesting that it is sufficient with present
accuracy.

We obtain

FB→π = 0.23(2)(4), αB→π = 0.63(5)(10), βB→π = 1.18(5)(7), (4)

for the B → πlν decay, and

FD→π = 0.64(3)(6), αD→π = 0.44(4)(7), βD→π = 1.41(6)(13), (5)

FD→K = 0.73(3)(7), αD→K = 0.50(4)(7), βD→K = 1.31(7)(13), (6)

for the D → πlν and D → Klν decays [5], where the first errors are statistical and the
second systematic. Our results for D decays agree well with recent experimental results for
both the normalization at q2 = 0 [19, 20] and the q2 dependence [17]. This lends credibility
to our result for B → πlν.

The CKM matrix elements are then obtained by integrating |f+(q2)|2 over q2 and using
experimental decay rates in Refs. [1, 21, 22]. For |Vub| we use a combined average of the
decay rate of B → πlν for 16 GeV2 ≤ q2 ≤ q2

max in Refs. [21] and [22]. We get

|Vub|× 103 = 3.48(29)(38)(47), (7)

where the first error is statistical, the second systematic, and the third is the experimental
error from the decay rates. Likewise, from D → πlν and D → Klν (with 0 ≤ q2 ≤ q2

max) we
obtain

|Vcd| = 0.239(10)(24)(20) , |Vcs| = 0.969(39)(94)(24). (8)

The results for the CKM matrix elements agree with the Particle Data Group averages [1]
with a comparable accuracy.

The rest of this paper is organized as follows. In Sec. II we describe our method of form
factor calculations. In Sec. III we give details of our simulations. We explain our analysis
procedures in Sec. IV, and estimate systematic errors in Sec. V. The results for form factors,
decay rates and CKM matrix elements are presented in Sec. VI. We conclude in Sec. VII.
Preliminary results were reported in Ref. [6], and our main results for the D decays have
been published in Ref. [5].
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all variations impacting the observables under study. A statistical analysis along standard
lines then determines central values and errors for the desired observable quantities.

A starting point to isolate such a class of curves is the dispersive representation of the
relevant form factor:

F+(q2) =
F+(0)/(1 − α)

1 − q2

m2
B∗

+
1

π

∫

∞

t+

dt
ImF+(t)

t − q2 − iε
. (1)

Here α is defined by the relative size of the contribution to F+(0) from the B∗ pole, and
t± ≡ (mB ± mπ)2. For massless leptons, the semileptonic region is given by 0 ≤ q2 ≤ t−.
Equation (1) states that, after removing the contribution of the B∗ pole lying below threshold,
F+(q2) is analytic outside of a cut in the complex q2-plane extending along the real axis from
t+ to ∞, corresponding to the production region for states with the appropriate quantum
numbers.

One class of parameterizations keeps the B∗ pole explicit and approximates the remaining
dispersion integral in (1) by a number of effective poles:

F+(q2) =
F+(0)/(1 − α)

1 − q2

m2
B∗

+
N

∑

k=1

ρk

1 − 1
γk

q2

m2
B∗

. (2)

The true form factor can be approximated to any desired accuracy by introducing arbitrarily
many, finely-spaced, effective poles. In the next section, we derive a bound on the magni-
tudes, |ρk|, of the coefficients of the effective poles. This allows a meaningful N → ∞ limit,
thus enabling us to investigate the behavior of the fits when arbitrarily many parameters are
included. We find in actuality that current data cannot yet resolve more than one distinct
effective pole in addition to the B∗ pole. Parameterizations of the above type are widely
used to fit form factors. In particular, a simplified version of the N = 1 case, the so-called
Becirevic-Kaidalov (BK) parameterization [11] is used in many recent lattice calculations and
experimental studies. As shown in [12], this two-parameter form is overly restrictive since it
enforces scaling relations which at small q2 are broken by hard gluon exchange. The size of
these hard-scattering terms, which appear at leading order in the heavy-quark expansion, is
subject to some controversy and constraining their size is an important task. The parameter-
ization of the form factors should allow for their presence.

Another class of parameterizations is obtained by expanding the form factor in a series
around some q2 = t0 in the semileptonic region up to a fixed order, with the coefficients of this
expansion as the fit parameters. The convergence of this simple expansion is very poor due
to the presence of the nearby singularities at q2 = m2

B∗ and q2 = t+. However, an improved
series expansion of the form factor that converges in the entire cut q2-plane is obtained after
a change of variables that maps this region onto the unit disc |z| < 1. In terms of the new
variable, F+ has an expansion

F+(q2) =
1

P (q2)φ(q2, t0)

∞
∑

k=0

ak(t0) [z(q2, t0)]
k , z(q2, t0) =

√

t+ − q2 −
√

t+ − t0
√

t+ − q2 +
√

t+ − t0
, (3)

with real coefficients ak. The variable z(q2, t0) maps the interval −∞ < q2 < t+ onto the line
segment −1 < z < 1, with the free parameter t0 ∈ (−∞, t+) corresponding to the value of q2
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Correct effects of the B* 
pole that we know are there. Additional pole parameterizes higher 

mass states.

Real life higher mass states for B➙πlν: 
a cut. 

BK could be extended with increasing accuracy 
by adding more and more poles.  (Hill.)
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A nice ansatz, the Becirevic-
Kaidalov parameterization:

µ. We calculate the form factors f+,0 as a function of q2, and then extract the CKM matrix

element |Vij| by combining our result with the experimental decay rate
∫ q2

max

q2
min

dq2 (dΓ/dq2)

with q2
max = (mH −mP )2.

For the convenience of future experimental and phenomenological analyses, we present
the results for form factors in terms of the parametrization of Becirevic and Kaidalov [16]
(referred to below as BK),

f+(q2) =
F

(1− q̃2)(1− αq̃2)
, f0(q

2) =
F

1− q̃2/β
, (3)

where q̃2 = q2/m2
H∗ and {F, α, β} are free parameters. The BK parametrization incorporates

most of the known constraints on form factors including the kinematic constraint f+(0) =
f0(0), heavy quark scaling laws predicted by effective theories, and the position of the first
pole at q2 = mH∗ for f+. A disadvantage of the BK parametrization is that it contains
only three parameters, which may be too limiting. Although we need further study to
understand its validity and limitation, recent experimental results for the q2 dependence
of the form factors for the D → Klν decay [17] and B → πlν decay [18] as well as our
numerical data fit the BK parametrization well, suggesting that it is sufficient with present
accuracy.

We obtain

FB→π = 0.23(2)(4), αB→π = 0.63(5)(10), βB→π = 1.18(5)(7), (4)

for the B → πlν decay, and

FD→π = 0.64(3)(6), αD→π = 0.44(4)(7), βD→π = 1.41(6)(13), (5)

FD→K = 0.73(3)(7), αD→K = 0.50(4)(7), βD→K = 1.31(7)(13), (6)

for the D → πlν and D → Klν decays [5], where the first errors are statistical and the
second systematic. Our results for D decays agree well with recent experimental results for
both the normalization at q2 = 0 [19, 20] and the q2 dependence [17]. This lends credibility
to our result for B → πlν.

The CKM matrix elements are then obtained by integrating |f+(q2)|2 over q2 and using
experimental decay rates in Refs. [1, 21, 22]. For |Vub| we use a combined average of the
decay rate of B → πlν for 16 GeV2 ≤ q2 ≤ q2

max in Refs. [21] and [22]. We get

|Vub|× 103 = 3.48(29)(38)(47), (7)

where the first error is statistical, the second systematic, and the third is the experimental
error from the decay rates. Likewise, from D → πlν and D → Klν (with 0 ≤ q2 ≤ q2

max) we
obtain

|Vcd| = 0.239(10)(24)(20) , |Vcs| = 0.969(39)(94)(24). (8)

The results for the CKM matrix elements agree with the Particle Data Group averages [1]
with a comparable accuracy.

The rest of this paper is organized as follows. In Sec. II we describe our method of form
factor calculations. In Sec. III we give details of our simulations. We explain our analysis
procedures in Sec. IV, and estimate systematic errors in Sec. V. The results for form factors,
decay rates and CKM matrix elements are presented in Sec. VI. We conclude in Sec. VII.
Preliminary results were reported in Ref. [6], and our main results for the D decays have
been published in Ref. [5].
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all variations impacting the observables under study. A statistical analysis along standard
lines then determines central values and errors for the desired observable quantities.

A starting point to isolate such a class of curves is the dispersive representation of the
relevant form factor:

F+(q2) =
F+(0)/(1 − α)
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dt
ImF+(t)

t − q2 − iε
. (1)

Here α is defined by the relative size of the contribution to F+(0) from the B∗ pole, and
t± ≡ (mB ± mπ)2. For massless leptons, the semileptonic region is given by 0 ≤ q2 ≤ t−.
Equation (1) states that, after removing the contribution of the B∗ pole lying below threshold,
F+(q2) is analytic outside of a cut in the complex q2-plane extending along the real axis from
t+ to ∞, corresponding to the production region for states with the appropriate quantum
numbers.

One class of parameterizations keeps the B∗ pole explicit and approximates the remaining
dispersion integral in (1) by a number of effective poles:

F+(q2) =
F+(0)/(1 − α)

1 − q2

m2
B∗

+
N

∑

k=1

ρk

1 − 1
γk

q2

m2
B∗

. (2)

The true form factor can be approximated to any desired accuracy by introducing arbitrarily
many, finely-spaced, effective poles. In the next section, we derive a bound on the magni-
tudes, |ρk|, of the coefficients of the effective poles. This allows a meaningful N → ∞ limit,
thus enabling us to investigate the behavior of the fits when arbitrarily many parameters are
included. We find in actuality that current data cannot yet resolve more than one distinct
effective pole in addition to the B∗ pole. Parameterizations of the above type are widely
used to fit form factors. In particular, a simplified version of the N = 1 case, the so-called
Becirevic-Kaidalov (BK) parameterization [11] is used in many recent lattice calculations and
experimental studies. As shown in [12], this two-parameter form is overly restrictive since it
enforces scaling relations which at small q2 are broken by hard gluon exchange. The size of
these hard-scattering terms, which appear at leading order in the heavy-quark expansion, is
subject to some controversy and constraining their size is an important task. The parameter-
ization of the form factors should allow for their presence.

Another class of parameterizations is obtained by expanding the form factor in a series
around some q2 = t0 in the semileptonic region up to a fixed order, with the coefficients of this
expansion as the fit parameters. The convergence of this simple expansion is very poor due
to the presence of the nearby singularities at q2 = m2

B∗ and q2 = t+. However, an improved
series expansion of the form factor that converges in the entire cut q2-plane is obtained after
a change of variables that maps this region onto the unit disc |z| < 1. In terms of the new
variable, F+ has an expansion

F+(q2) =
1

P (q2)φ(q2, t0)

∞
∑

k=0

ak(t0) [z(q2, t0)]
k , z(q2, t0) =

√

t+ − q2 −
√

t+ − t0
√

t+ − q2 +
√

t+ − t0
, (3)

with real coefficients ak. The variable z(q2, t0) maps the interval −∞ < q2 < t+ onto the line
segment −1 < z < 1, with the free parameter t0 ∈ (−∞, t+) corresponding to the value of q2
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experimental studies. As shown in [12], this two-parameter form is overly restrictive since it
enforces scaling relations which at small q2 are broken by hard gluon exchange. The size of
these hard-scattering terms, which appear at leading order in the heavy-quark expansion, is
subject to some controversy and constraining their size is an important task. The parameter-
ization of the form factors should allow for their presence.

Another class of parameterizations is obtained by expanding the form factor in a series
around some q2 = t0 in the semileptonic region up to a fixed order, with the coefficients of this
expansion as the fit parameters. The convergence of this simple expansion is very poor due
to the presence of the nearby singularities at q2 = m2

B∗ and q2 = t+. However, an improved
series expansion of the form factor that converges in the entire cut q2-plane is obtained after
a change of variables that maps this region onto the unit disc |z| < 1. In terms of the new
variable, F+ has an expansion

F+(q2) =
1

P (q2)φ(q2, t0)

∞
∑

k=0

ak(t0) [z(q2, t0)]
k , z(q2, t0) =

√

t+ − q2 −
√

t+ − t0
√

t+ − q2 +
√

t+ − t0
, (3)

with real coefficients ak. The variable z(q2, t0) maps the interval −∞ < q2 < t+ onto the line
segment −1 < z < 1, with the free parameter t0 ∈ (−∞, t+) corresponding to the value of q2

3

Correct effects of the B* 
pole that we know are there. Additional pole parameterizes higher 

mass states.

Real life higher mass states for B➙πlν: 
a cut. 

BK could be extended with increasing accuracy 
by adding more and more poles.  (Hill.)



Paul Mackenzie DPF/JPS 2006.  October  31, 2006.

What do we know in advance about the fit function for form factors?

13

A nice ansatz, the Becirevic-
Kaidalov parameterization:

µ. We calculate the form factors f+,0 as a function of q2, and then extract the CKM matrix

element |Vij| by combining our result with the experimental decay rate
∫ q2

max

q2
min

dq2 (dΓ/dq2)

with q2
max = (mH −mP )2.

For the convenience of future experimental and phenomenological analyses, we present
the results for form factors in terms of the parametrization of Becirevic and Kaidalov [16]
(referred to below as BK),

f+(q2) =
F

(1− q̃2)(1− αq̃2)
, f0(q

2) =
F

1− q̃2/β
, (3)

where q̃2 = q2/m2
H∗ and {F, α, β} are free parameters. The BK parametrization incorporates

most of the known constraints on form factors including the kinematic constraint f+(0) =
f0(0), heavy quark scaling laws predicted by effective theories, and the position of the first
pole at q2 = mH∗ for f+. A disadvantage of the BK parametrization is that it contains
only three parameters, which may be too limiting. Although we need further study to
understand its validity and limitation, recent experimental results for the q2 dependence
of the form factors for the D → Klν decay [17] and B → πlν decay [18] as well as our
numerical data fit the BK parametrization well, suggesting that it is sufficient with present
accuracy.

We obtain

FB→π = 0.23(2)(4), αB→π = 0.63(5)(10), βB→π = 1.18(5)(7), (4)

for the B → πlν decay, and

FD→π = 0.64(3)(6), αD→π = 0.44(4)(7), βD→π = 1.41(6)(13), (5)

FD→K = 0.73(3)(7), αD→K = 0.50(4)(7), βD→K = 1.31(7)(13), (6)

for the D → πlν and D → Klν decays [5], where the first errors are statistical and the
second systematic. Our results for D decays agree well with recent experimental results for
both the normalization at q2 = 0 [19, 20] and the q2 dependence [17]. This lends credibility
to our result for B → πlν.

The CKM matrix elements are then obtained by integrating |f+(q2)|2 over q2 and using
experimental decay rates in Refs. [1, 21, 22]. For |Vub| we use a combined average of the
decay rate of B → πlν for 16 GeV2 ≤ q2 ≤ q2

max in Refs. [21] and [22]. We get

|Vub|× 103 = 3.48(29)(38)(47), (7)

where the first error is statistical, the second systematic, and the third is the experimental
error from the decay rates. Likewise, from D → πlν and D → Klν (with 0 ≤ q2 ≤ q2

max) we
obtain

|Vcd| = 0.239(10)(24)(20) , |Vcs| = 0.969(39)(94)(24). (8)

The results for the CKM matrix elements agree with the Particle Data Group averages [1]
with a comparable accuracy.

The rest of this paper is organized as follows. In Sec. II we describe our method of form
factor calculations. In Sec. III we give details of our simulations. We explain our analysis
procedures in Sec. IV, and estimate systematic errors in Sec. V. The results for form factors,
decay rates and CKM matrix elements are presented in Sec. VI. We conclude in Sec. VII.
Preliminary results were reported in Ref. [6], and our main results for the D decays have
been published in Ref. [5].
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The true form factor can be approximated to any desired accuracy by introducing arbitrarily
many, finely-spaced, effective poles. In the next section, we derive a bound on the magni-
tudes, |ρk|, of the coefficients of the effective poles. This allows a meaningful N → ∞ limit,
thus enabling us to investigate the behavior of the fits when arbitrarily many parameters are
included. We find in actuality that current data cannot yet resolve more than one distinct
effective pole in addition to the B∗ pole. Parameterizations of the above type are widely
used to fit form factors. In particular, a simplified version of the N = 1 case, the so-called
Becirevic-Kaidalov (BK) parameterization [11] is used in many recent lattice calculations and
experimental studies. As shown in [12], this two-parameter form is overly restrictive since it
enforces scaling relations which at small q2 are broken by hard gluon exchange. The size of
these hard-scattering terms, which appear at leading order in the heavy-quark expansion, is
subject to some controversy and constraining their size is an important task. The parameter-
ization of the form factors should allow for their presence.

Another class of parameterizations is obtained by expanding the form factor in a series
around some q2 = t0 in the semileptonic region up to a fixed order, with the coefficients of this
expansion as the fit parameters. The convergence of this simple expansion is very poor due
to the presence of the nearby singularities at q2 = m2

B∗ and q2 = t+. However, an improved
series expansion of the form factor that converges in the entire cut q2-plane is obtained after
a change of variables that maps this region onto the unit disc |z| < 1. In terms of the new
variable, F+ has an expansion
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Not easy to fix prior uncertainties to parameters in BK extensions.

Analyticity and unitarity have long been 
used to constrain shapes of form factors.

Lellouch, Fukunaga-
Onogi, Arnesen et 
al., Becher-Hill, ...

A particularly simple form has recently been 
emphasized by Arnesen et al.

z maps q2=t>t+ onto |z|=1., and
                  t<t+ onto [-1,1] in the complex plane.

( t  = (pH-pL)2,  t+ = (mH+mL)2, t- = (mH-mL)2).

2

functional forms. The variable

z(t, t0) =

√
t+ − t −

√
t+ − t0√

t+ − t +
√

t+ − t0
, (6)

maps t+ < t < ∞ onto |z| = 1 and −∞ < t < t+ onto z ∈
[−1, 1]. t0 is a free parameter that can be chosen to attain
the tightest possible bounds, and it defines z(t0, t0) = 0.
We take t0 = 0.65 t− giving −0.34 ≤ z ≤ 0.22 for the
B → π range. In Eq. (5) the “Blaschke” factor P (t)
eliminates sub-threshold poles, so P (t) = 1 for f0, while
P (t) = z(t; m2

B∗) for f+ due to the B∗ pole. Finally, the
“outer” function is given by
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where nI = 3/2 and for f+: (K = 48π, a = 3, b = 2),

while for f0: (K = 16π/(t+t−), a = 1, b = 1). Here χ(0)
J

corresponds to the lowest moment of Π(q2) computed
with an OPE. At two loops in terms of the pole mass
and condensates and taking µ = mb [11, 13]

χ(0)
f+

=
3
[

1+1.140 αs(mb)
]

32π2m2
b

−
mb 〈ūu〉

m6
b

−
〈αsG2〉
12πm6

b

,

χ(0)
f0

=

[

1+0.751 αs(mb)
]

8π2
+

mb 〈ūu〉
m4

b

+
〈αsG2〉
12πm4

b

, (8)

with mb〈ūu〉 * −0.076 GeV4, 〈αsG2〉 * 0.063GeV4. We
use mpole

b = 4.88 GeV as a central value. With Eq. (5)
the dispersive bound gives a constraint on the coefficients

nA
∑

k=0

a2
k ≤ 1 , (9)

for any choice of nA.
Eqs. (5) and (9) give only a weak constraint on the

normalization of the form factor f+. In particular, data
favors a0 ∼ 0.02, so a2

0 , 1. The main power of ana-
lyticity is that if we fix f+(q2) at nA input points then
it constrains the q2 shape between these points. With
nA = 5 the error from the bounds is negligibly small rel-
ative to other uncertainties, as we see below (our analysis

is also insensitive to the exact values of χ(0)
J or mb). The

bounds can be strengthened using heavy quark symme-
try or higher moments of Π(q2) [12], but since this uncer-
tainty is very small we do not use these improvements.

Input Points. A constraint at q2 = 0 is useful in pin-
ning down the form factor in the small q2 region. Here we
implement a constraint at q2 = 0 on |Vub|f+(0) that fol-
lows from a B → ππ factorization theorem derived with
SCET [7]. The result holds in QCD and uses isospin sym-
metry and data to eliminate effects due to the relative
magnitude and strong phase of penguin contributions.

Manipulating formulas in [7] we can write the result in
terms of observables

|Vub|f+(0) =

[

64π

m3
Bf2

π

Br(B− → π0π−)

τB− |Vud|2G2
F

]1/2

(10)

×
[

(C1 + C2)tc − C2

C2
1 − C2

2

][

1 + O
(

αs(mb),
ΛQCD

mb

)

]

,

where C1 = 1.08 and C2 = −0.177 are parameters in the
electroweak Hamiltonian at µ = mb (we drop the tiny
C3,4), and tc is a hadronic parameter whose deviation
from 1 measures the size of color suppressed amplitudes.
In terms of the angles β, γ of the unitarity triangle and
CP-asymmetries Sπ+π− and Cπ+π− in B → π+π−,

tc =

√

Rc
(1+Bπ+π− cos 2β + Sπ+π− sin 2β)

2 sin2γ
, (11)

with Rc =[Br(B0 → π+π−)τB− ]/[2Br(B− → π0π−)τB0 ],
and Bπ+π− = (1− C2

π+π−
−S2

π+π−
)1/2. Eqs. (10,11) im-

prove on relations between B → ππ and B → π(ν̄
derived earlier, such as in Ref. [14], because they do not
rely on expanding in αs(

√
mbΛ) or require the use of

QCD sum rules for input parameters to calculate tc.
Using the latest B → ππ data [1], Eq. (10) gives

f0
in = |Vub|f+(0) = (7.2 ± 1.8) × 10−4 . (12)

This estimate of 25% uncertainty accounts for the 10%
experimental uncertainty, and ∼ 20% theory uncertainty
from perturbative and power corrections. The experi-
mental uncertainty includes γ = 70◦ ± 15◦ which cov-
ers the range from global fits and that preferred by the
SCET based B → ππ method from Ref. [15]. As noted
in [7] the dependence of |Vub|f+(0) on γ is mild for larger
γ’s. Estimates for perturbative and power corrections to
Eq. (10) are each at the ∼ 10% level even when “chirally
enhanced” terms are included [14, 16].

Next we consider lattice QCD input points, fk
in, which

are crucial in fixing the form factor normalization. Tech-
nically, using staggered fermions might add model depen-
dence from the (detM)1/4 trick. We take the remark-
able agreement in [17] as an indication that this model
dependence is small.Using the unquenched MILC config-
urations, Refs [2, 3] find consistent results with different
heavy quark actions. As our default we use the Fermilab
results since they have a point at larger q2:

f1
in = f+(15.87) = 0.799± 0.058 ± 0.088 , (13)

f2
in = f+(18.58) = 1.128± 0.086 ± 0.124 ,

f3
in = f+(24.09) = 3.262± 0.324 ± 0.359 .

The first errors in (13) are statistical, ±σi, and the second
are 11% systematic errors, ±yf i

in, with y = 0.11. For the
lattice error matrix, we use Eij = σ2

i δij + y2f i
inf

j
in, which

takes σi uncorrelated and includes 100% correlation in

Consider a remapping of the semileptonic decay variable 
t=q2 into a new variable z in the complex plane:

t0, taken as 0.65 t_ here, is a fudge factor adjusted to center the physical region on z~0.  
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Not easy to fix prior uncertainties to parameters in BK extensions.

Analyticity and unitarity have long been 
used to constrain shapes of form factors.

Lellouch, Fukunaga-
Onogi, Arnesen et 
al., Becher-Hill, ...

A particularly simple form has recently been 
emphasized by Arnesen et al.

z maps q2=t>t+ onto |z|=1., and
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Eqs. (5) and (9) give only a weak constraint on the

normalization of the form factor f+. In particular, data
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0 , 1. The main power of ana-
lyticity is that if we fix f+(q2) at nA input points then
it constrains the q2 shape between these points. With
nA = 5 the error from the bounds is negligibly small rel-
ative to other uncertainties, as we see below (our analysis

is also insensitive to the exact values of χ(0)
J or mb). The

bounds can be strengthened using heavy quark symme-
try or higher moments of Π(q2) [12], but since this uncer-
tainty is very small we do not use these improvements.

Input Points. A constraint at q2 = 0 is useful in pin-
ning down the form factor in the small q2 region. Here we
implement a constraint at q2 = 0 on |Vub|f+(0) that fol-
lows from a B → ππ factorization theorem derived with
SCET [7]. The result holds in QCD and uses isospin sym-
metry and data to eliminate effects due to the relative
magnitude and strong phase of penguin contributions.

Manipulating formulas in [7] we can write the result in
terms of observables
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from 1 measures the size of color suppressed amplitudes.
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Using the latest B → ππ data [1], Eq. (10) gives
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in = |Vub|f+(0) = (7.2 ± 1.8) × 10−4 . (12)

This estimate of 25% uncertainty accounts for the 10%
experimental uncertainty, and ∼ 20% theory uncertainty
from perturbative and power corrections. The experi-
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ers the range from global fits and that preferred by the
SCET based B → ππ method from Ref. [15]. As noted
in [7] the dependence of |Vub|f+(0) on γ is mild for larger
γ’s. Estimates for perturbative and power corrections to
Eq. (10) are each at the ∼ 10% level even when “chirally
enhanced” terms are included [14, 16].

Next we consider lattice QCD input points, fk
in, which

are crucial in fixing the form factor normalization. Tech-
nically, using staggered fermions might add model depen-
dence from the (detM)1/4 trick. We take the remark-
able agreement in [17] as an indication that this model
dependence is small.Using the unquenched MILC config-
urations, Refs [2, 3] find consistent results with different
heavy quark actions. As our default we use the Fermilab
results since they have a point at larger q2:

f1
in = f+(15.87) = 0.799± 0.058 ± 0.088 , (13)

f2
in = f+(18.58) = 1.128± 0.086 ± 0.124 ,

f3
in = f+(24.09) = 3.262± 0.324 ± 0.359 .

The first errors in (13) are statistical, ±σi, and the second
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in, with y = 0.11. For the
lattice error matrix, we use Eij = σ2

i δij + y2f i
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in, which

takes σi uncorrelated and includes 100% correlation in
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A precision method for determining |Vub| using the full range in q2 of B → π"ν data is presented.
At large q2 the form factor is taken from unquenched lattice QCD, at q2 = 0 we impose a model
independent constraint obtained from B → ππ using the soft-collinear effective theory, and the shape
is constrained using QCD dispersion relations. We find |Vub| = (3.54 ± 0.17 ± 0.44) × 10−3. With
5% experimental error and 12% theory error, this is competitive with inclusive methods. Theory
error is dominated by the input points, with negligible uncertainty from the dispersion relations.

The remarkable success of the B-factories have lead to
a new era for precision results in the CKM sector of the
standard model. For |Vub| inclusive and exclusive mea-
surements from semileptonic decays should yield a precise
value, but must surmount the now dominant theoreti-
cal uncertainties. For inclusive decays measuring |Vub| is
more difficult than |Vcb| because cuts make observables
either sensitive to a structure function which demands
input from radiative decays, or require neutrino recon-
struction. The heavy flavor averaging group (HFAG)’s
average from inclusive decays based on operator product
expansion techniques is 103|Vub| = 4.7±0.4 [1]. Exclusive
techniques for |Vcb| use heavy quark symmetry (HQS) to
normalize the form factors. For |Vub| from B → π"ν̄ sym-
metry techniques fall flat, and model independent form
factor information relies on precision lattice QCD.

Recently, the Fermilab [2] and HPQCD [3] groups have
presented unquenched lattice results for B → π form
factors. Uncertainties in the discretization restrict the
kinematics to pions that are not too energetic Eπ

<∼
1 GeV, which for the invariant mass of the lepton pair
is 15 GeV2 <∼ q2 ≤ 26.4 GeV2. Unfortunately, since the
phase space goes as |$pπ|3, there are less events and more
experimental uncertainty in this region. For B̄0 → π+"ν̄

dΓ/dq2 = N |Vub|2 |$pπ|3 |f+(q2)|2 , (1)

where N = G2
F /(24π3). For example, Belle [4] found

103 |Vub|q2≥16 =

{

3.87 ± 0.70 ± 0.22+0.85
−0.51 (FNAL)

4.73 ± 0.85 ± 0.27+0.74
−0.50 (HPQCD)

(2)

where the errors are statistical, systematic, and theoret-
ical. In quadrature this is an uncertainty of ∼ 25%.

The latest Babar, CLEO, and Belle average is [5],

Br(B̄0 → π+"−ν̄) = (1.39 ± 0.12)× 10−4 , (3)

which should yield |Vub| at the % 5% level. So far extrac-
tions of |Vub| from the total Br rely on QCD sum rules [6]
and quark models for input. For example, HFAG reports
results on Br(B → {π, ρ, ω}"ν̄) that lead to central values

103|Vub| = 2.9 to 3.9 [1]. Due to the uncertainty they do
not currently average over exclusive extractions of |Vub|.

In this letter we present a model independent exclu-
sive method for determining the entire B → π form fac-
tor f+(q2) and thus |Vub|. A total uncertainty δ|Vub| %
13% is achieved by combining 1) the unquenched lat-
tice results [2, 3], 2) a constraint at q2 = 0 derived
from SCET [7] and B → ππ data, which determines
|Vub|f+(0), and 3) dispersion relations and analyticity
which allow us to interpolate over the entire region
of q2 by bounding the shape of f+(q2) between input
points [8, 9]. The SCET constraint induces an additional
implicit functional dependence on |Vub| in the form fac-
tors. Our first analysis uses just the total Br, yielding an
analytic formula for |Vub|. The second includes q2-spectra
with a χ2 minimization which allows the experimental
data to constrain the theoretical uncertainty. A differ-
ent approach for including the q2-spectra was developed
in [10] based on the Lellouch distribution method [11].

Analyticity Bounds. We briefly review how analytic-
ity constrains the B → π form factors, f+ and f0, re-
ferring to [8, 9, 12] for more detail. Our notation fol-
lows [12], and we set t± = (mB ± mπ)2. Suitable mo-
ments of a time ordered product of currents, Πµν(q2) =
i
∫

d4x eiqx〈0|TJµ(x)J†ν (0)|0〉 can be computed with an
OPE in QCD and are related by a dispersion relation to
a positive definite sum over exclusive states

ImΠµν=

∫

[p.s.] δ(q−pBπ)〈0|J†ν |B̄π〉〈B̄π|Jµ|0〉 + . . . (4)

Keeping this first term bounds a weighted integral over
t+ ≤ t ≤ ∞ of the squared Bπ production form factor.
Using analyticity and crossing symmetry this constrains
the shape in t = q2 of the form factors for B → π in the
physical region 0 ≤ t ≤ t−. The results are simple to
express by writing each of f+(t), f0(t) as a series

f(t) =
1

P (t)φ(t, t0)

∞
∑

k=0

ak(t0) z(t, t0)
k , (5)

with coefficients ak that parameterize different allowed
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At large q2 the form factor is taken from unquenched lattice QCD, at q2 = 0 we impose a model
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The remarkable success of the B-factories have lead to
a new era for precision results in the CKM sector of the
standard model. For |Vub| inclusive and exclusive mea-
surements from semileptonic decays should yield a precise
value, but must surmount the now dominant theoreti-
cal uncertainties. For inclusive decays measuring |Vub| is
more difficult than |Vcb| because cuts make observables
either sensitive to a structure function which demands
input from radiative decays, or require neutrino recon-
struction. The heavy flavor averaging group (HFAG)’s
average from inclusive decays based on operator product
expansion techniques is 103|Vub| = 4.7±0.4 [1]. Exclusive
techniques for |Vcb| use heavy quark symmetry (HQS) to
normalize the form factors. For |Vub| from B → π"ν̄ sym-
metry techniques fall flat, and model independent form
factor information relies on precision lattice QCD.

Recently, the Fermilab [2] and HPQCD [3] groups have
presented unquenched lattice results for B → π form
factors. Uncertainties in the discretization restrict the
kinematics to pions that are not too energetic Eπ

<∼
1 GeV, which for the invariant mass of the lepton pair
is 15 GeV2 <∼ q2 ≤ 26.4 GeV2. Unfortunately, since the
phase space goes as |$pπ|3, there are less events and more
experimental uncertainty in this region. For B̄0 → π+"ν̄

dΓ/dq2 = N |Vub|2 |$pπ|3 |f+(q2)|2 , (1)

where N = G2
F /(24π3). For example, Belle [4] found

103 |Vub|q2≥16 =

{

3.87 ± 0.70 ± 0.22+0.85
−0.51 (FNAL)

4.73 ± 0.85 ± 0.27+0.74
−0.50 (HPQCD)

(2)

where the errors are statistical, systematic, and theoret-
ical. In quadrature this is an uncertainty of ∼ 25%.

The latest Babar, CLEO, and Belle average is [5],

Br(B̄0 → π+"−ν̄) = (1.39 ± 0.12)× 10−4 , (3)

which should yield |Vub| at the % 5% level. So far extrac-
tions of |Vub| from the total Br rely on QCD sum rules [6]
and quark models for input. For example, HFAG reports
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103|Vub| = 2.9 to 3.9 [1]. Due to the uncertainty they do
not currently average over exclusive extractions of |Vub|.
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tice results [2, 3], 2) a constraint at q2 = 0 derived
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tors. Our first analysis uses just the total Br, yielding an
analytic formula for |Vub|. The second includes q2-spectra
with a χ2 minimization which allows the experimental
data to constrain the theoretical uncertainty. A differ-
ent approach for including the q2-spectra was developed
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The remarkable success of the B-factories have lead to
a new era for precision results in the CKM sector of the
standard model. For |Vub| inclusive and exclusive mea-
surements from semileptonic decays should yield a precise
value, but must surmount the now dominant theoreti-
cal uncertainties. For inclusive decays measuring |Vub| is
more difficult than |Vcb| because cuts make observables
either sensitive to a structure function which demands
input from radiative decays, or require neutrino recon-
struction. The heavy flavor averaging group (HFAG)’s
average from inclusive decays based on operator product
expansion techniques is 103|Vub| = 4.7±0.4 [1]. Exclusive
techniques for |Vcb| use heavy quark symmetry (HQS) to
normalize the form factors. For |Vub| from B → π"ν̄ sym-
metry techniques fall flat, and model independent form
factor information relies on precision lattice QCD.

Recently, the Fermilab [2] and HPQCD [3] groups have
presented unquenched lattice results for B → π form
factors. Uncertainties in the discretization restrict the
kinematics to pions that are not too energetic Eπ

<∼
1 GeV, which for the invariant mass of the lepton pair
is 15 GeV2 <∼ q2 ≤ 26.4 GeV2. Unfortunately, since the
phase space goes as |$pπ|3, there are less events and more
experimental uncertainty in this region. For B̄0 → π+"ν̄

dΓ/dq2 = N |Vub|2 |$pπ|3 |f+(q2)|2 , (1)

where N = G2
F /(24π3). For example, Belle [4] found

103 |Vub|q2≥16 =

{

3.87 ± 0.70 ± 0.22+0.85
−0.51 (FNAL)

4.73 ± 0.85 ± 0.27+0.74
−0.50 (HPQCD)

(2)

where the errors are statistical, systematic, and theoret-
ical. In quadrature this is an uncertainty of ∼ 25%.

The latest Babar, CLEO, and Belle average is [5],

Br(B̄0 → π+"−ν̄) = (1.39 ± 0.12)× 10−4 , (3)

which should yield |Vub| at the % 5% level. So far extrac-
tions of |Vub| from the total Br rely on QCD sum rules [6]
and quark models for input. For example, HFAG reports
results on Br(B → {π, ρ, ω}"ν̄) that lead to central values

103|Vub| = 2.9 to 3.9 [1]. Due to the uncertainty they do
not currently average over exclusive extractions of |Vub|.

In this letter we present a model independent exclu-
sive method for determining the entire B → π form fac-
tor f+(q2) and thus |Vub|. A total uncertainty δ|Vub| %
13% is achieved by combining 1) the unquenched lat-
tice results [2, 3], 2) a constraint at q2 = 0 derived
from SCET [7] and B → ππ data, which determines
|Vub|f+(0), and 3) dispersion relations and analyticity
which allow us to interpolate over the entire region
of q2 by bounding the shape of f+(q2) between input
points [8, 9]. The SCET constraint induces an additional
implicit functional dependence on |Vub| in the form fac-
tors. Our first analysis uses just the total Br, yielding an
analytic formula for |Vub|. The second includes q2-spectra
with a χ2 minimization which allows the experimental
data to constrain the theoretical uncertainty. A differ-
ent approach for including the q2-spectra was developed
in [10] based on the Lellouch distribution method [11].

Analyticity Bounds. We briefly review how analytic-
ity constrains the B → π form factors, f+ and f0, re-
ferring to [8, 9, 12] for more detail. Our notation fol-
lows [12], and we set t± = (mB ± mπ)2. Suitable mo-
ments of a time ordered product of currents, Πµν(q2) =
i
∫

d4x eiqx〈0|TJµ(x)J†ν (0)|0〉 can be computed with an
OPE in QCD and are related by a dispersion relation to
a positive definite sum over exclusive states

ImΠµν=

∫

[p.s.] δ(q−pBπ)〈0|J†ν |B̄π〉〈B̄π|Jµ|0〉 + . . . (4)

Keeping this first term bounds a weighted integral over
t+ ≤ t ≤ ∞ of the squared Bπ production form factor.
Using analyticity and crossing symmetry this constrains
the shape in t = q2 of the form factors for B → π in the
physical region 0 ≤ t ≤ t−. The results are simple to
express by writing each of f+(t), f0(t) as a series

f(t) =
1

P (t)φ(t, t0)

∞
∑

k=0

ak(t0) z(t, t0)
k , (5)

with coefficients ak that parameterize different allowed

Function that has unit norm at z=1., 
and that vanishes at the poles of f, 
e.g., at the B* pole.
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A precision method for determining |Vub| using the full range in q2 of B → π"ν data is presented.
At large q2 the form factor is taken from unquenched lattice QCD, at q2 = 0 we impose a model
independent constraint obtained from B → ππ using the soft-collinear effective theory, and the shape
is constrained using QCD dispersion relations. We find |Vub| = (3.54 ± 0.17 ± 0.44) × 10−3. With
5% experimental error and 12% theory error, this is competitive with inclusive methods. Theory
error is dominated by the input points, with negligible uncertainty from the dispersion relations.

The remarkable success of the B-factories have lead to
a new era for precision results in the CKM sector of the
standard model. For |Vub| inclusive and exclusive mea-
surements from semileptonic decays should yield a precise
value, but must surmount the now dominant theoreti-
cal uncertainties. For inclusive decays measuring |Vub| is
more difficult than |Vcb| because cuts make observables
either sensitive to a structure function which demands
input from radiative decays, or require neutrino recon-
struction. The heavy flavor averaging group (HFAG)’s
average from inclusive decays based on operator product
expansion techniques is 103|Vub| = 4.7±0.4 [1]. Exclusive
techniques for |Vcb| use heavy quark symmetry (HQS) to
normalize the form factors. For |Vub| from B → π"ν̄ sym-
metry techniques fall flat, and model independent form
factor information relies on precision lattice QCD.

Recently, the Fermilab [2] and HPQCD [3] groups have
presented unquenched lattice results for B → π form
factors. Uncertainties in the discretization restrict the
kinematics to pions that are not too energetic Eπ

<∼
1 GeV, which for the invariant mass of the lepton pair
is 15 GeV2 <∼ q2 ≤ 26.4 GeV2. Unfortunately, since the
phase space goes as |$pπ|3, there are less events and more
experimental uncertainty in this region. For B̄0 → π+"ν̄

dΓ/dq2 = N |Vub|2 |$pπ|3 |f+(q2)|2 , (1)

where N = G2
F /(24π3). For example, Belle [4] found

103 |Vub|q2≥16 =

{

3.87 ± 0.70 ± 0.22+0.85
−0.51 (FNAL)

4.73 ± 0.85 ± 0.27+0.74
−0.50 (HPQCD)

(2)

where the errors are statistical, systematic, and theoret-
ical. In quadrature this is an uncertainty of ∼ 25%.

The latest Babar, CLEO, and Belle average is [5],

Br(B̄0 → π+"−ν̄) = (1.39 ± 0.12)× 10−4 , (3)

which should yield |Vub| at the % 5% level. So far extrac-
tions of |Vub| from the total Br rely on QCD sum rules [6]
and quark models for input. For example, HFAG reports
results on Br(B → {π, ρ, ω}"ν̄) that lead to central values

103|Vub| = 2.9 to 3.9 [1]. Due to the uncertainty they do
not currently average over exclusive extractions of |Vub|.

In this letter we present a model independent exclu-
sive method for determining the entire B → π form fac-
tor f+(q2) and thus |Vub|. A total uncertainty δ|Vub| %
13% is achieved by combining 1) the unquenched lat-
tice results [2, 3], 2) a constraint at q2 = 0 derived
from SCET [7] and B → ππ data, which determines
|Vub|f+(0), and 3) dispersion relations and analyticity
which allow us to interpolate over the entire region
of q2 by bounding the shape of f+(q2) between input
points [8, 9]. The SCET constraint induces an additional
implicit functional dependence on |Vub| in the form fac-
tors. Our first analysis uses just the total Br, yielding an
analytic formula for |Vub|. The second includes q2-spectra
with a χ2 minimization which allows the experimental
data to constrain the theoretical uncertainty. A differ-
ent approach for including the q2-spectra was developed
in [10] based on the Lellouch distribution method [11].

Analyticity Bounds. We briefly review how analytic-
ity constrains the B → π form factors, f+ and f0, re-
ferring to [8, 9, 12] for more detail. Our notation fol-
lows [12], and we set t± = (mB ± mπ)2. Suitable mo-
ments of a time ordered product of currents, Πµν(q2) =
i
∫

d4x eiqx〈0|TJµ(x)J†ν (0)|0〉 can be computed with an
OPE in QCD and are related by a dispersion relation to
a positive definite sum over exclusive states

ImΠµν=

∫

[p.s.] δ(q−pBπ)〈0|J†ν |B̄π〉〈B̄π|Jµ|0〉 + . . . (4)

Keeping this first term bounds a weighted integral over
t+ ≤ t ≤ ∞ of the squared Bπ production form factor.
Using analyticity and crossing symmetry this constrains
the shape in t = q2 of the form factors for B → π in the
physical region 0 ≤ t ≤ t−. The results are simple to
express by writing each of f+(t), f0(t) as a series

f(t) =
1

P (t)φ(t, t0)

∞
∑

k=0

ak(t0) z(t, t0)
k , (5)

with coefficients ak that parameterize different allowed
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A precision method for determining |Vub| using the full range in q2 of B → π"ν data is presented.
At large q2 the form factor is taken from unquenched lattice QCD, at q2 = 0 we impose a model
independent constraint obtained from B → ππ using the soft-collinear effective theory, and the shape
is constrained using QCD dispersion relations. We find |Vub| = (3.54 ± 0.17 ± 0.44) × 10−3. With
5% experimental error and 12% theory error, this is competitive with inclusive methods. Theory
error is dominated by the input points, with negligible uncertainty from the dispersion relations.

The remarkable success of the B-factories have lead to
a new era for precision results in the CKM sector of the
standard model. For |Vub| inclusive and exclusive mea-
surements from semileptonic decays should yield a precise
value, but must surmount the now dominant theoreti-
cal uncertainties. For inclusive decays measuring |Vub| is
more difficult than |Vcb| because cuts make observables
either sensitive to a structure function which demands
input from radiative decays, or require neutrino recon-
struction. The heavy flavor averaging group (HFAG)’s
average from inclusive decays based on operator product
expansion techniques is 103|Vub| = 4.7±0.4 [1]. Exclusive
techniques for |Vcb| use heavy quark symmetry (HQS) to
normalize the form factors. For |Vub| from B → π"ν̄ sym-
metry techniques fall flat, and model independent form
factor information relies on precision lattice QCD.

Recently, the Fermilab [2] and HPQCD [3] groups have
presented unquenched lattice results for B → π form
factors. Uncertainties in the discretization restrict the
kinematics to pions that are not too energetic Eπ

<∼
1 GeV, which for the invariant mass of the lepton pair
is 15 GeV2 <∼ q2 ≤ 26.4 GeV2. Unfortunately, since the
phase space goes as |$pπ|3, there are less events and more
experimental uncertainty in this region. For B̄0 → π+"ν̄

dΓ/dq2 = N |Vub|2 |$pπ|3 |f+(q2)|2 , (1)

where N = G2
F /(24π3). For example, Belle [4] found

103 |Vub|q2≥16 =

{

3.87 ± 0.70 ± 0.22+0.85
−0.51 (FNAL)

4.73 ± 0.85 ± 0.27+0.74
−0.50 (HPQCD)

(2)

where the errors are statistical, systematic, and theoret-
ical. In quadrature this is an uncertainty of ∼ 25%.

The latest Babar, CLEO, and Belle average is [5],

Br(B̄0 → π+"−ν̄) = (1.39 ± 0.12)× 10−4 , (3)

which should yield |Vub| at the % 5% level. So far extrac-
tions of |Vub| from the total Br rely on QCD sum rules [6]
and quark models for input. For example, HFAG reports
results on Br(B → {π, ρ, ω}"ν̄) that lead to central values

103|Vub| = 2.9 to 3.9 [1]. Due to the uncertainty they do
not currently average over exclusive extractions of |Vub|.

In this letter we present a model independent exclu-
sive method for determining the entire B → π form fac-
tor f+(q2) and thus |Vub|. A total uncertainty δ|Vub| %
13% is achieved by combining 1) the unquenched lat-
tice results [2, 3], 2) a constraint at q2 = 0 derived
from SCET [7] and B → ππ data, which determines
|Vub|f+(0), and 3) dispersion relations and analyticity
which allow us to interpolate over the entire region
of q2 by bounding the shape of f+(q2) between input
points [8, 9]. The SCET constraint induces an additional
implicit functional dependence on |Vub| in the form fac-
tors. Our first analysis uses just the total Br, yielding an
analytic formula for |Vub|. The second includes q2-spectra
with a χ2 minimization which allows the experimental
data to constrain the theoretical uncertainty. A differ-
ent approach for including the q2-spectra was developed
in [10] based on the Lellouch distribution method [11].

Analyticity Bounds. We briefly review how analytic-
ity constrains the B → π form factors, f+ and f0, re-
ferring to [8, 9, 12] for more detail. Our notation fol-
lows [12], and we set t± = (mB ± mπ)2. Suitable mo-
ments of a time ordered product of currents, Πµν(q2) =
i
∫

d4x eiqx〈0|TJµ(x)J†ν (0)|0〉 can be computed with an
OPE in QCD and are related by a dispersion relation to
a positive definite sum over exclusive states

ImΠµν=

∫

[p.s.] δ(q−pBπ)〈0|J†ν |B̄π〉〈B̄π|Jµ|0〉 + . . . (4)

Keeping this first term bounds a weighted integral over
t+ ≤ t ≤ ∞ of the squared Bπ production form factor.
Using analyticity and crossing symmetry this constrains
the shape in t = q2 of the form factors for B → π in the
physical region 0 ≤ t ≤ t−. The results are simple to
express by writing each of f+(t), f0(t) as a series

f(t) =
1

P (t)φ(t, t0)

∞
∑

k=0

ak(t0) z(t, t0)
k , (5)

with coefficients ak that parameterize different allowed

Function that has unit norm at z=1., 
and that vanishes at the poles of f, 
e.g., at the B* pole.
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A precision method for determining |Vub| using the full range in q2 of B → π"ν data is presented.
At large q2 the form factor is taken from unquenched lattice QCD, at q2 = 0 we impose a model
independent constraint obtained from B → ππ using the soft-collinear effective theory, and the shape
is constrained using QCD dispersion relations. We find |Vub| = (3.54 ± 0.17 ± 0.44) × 10−3. With
5% experimental error and 12% theory error, this is competitive with inclusive methods. Theory
error is dominated by the input points, with negligible uncertainty from the dispersion relations.

The remarkable success of the B-factories have lead to
a new era for precision results in the CKM sector of the
standard model. For |Vub| inclusive and exclusive mea-
surements from semileptonic decays should yield a precise
value, but must surmount the now dominant theoreti-
cal uncertainties. For inclusive decays measuring |Vub| is
more difficult than |Vcb| because cuts make observables
either sensitive to a structure function which demands
input from radiative decays, or require neutrino recon-
struction. The heavy flavor averaging group (HFAG)’s
average from inclusive decays based on operator product
expansion techniques is 103|Vub| = 4.7±0.4 [1]. Exclusive
techniques for |Vcb| use heavy quark symmetry (HQS) to
normalize the form factors. For |Vub| from B → π"ν̄ sym-
metry techniques fall flat, and model independent form
factor information relies on precision lattice QCD.

Recently, the Fermilab [2] and HPQCD [3] groups have
presented unquenched lattice results for B → π form
factors. Uncertainties in the discretization restrict the
kinematics to pions that are not too energetic Eπ

<∼
1 GeV, which for the invariant mass of the lepton pair
is 15 GeV2 <∼ q2 ≤ 26.4 GeV2. Unfortunately, since the
phase space goes as |$pπ|3, there are less events and more
experimental uncertainty in this region. For B̄0 → π+"ν̄

dΓ/dq2 = N |Vub|2 |$pπ|3 |f+(q2)|2 , (1)

where N = G2
F /(24π3). For example, Belle [4] found

103 |Vub|q2≥16 =

{

3.87 ± 0.70 ± 0.22+0.85
−0.51 (FNAL)

4.73 ± 0.85 ± 0.27+0.74
−0.50 (HPQCD)

(2)

where the errors are statistical, systematic, and theoret-
ical. In quadrature this is an uncertainty of ∼ 25%.

The latest Babar, CLEO, and Belle average is [5],

Br(B̄0 → π+"−ν̄) = (1.39 ± 0.12)× 10−4 , (3)

which should yield |Vub| at the % 5% level. So far extrac-
tions of |Vub| from the total Br rely on QCD sum rules [6]
and quark models for input. For example, HFAG reports
results on Br(B → {π, ρ, ω}"ν̄) that lead to central values

103|Vub| = 2.9 to 3.9 [1]. Due to the uncertainty they do
not currently average over exclusive extractions of |Vub|.

In this letter we present a model independent exclu-
sive method for determining the entire B → π form fac-
tor f+(q2) and thus |Vub|. A total uncertainty δ|Vub| %
13% is achieved by combining 1) the unquenched lat-
tice results [2, 3], 2) a constraint at q2 = 0 derived
from SCET [7] and B → ππ data, which determines
|Vub|f+(0), and 3) dispersion relations and analyticity
which allow us to interpolate over the entire region
of q2 by bounding the shape of f+(q2) between input
points [8, 9]. The SCET constraint induces an additional
implicit functional dependence on |Vub| in the form fac-
tors. Our first analysis uses just the total Br, yielding an
analytic formula for |Vub|. The second includes q2-spectra
with a χ2 minimization which allows the experimental
data to constrain the theoretical uncertainty. A differ-
ent approach for including the q2-spectra was developed
in [10] based on the Lellouch distribution method [11].

Analyticity Bounds. We briefly review how analytic-
ity constrains the B → π form factors, f+ and f0, re-
ferring to [8, 9, 12] for more detail. Our notation fol-
lows [12], and we set t± = (mB ± mπ)2. Suitable mo-
ments of a time ordered product of currents, Πµν(q2) =
i
∫

d4x eiqx〈0|TJµ(x)J†ν (0)|0〉 can be computed with an
OPE in QCD and are related by a dispersion relation to
a positive definite sum over exclusive states

ImΠµν=

∫

[p.s.] δ(q−pBπ)〈0|J†ν |B̄π〉〈B̄π|Jµ|0〉 + . . . (4)

Keeping this first term bounds a weighted integral over
t+ ≤ t ≤ ∞ of the squared Bπ production form factor.
Using analyticity and crossing symmetry this constrains
the shape in t = q2 of the form factors for B → π in the
physical region 0 ≤ t ≤ t−. The results are simple to
express by writing each of f+(t), f0(t) as a series

f(t) =
1

P (t)φ(t, t0)

∞
∑

k=0

ak(t0) z(t, t0)
k , (5)

with coefficients ak that parameterize different allowedFunction calculated in 
perturbation theory to produce a 
simple form for the ak.Function that has unit norm at z=1., 

and that vanishes at the poles of f, 
e.g., at the B* pole.
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A precision method for determining |Vub| using the full range in q2 of B → π"ν data is presented.
At large q2 the form factor is taken from unquenched lattice QCD, at q2 = 0 we impose a model
independent constraint obtained from B → ππ using the soft-collinear effective theory, and the shape
is constrained using QCD dispersion relations. We find |Vub| = (3.54 ± 0.17 ± 0.44) × 10−3. With
5% experimental error and 12% theory error, this is competitive with inclusive methods. Theory
error is dominated by the input points, with negligible uncertainty from the dispersion relations.

The remarkable success of the B-factories have lead to
a new era for precision results in the CKM sector of the
standard model. For |Vub| inclusive and exclusive mea-
surements from semileptonic decays should yield a precise
value, but must surmount the now dominant theoreti-
cal uncertainties. For inclusive decays measuring |Vub| is
more difficult than |Vcb| because cuts make observables
either sensitive to a structure function which demands
input from radiative decays, or require neutrino recon-
struction. The heavy flavor averaging group (HFAG)’s
average from inclusive decays based on operator product
expansion techniques is 103|Vub| = 4.7±0.4 [1]. Exclusive
techniques for |Vcb| use heavy quark symmetry (HQS) to
normalize the form factors. For |Vub| from B → π"ν̄ sym-
metry techniques fall flat, and model independent form
factor information relies on precision lattice QCD.

Recently, the Fermilab [2] and HPQCD [3] groups have
presented unquenched lattice results for B → π form
factors. Uncertainties in the discretization restrict the
kinematics to pions that are not too energetic Eπ

<∼
1 GeV, which for the invariant mass of the lepton pair
is 15 GeV2 <∼ q2 ≤ 26.4 GeV2. Unfortunately, since the
phase space goes as |$pπ|3, there are less events and more
experimental uncertainty in this region. For B̄0 → π+"ν̄

dΓ/dq2 = N |Vub|2 |$pπ|3 |f+(q2)|2 , (1)

where N = G2
F /(24π3). For example, Belle [4] found

103 |Vub|q2≥16 =

{

3.87 ± 0.70 ± 0.22+0.85
−0.51 (FNAL)

4.73 ± 0.85 ± 0.27+0.74
−0.50 (HPQCD)

(2)

where the errors are statistical, systematic, and theoret-
ical. In quadrature this is an uncertainty of ∼ 25%.

The latest Babar, CLEO, and Belle average is [5],

Br(B̄0 → π+"−ν̄) = (1.39 ± 0.12)× 10−4 , (3)

which should yield |Vub| at the % 5% level. So far extrac-
tions of |Vub| from the total Br rely on QCD sum rules [6]
and quark models for input. For example, HFAG reports
results on Br(B → {π, ρ, ω}"ν̄) that lead to central values

103|Vub| = 2.9 to 3.9 [1]. Due to the uncertainty they do
not currently average over exclusive extractions of |Vub|.

In this letter we present a model independent exclu-
sive method for determining the entire B → π form fac-
tor f+(q2) and thus |Vub|. A total uncertainty δ|Vub| %
13% is achieved by combining 1) the unquenched lat-
tice results [2, 3], 2) a constraint at q2 = 0 derived
from SCET [7] and B → ππ data, which determines
|Vub|f+(0), and 3) dispersion relations and analyticity
which allow us to interpolate over the entire region
of q2 by bounding the shape of f+(q2) between input
points [8, 9]. The SCET constraint induces an additional
implicit functional dependence on |Vub| in the form fac-
tors. Our first analysis uses just the total Br, yielding an
analytic formula for |Vub|. The second includes q2-spectra
with a χ2 minimization which allows the experimental
data to constrain the theoretical uncertainty. A differ-
ent approach for including the q2-spectra was developed
in [10] based on the Lellouch distribution method [11].

Analyticity Bounds. We briefly review how analytic-
ity constrains the B → π form factors, f+ and f0, re-
ferring to [8, 9, 12] for more detail. Our notation fol-
lows [12], and we set t± = (mB ± mπ)2. Suitable mo-
ments of a time ordered product of currents, Πµν(q2) =
i
∫

d4x eiqx〈0|TJµ(x)J†ν (0)|0〉 can be computed with an
OPE in QCD and are related by a dispersion relation to
a positive definite sum over exclusive states

ImΠµν=

∫

[p.s.] δ(q−pBπ)〈0|J†ν |B̄π〉〈B̄π|Jµ|0〉 + . . . (4)

Keeping this first term bounds a weighted integral over
t+ ≤ t ≤ ∞ of the squared Bπ production form factor.
Using analyticity and crossing symmetry this constrains
the shape in t = q2 of the form factors for B → π in the
physical region 0 ≤ t ≤ t−. The results are simple to
express by writing each of f+(t), f0(t) as a series

f(t) =
1

P (t)φ(t, t0)

∞
∑

k=0

ak(t0) z(t, t0)
k , (5)

with coefficients ak that parameterize different allowedFunction calculated in 
perturbation theory to produce a 
simple form for the ak.Function that has unit norm at z=1., 
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A precision method for determining |Vub| using the full range in q2 of B → π"ν data is presented.
At large q2 the form factor is taken from unquenched lattice QCD, at q2 = 0 we impose a model
independent constraint obtained from B → ππ using the soft-collinear effective theory, and the shape
is constrained using QCD dispersion relations. We find |Vub| = (3.54 ± 0.17 ± 0.44) × 10−3. With
5% experimental error and 12% theory error, this is competitive with inclusive methods. Theory
error is dominated by the input points, with negligible uncertainty from the dispersion relations.

The remarkable success of the B-factories have lead to
a new era for precision results in the CKM sector of the
standard model. For |Vub| inclusive and exclusive mea-
surements from semileptonic decays should yield a precise
value, but must surmount the now dominant theoreti-
cal uncertainties. For inclusive decays measuring |Vub| is
more difficult than |Vcb| because cuts make observables
either sensitive to a structure function which demands
input from radiative decays, or require neutrino recon-
struction. The heavy flavor averaging group (HFAG)’s
average from inclusive decays based on operator product
expansion techniques is 103|Vub| = 4.7±0.4 [1]. Exclusive
techniques for |Vcb| use heavy quark symmetry (HQS) to
normalize the form factors. For |Vub| from B → π"ν̄ sym-
metry techniques fall flat, and model independent form
factor information relies on precision lattice QCD.

Recently, the Fermilab [2] and HPQCD [3] groups have
presented unquenched lattice results for B → π form
factors. Uncertainties in the discretization restrict the
kinematics to pions that are not too energetic Eπ

<∼
1 GeV, which for the invariant mass of the lepton pair
is 15 GeV2 <∼ q2 ≤ 26.4 GeV2. Unfortunately, since the
phase space goes as |$pπ|3, there are less events and more
experimental uncertainty in this region. For B̄0 → π+"ν̄

dΓ/dq2 = N |Vub|2 |$pπ|3 |f+(q2)|2 , (1)

where N = G2
F /(24π3). For example, Belle [4] found

103 |Vub|q2≥16 =

{

3.87 ± 0.70 ± 0.22+0.85
−0.51 (FNAL)

4.73 ± 0.85 ± 0.27+0.74
−0.50 (HPQCD)

(2)

where the errors are statistical, systematic, and theoret-
ical. In quadrature this is an uncertainty of ∼ 25%.

The latest Babar, CLEO, and Belle average is [5],

Br(B̄0 → π+"−ν̄) = (1.39 ± 0.12)× 10−4 , (3)

which should yield |Vub| at the % 5% level. So far extrac-
tions of |Vub| from the total Br rely on QCD sum rules [6]
and quark models for input. For example, HFAG reports
results on Br(B → {π, ρ, ω}"ν̄) that lead to central values

103|Vub| = 2.9 to 3.9 [1]. Due to the uncertainty they do
not currently average over exclusive extractions of |Vub|.

In this letter we present a model independent exclu-
sive method for determining the entire B → π form fac-
tor f+(q2) and thus |Vub|. A total uncertainty δ|Vub| %
13% is achieved by combining 1) the unquenched lat-
tice results [2, 3], 2) a constraint at q2 = 0 derived
from SCET [7] and B → ππ data, which determines
|Vub|f+(0), and 3) dispersion relations and analyticity
which allow us to interpolate over the entire region
of q2 by bounding the shape of f+(q2) between input
points [8, 9]. The SCET constraint induces an additional
implicit functional dependence on |Vub| in the form fac-
tors. Our first analysis uses just the total Br, yielding an
analytic formula for |Vub|. The second includes q2-spectra
with a χ2 minimization which allows the experimental
data to constrain the theoretical uncertainty. A differ-
ent approach for including the q2-spectra was developed
in [10] based on the Lellouch distribution method [11].

Analyticity Bounds. We briefly review how analytic-
ity constrains the B → π form factors, f+ and f0, re-
ferring to [8, 9, 12] for more detail. Our notation fol-
lows [12], and we set t± = (mB ± mπ)2. Suitable mo-
ments of a time ordered product of currents, Πµν(q2) =
i
∫

d4x eiqx〈0|TJµ(x)J†ν (0)|0〉 can be computed with an
OPE in QCD and are related by a dispersion relation to
a positive definite sum over exclusive states

ImΠµν=

∫

[p.s.] δ(q−pBπ)〈0|J†ν |B̄π〉〈B̄π|Jµ|0〉 + . . . (4)

Keeping this first term bounds a weighted integral over
t+ ≤ t ≤ ∞ of the squared Bπ production form factor.
Using analyticity and crossing symmetry this constrains
the shape in t = q2 of the form factors for B → π in the
physical region 0 ≤ t ≤ t−. The results are simple to
express by writing each of f+(t), f0(t) as a series

f(t) =
1

P (t)φ(t, t0)

∞
∑

k=0

ak(t0) z(t, t0)
k , (5)

with coefficients ak that parameterize different allowed

2

functional forms. The variable

z(t, t0) =

√
t+ − t −

√
t+ − t0√

t+ − t +
√

t+ − t0
, (6)

maps t+ < t < ∞ onto |z| = 1 and −∞ < t < t+ onto z ∈
[−1, 1]. t0 is a free parameter that can be chosen to attain
the tightest possible bounds, and it defines z(t0, t0) = 0.
We take t0 = 0.65 t− giving −0.34 ≤ z ≤ 0.22 for the
B → π range. In Eq. (5) the “Blaschke” factor P (t)
eliminates sub-threshold poles, so P (t) = 1 for f0, while
P (t) = z(t; m2

B∗) for f+ due to the B∗ pole. Finally, the
“outer” function is given by

φ(t, t0)=

√

nI

Kχ(0)
J

(√

t+−t+
√

t+−t0
) (t+−t)(a+1)/4

(t+−t0)1/4

×
(
√

t+−t+
√

t+
)−(b+3)(√

t+−t+
√

t+−t−
)a/2

, (7)

where nI = 3/2 and for f+: (K = 48π, a = 3, b = 2),

while for f0: (K = 16π/(t+t−), a = 1, b = 1). Here χ(0)
J

corresponds to the lowest moment of Π(q2) computed
with an OPE. At two loops in terms of the pole mass
and condensates and taking µ = mb [11, 13]

χ(0)
f+

=
3
[

1+1.140 αs(mb)
]

32π2m2
b

−
mb 〈ūu〉

m6
b

−
〈αsG2〉
12πm6

b

,

χ(0)
f0

=

[

1+0.751 αs(mb)
]

8π2
+

mb 〈ūu〉
m4

b

+
〈αsG2〉
12πm4

b

, (8)

with mb〈ūu〉 * −0.076 GeV4, 〈αsG2〉 * 0.063GeV4. We
use mpole

b = 4.88 GeV as a central value. With Eq. (5)
the dispersive bound gives a constraint on the coefficients

nA
∑

k=0

a2
k ≤ 1 , (9)

for any choice of nA.
Eqs. (5) and (9) give only a weak constraint on the

normalization of the form factor f+. In particular, data
favors a0 ∼ 0.02, so a2

0 , 1. The main power of ana-
lyticity is that if we fix f+(q2) at nA input points then
it constrains the q2 shape between these points. With
nA = 5 the error from the bounds is negligibly small rel-
ative to other uncertainties, as we see below (our analysis

is also insensitive to the exact values of χ(0)
J or mb). The

bounds can be strengthened using heavy quark symme-
try or higher moments of Π(q2) [12], but since this uncer-
tainty is very small we do not use these improvements.

Input Points. A constraint at q2 = 0 is useful in pin-
ning down the form factor in the small q2 region. Here we
implement a constraint at q2 = 0 on |Vub|f+(0) that fol-
lows from a B → ππ factorization theorem derived with
SCET [7]. The result holds in QCD and uses isospin sym-
metry and data to eliminate effects due to the relative
magnitude and strong phase of penguin contributions.

Manipulating formulas in [7] we can write the result in
terms of observables

|Vub|f+(0) =

[

64π

m3
Bf2

π

Br(B− → π0π−)

τB− |Vud|2G2
F

]1/2

(10)

×
[

(C1 + C2)tc − C2

C2
1 − C2

2

][

1 + O
(

αs(mb),
ΛQCD

mb

)

]

,

where C1 = 1.08 and C2 = −0.177 are parameters in the
electroweak Hamiltonian at µ = mb (we drop the tiny
C3,4), and tc is a hadronic parameter whose deviation
from 1 measures the size of color suppressed amplitudes.
In terms of the angles β, γ of the unitarity triangle and
CP-asymmetries Sπ+π− and Cπ+π− in B → π+π−,

tc =

√

Rc
(1+Bπ+π− cos 2β + Sπ+π− sin 2β)

2 sin2γ
, (11)

with Rc =[Br(B0 → π+π−)τB− ]/[2Br(B− → π0π−)τB0 ],
and Bπ+π− = (1− C2

π+π−
−S2

π+π−
)1/2. Eqs. (10,11) im-

prove on relations between B → ππ and B → π(ν̄
derived earlier, such as in Ref. [14], because they do not
rely on expanding in αs(

√
mbΛ) or require the use of

QCD sum rules for input parameters to calculate tc.
Using the latest B → ππ data [1], Eq. (10) gives

f0
in = |Vub|f+(0) = (7.2 ± 1.8) × 10−4 . (12)

This estimate of 25% uncertainty accounts for the 10%
experimental uncertainty, and ∼ 20% theory uncertainty
from perturbative and power corrections. The experi-
mental uncertainty includes γ = 70◦ ± 15◦ which cov-
ers the range from global fits and that preferred by the
SCET based B → ππ method from Ref. [15]. As noted
in [7] the dependence of |Vub|f+(0) on γ is mild for larger
γ’s. Estimates for perturbative and power corrections to
Eq. (10) are each at the ∼ 10% level even when “chirally
enhanced” terms are included [14, 16].

Next we consider lattice QCD input points, fk
in, which

are crucial in fixing the form factor normalization. Tech-
nically, using staggered fermions might add model depen-
dence from the (detM)1/4 trick. We take the remark-
able agreement in [17] as an indication that this model
dependence is small.Using the unquenched MILC config-
urations, Refs [2, 3] find consistent results with different
heavy quark actions. As our default we use the Fermilab
results since they have a point at larger q2:

f1
in = f+(15.87) = 0.799± 0.058 ± 0.088 , (13)

f2
in = f+(18.58) = 1.128± 0.086 ± 0.124 ,

f3
in = f+(24.09) = 3.262± 0.324 ± 0.359 .

The first errors in (13) are statistical, ±σi, and the second
are 11% systematic errors, ±yf i

in, with y = 0.11. For the
lattice error matrix, we use Eij = σ2

i δij + y2f i
inf

j
in, which

takes σi uncorrelated and includes 100% correlation in
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]

32π2m2
b

−
mb 〈ūu〉

m6
b

−
〈αsG2〉
12πm6

b

,

χ(0)
f0

=

[

1+0.751 αs(mb)
]

8π2
+

mb 〈ūu〉
m4

b

+
〈αsG2〉
12πm4

b

, (8)

with mb〈ūu〉 * −0.076 GeV4, 〈αsG2〉 * 0.063GeV4. We
use mpole

b = 4.88 GeV as a central value. With Eq. (5)
the dispersive bound gives a constraint on the coefficients

nA
∑

k=0

a2
k ≤ 1 , (9)

for any choice of nA.
Eqs. (5) and (9) give only a weak constraint on the

normalization of the form factor f+. In particular, data
favors a0 ∼ 0.02, so a2

0 , 1. The main power of ana-
lyticity is that if we fix f+(q2) at nA input points then
it constrains the q2 shape between these points. With
nA = 5 the error from the bounds is negligibly small rel-
ative to other uncertainties, as we see below (our analysis

is also insensitive to the exact values of χ(0)
J or mb). The

bounds can be strengthened using heavy quark symme-
try or higher moments of Π(q2) [12], but since this uncer-
tainty is very small we do not use these improvements.

Input Points. A constraint at q2 = 0 is useful in pin-
ning down the form factor in the small q2 region. Here we
implement a constraint at q2 = 0 on |Vub|f+(0) that fol-
lows from a B → ππ factorization theorem derived with
SCET [7]. The result holds in QCD and uses isospin sym-
metry and data to eliminate effects due to the relative
magnitude and strong phase of penguin contributions.

Manipulating formulas in [7] we can write the result in
terms of observables

|Vub|f+(0) =

[

64π

m3
Bf2

π

Br(B− → π0π−)

τB− |Vud|2G2
F

]1/2

(10)

×
[

(C1 + C2)tc − C2

C2
1 − C2

2

][

1 + O
(

αs(mb),
ΛQCD

mb

)

]

,

where C1 = 1.08 and C2 = −0.177 are parameters in the
electroweak Hamiltonian at µ = mb (we drop the tiny
C3,4), and tc is a hadronic parameter whose deviation
from 1 measures the size of color suppressed amplitudes.
In terms of the angles β, γ of the unitarity triangle and
CP-asymmetries Sπ+π− and Cπ+π− in B → π+π−,

tc =

√

Rc
(1+Bπ+π− cos 2β + Sπ+π− sin 2β)

2 sin2γ
, (11)

with Rc =[Br(B0 → π+π−)τB− ]/[2Br(B− → π0π−)τB0 ],
and Bπ+π− = (1− C2

π+π−
−S2

π+π−
)1/2. Eqs. (10,11) im-

prove on relations between B → ππ and B → π(ν̄
derived earlier, such as in Ref. [14], because they do not
rely on expanding in αs(

√
mbΛ) or require the use of

QCD sum rules for input parameters to calculate tc.
Using the latest B → ππ data [1], Eq. (10) gives

f0
in = |Vub|f+(0) = (7.2 ± 1.8) × 10−4 . (12)

This estimate of 25% uncertainty accounts for the 10%
experimental uncertainty, and ∼ 20% theory uncertainty
from perturbative and power corrections. The experi-
mental uncertainty includes γ = 70◦ ± 15◦ which cov-
ers the range from global fits and that preferred by the
SCET based B → ππ method from Ref. [15]. As noted
in [7] the dependence of |Vub|f+(0) on γ is mild for larger
γ’s. Estimates for perturbative and power corrections to
Eq. (10) are each at the ∼ 10% level even when “chirally
enhanced” terms are included [14, 16].

Next we consider lattice QCD input points, fk
in, which

are crucial in fixing the form factor normalization. Tech-
nically, using staggered fermions might add model depen-
dence from the (detM)1/4 trick. We take the remark-
able agreement in [17] as an indication that this model
dependence is small.Using the unquenched MILC config-
urations, Refs [2, 3] find consistent results with different
heavy quark actions. As our default we use the Fermilab
results since they have a point at larger q2:

f1
in = f+(15.87) = 0.799± 0.058 ± 0.088 , (13)

f2
in = f+(18.58) = 1.128± 0.086 ± 0.124 ,

f3
in = f+(24.09) = 3.262± 0.324 ± 0.359 .

The first errors in (13) are statistical, ±σi, and the second
are 11% systematic errors, ±yf i

in, with y = 0.11. For the
lattice error matrix, we use Eij = σ2

i δij + y2f i
inf

j
in, which

takes σi uncorrelated and includes 100% correlation in

P and phi contain most of the complexity of the 
form factors.  Unitarity requires simply that

Builds in effects of B* pole without spoiling 
unitarity constraints.

It is simply                        !

ar
X

iv
:h

ep
-p

h
/0

5
0

4
2

0
9

 v
1

  
 2

5
 A

p
r 

2
0

0
5

A Precision Model Independent Determination of |Vub| from B → πlν
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A precision method for determining |Vub| using the full range in q2 of B → π"ν data is presented.
At large q2 the form factor is taken from unquenched lattice QCD, at q2 = 0 we impose a model
independent constraint obtained from B → ππ using the soft-collinear effective theory, and the shape
is constrained using QCD dispersion relations. We find |Vub| = (3.54 ± 0.17 ± 0.44) × 10−3. With
5% experimental error and 12% theory error, this is competitive with inclusive methods. Theory
error is dominated by the input points, with negligible uncertainty from the dispersion relations.

The remarkable success of the B-factories have lead to
a new era for precision results in the CKM sector of the
standard model. For |Vub| inclusive and exclusive mea-
surements from semileptonic decays should yield a precise
value, but must surmount the now dominant theoreti-
cal uncertainties. For inclusive decays measuring |Vub| is
more difficult than |Vcb| because cuts make observables
either sensitive to a structure function which demands
input from radiative decays, or require neutrino recon-
struction. The heavy flavor averaging group (HFAG)’s
average from inclusive decays based on operator product
expansion techniques is 103|Vub| = 4.7±0.4 [1]. Exclusive
techniques for |Vcb| use heavy quark symmetry (HQS) to
normalize the form factors. For |Vub| from B → π"ν̄ sym-
metry techniques fall flat, and model independent form
factor information relies on precision lattice QCD.

Recently, the Fermilab [2] and HPQCD [3] groups have
presented unquenched lattice results for B → π form
factors. Uncertainties in the discretization restrict the
kinematics to pions that are not too energetic Eπ

<∼
1 GeV, which for the invariant mass of the lepton pair
is 15 GeV2 <∼ q2 ≤ 26.4 GeV2. Unfortunately, since the
phase space goes as |$pπ|3, there are less events and more
experimental uncertainty in this region. For B̄0 → π+"ν̄

dΓ/dq2 = N |Vub|2 |$pπ|3 |f+(q2)|2 , (1)

where N = G2
F /(24π3). For example, Belle [4] found

103 |Vub|q2≥16 =

{

3.87 ± 0.70 ± 0.22+0.85
−0.51 (FNAL)

4.73 ± 0.85 ± 0.27+0.74
−0.50 (HPQCD)

(2)

where the errors are statistical, systematic, and theoret-
ical. In quadrature this is an uncertainty of ∼ 25%.

The latest Babar, CLEO, and Belle average is [5],

Br(B̄0 → π+"−ν̄) = (1.39 ± 0.12)× 10−4 , (3)

which should yield |Vub| at the % 5% level. So far extrac-
tions of |Vub| from the total Br rely on QCD sum rules [6]
and quark models for input. For example, HFAG reports
results on Br(B → {π, ρ, ω}"ν̄) that lead to central values

103|Vub| = 2.9 to 3.9 [1]. Due to the uncertainty they do
not currently average over exclusive extractions of |Vub|.

In this letter we present a model independent exclu-
sive method for determining the entire B → π form fac-
tor f+(q2) and thus |Vub|. A total uncertainty δ|Vub| %
13% is achieved by combining 1) the unquenched lat-
tice results [2, 3], 2) a constraint at q2 = 0 derived
from SCET [7] and B → ππ data, which determines
|Vub|f+(0), and 3) dispersion relations and analyticity
which allow us to interpolate over the entire region
of q2 by bounding the shape of f+(q2) between input
points [8, 9]. The SCET constraint induces an additional
implicit functional dependence on |Vub| in the form fac-
tors. Our first analysis uses just the total Br, yielding an
analytic formula for |Vub|. The second includes q2-spectra
with a χ2 minimization which allows the experimental
data to constrain the theoretical uncertainty. A differ-
ent approach for including the q2-spectra was developed
in [10] based on the Lellouch distribution method [11].

Analyticity Bounds. We briefly review how analytic-
ity constrains the B → π form factors, f+ and f0, re-
ferring to [8, 9, 12] for more detail. Our notation fol-
lows [12], and we set t± = (mB ± mπ)2. Suitable mo-
ments of a time ordered product of currents, Πµν(q2) =
i
∫

d4x eiqx〈0|TJµ(x)J†ν (0)|0〉 can be computed with an
OPE in QCD and are related by a dispersion relation to
a positive definite sum over exclusive states

ImΠµν=

∫

[p.s.] δ(q−pBπ)〈0|J†ν |B̄π〉〈B̄π|Jµ|0〉 + . . . (4)

Keeping this first term bounds a weighted integral over
t+ ≤ t ≤ ∞ of the squared Bπ production form factor.
Using analyticity and crossing symmetry this constrains
the shape in t = q2 of the form factors for B → π in the
physical region 0 ≤ t ≤ t−. The results are simple to
express by writing each of f+(t), f0(t) as a series

f(t) =
1

P (t)φ(t, t0)

∞
∑

k=0

ak(t0) z(t, t0)
k , (5)

with coefficients ak that parameterize different allowed

By calculating the current-current correlation function in perturbation 
theory and using the JµBπ amplitude,

with crossing symmetry and analyticity, one obtains a simple constraint 
on the aks in the equation
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A precision method for determining |Vub| using the full range in q2 of B → π"ν data is presented.
At large q2 the form factor is taken from unquenched lattice QCD, at q2 = 0 we impose a model
independent constraint obtained from B → ππ using the soft-collinear effective theory, and the shape
is constrained using QCD dispersion relations. We find |Vub| = (3.54 ± 0.17 ± 0.44) × 10−3. With
5% experimental error and 12% theory error, this is competitive with inclusive methods. Theory
error is dominated by the input points, with negligible uncertainty from the dispersion relations.

The remarkable success of the B-factories have lead to
a new era for precision results in the CKM sector of the
standard model. For |Vub| inclusive and exclusive mea-
surements from semileptonic decays should yield a precise
value, but must surmount the now dominant theoreti-
cal uncertainties. For inclusive decays measuring |Vub| is
more difficult than |Vcb| because cuts make observables
either sensitive to a structure function which demands
input from radiative decays, or require neutrino recon-
struction. The heavy flavor averaging group (HFAG)’s
average from inclusive decays based on operator product
expansion techniques is 103|Vub| = 4.7±0.4 [1]. Exclusive
techniques for |Vcb| use heavy quark symmetry (HQS) to
normalize the form factors. For |Vub| from B → π"ν̄ sym-
metry techniques fall flat, and model independent form
factor information relies on precision lattice QCD.

Recently, the Fermilab [2] and HPQCD [3] groups have
presented unquenched lattice results for B → π form
factors. Uncertainties in the discretization restrict the
kinematics to pions that are not too energetic Eπ

<∼
1 GeV, which for the invariant mass of the lepton pair
is 15 GeV2 <∼ q2 ≤ 26.4 GeV2. Unfortunately, since the
phase space goes as |$pπ|3, there are less events and more
experimental uncertainty in this region. For B̄0 → π+"ν̄

dΓ/dq2 = N |Vub|2 |$pπ|3 |f+(q2)|2 , (1)

where N = G2
F /(24π3). For example, Belle [4] found

103 |Vub|q2≥16 =

{

3.87 ± 0.70 ± 0.22+0.85
−0.51 (FNAL)

4.73 ± 0.85 ± 0.27+0.74
−0.50 (HPQCD)

(2)

where the errors are statistical, systematic, and theoret-
ical. In quadrature this is an uncertainty of ∼ 25%.

The latest Babar, CLEO, and Belle average is [5],

Br(B̄0 → π+"−ν̄) = (1.39 ± 0.12)× 10−4 , (3)

which should yield |Vub| at the % 5% level. So far extrac-
tions of |Vub| from the total Br rely on QCD sum rules [6]
and quark models for input. For example, HFAG reports
results on Br(B → {π, ρ, ω}"ν̄) that lead to central values

103|Vub| = 2.9 to 3.9 [1]. Due to the uncertainty they do
not currently average over exclusive extractions of |Vub|.

In this letter we present a model independent exclu-
sive method for determining the entire B → π form fac-
tor f+(q2) and thus |Vub|. A total uncertainty δ|Vub| %
13% is achieved by combining 1) the unquenched lat-
tice results [2, 3], 2) a constraint at q2 = 0 derived
from SCET [7] and B → ππ data, which determines
|Vub|f+(0), and 3) dispersion relations and analyticity
which allow us to interpolate over the entire region
of q2 by bounding the shape of f+(q2) between input
points [8, 9]. The SCET constraint induces an additional
implicit functional dependence on |Vub| in the form fac-
tors. Our first analysis uses just the total Br, yielding an
analytic formula for |Vub|. The second includes q2-spectra
with a χ2 minimization which allows the experimental
data to constrain the theoretical uncertainty. A differ-
ent approach for including the q2-spectra was developed
in [10] based on the Lellouch distribution method [11].

Analyticity Bounds. We briefly review how analytic-
ity constrains the B → π form factors, f+ and f0, re-
ferring to [8, 9, 12] for more detail. Our notation fol-
lows [12], and we set t± = (mB ± mπ)2. Suitable mo-
ments of a time ordered product of currents, Πµν(q2) =
i
∫

d4x eiqx〈0|TJµ(x)J†ν (0)|0〉 can be computed with an
OPE in QCD and are related by a dispersion relation to
a positive definite sum over exclusive states

ImΠµν=

∫

[p.s.] δ(q−pBπ)〈0|J†ν |B̄π〉〈B̄π|Jµ|0〉 + . . . (4)

Keeping this first term bounds a weighted integral over
t+ ≤ t ≤ ∞ of the squared Bπ production form factor.
Using analyticity and crossing symmetry this constrains
the shape in t = q2 of the form factors for B → π in the
physical region 0 ≤ t ≤ t−. The results are simple to
express by writing each of f+(t), f0(t) as a series

f(t) =
1

P (t)φ(t, t0)

∞
∑

k=0

ak(t0) z(t, t0)
k , (5)

with coefficients ak that parameterize different allowed
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A precision method for determining |Vub| using the full range in q2 of B → π"ν data is presented.
At large q2 the form factor is taken from unquenched lattice QCD, at q2 = 0 we impose a model
independent constraint obtained from B → ππ using the soft-collinear effective theory, and the shape
is constrained using QCD dispersion relations. We find |Vub| = (3.54 ± 0.17 ± 0.44) × 10−3. With
5% experimental error and 12% theory error, this is competitive with inclusive methods. Theory
error is dominated by the input points, with negligible uncertainty from the dispersion relations.

The remarkable success of the B-factories have lead to
a new era for precision results in the CKM sector of the
standard model. For |Vub| inclusive and exclusive mea-
surements from semileptonic decays should yield a precise
value, but must surmount the now dominant theoreti-
cal uncertainties. For inclusive decays measuring |Vub| is
more difficult than |Vcb| because cuts make observables
either sensitive to a structure function which demands
input from radiative decays, or require neutrino recon-
struction. The heavy flavor averaging group (HFAG)’s
average from inclusive decays based on operator product
expansion techniques is 103|Vub| = 4.7±0.4 [1]. Exclusive
techniques for |Vcb| use heavy quark symmetry (HQS) to
normalize the form factors. For |Vub| from B → π"ν̄ sym-
metry techniques fall flat, and model independent form
factor information relies on precision lattice QCD.

Recently, the Fermilab [2] and HPQCD [3] groups have
presented unquenched lattice results for B → π form
factors. Uncertainties in the discretization restrict the
kinematics to pions that are not too energetic Eπ

<∼
1 GeV, which for the invariant mass of the lepton pair
is 15 GeV2 <∼ q2 ≤ 26.4 GeV2. Unfortunately, since the
phase space goes as |$pπ|3, there are less events and more
experimental uncertainty in this region. For B̄0 → π+"ν̄

dΓ/dq2 = N |Vub|2 |$pπ|3 |f+(q2)|2 , (1)

where N = G2
F /(24π3). For example, Belle [4] found

103 |Vub|q2≥16 =

{

3.87 ± 0.70 ± 0.22+0.85
−0.51 (FNAL)

4.73 ± 0.85 ± 0.27+0.74
−0.50 (HPQCD)

(2)

where the errors are statistical, systematic, and theoret-
ical. In quadrature this is an uncertainty of ∼ 25%.

The latest Babar, CLEO, and Belle average is [5],

Br(B̄0 → π+"−ν̄) = (1.39 ± 0.12)× 10−4 , (3)

which should yield |Vub| at the % 5% level. So far extrac-
tions of |Vub| from the total Br rely on QCD sum rules [6]
and quark models for input. For example, HFAG reports
results on Br(B → {π, ρ, ω}"ν̄) that lead to central values

103|Vub| = 2.9 to 3.9 [1]. Due to the uncertainty they do
not currently average over exclusive extractions of |Vub|.

In this letter we present a model independent exclu-
sive method for determining the entire B → π form fac-
tor f+(q2) and thus |Vub|. A total uncertainty δ|Vub| %
13% is achieved by combining 1) the unquenched lat-
tice results [2, 3], 2) a constraint at q2 = 0 derived
from SCET [7] and B → ππ data, which determines
|Vub|f+(0), and 3) dispersion relations and analyticity
which allow us to interpolate over the entire region
of q2 by bounding the shape of f+(q2) between input
points [8, 9]. The SCET constraint induces an additional
implicit functional dependence on |Vub| in the form fac-
tors. Our first analysis uses just the total Br, yielding an
analytic formula for |Vub|. The second includes q2-spectra
with a χ2 minimization which allows the experimental
data to constrain the theoretical uncertainty. A differ-
ent approach for including the q2-spectra was developed
in [10] based on the Lellouch distribution method [11].

Analyticity Bounds. We briefly review how analytic-
ity constrains the B → π form factors, f+ and f0, re-
ferring to [8, 9, 12] for more detail. Our notation fol-
lows [12], and we set t± = (mB ± mπ)2. Suitable mo-
ments of a time ordered product of currents, Πµν(q2) =
i
∫

d4x eiqx〈0|TJµ(x)J†ν (0)|0〉 can be computed with an
OPE in QCD and are related by a dispersion relation to
a positive definite sum over exclusive states

ImΠµν=

∫

[p.s.] δ(q−pBπ)〈0|J†ν |B̄π〉〈B̄π|Jµ|0〉 + . . . (4)

Keeping this first term bounds a weighted integral over
t+ ≤ t ≤ ∞ of the squared Bπ production form factor.
Using analyticity and crossing symmetry this constrains
the shape in t = q2 of the form factors for B → π in the
physical region 0 ≤ t ≤ t−. The results are simple to
express by writing each of f+(t), f0(t) as a series

f(t) =
1

P (t)φ(t, t0)

∞
∑

k=0

ak(t0) z(t, t0)
k , (5)

with coefficients ak that parameterize different allowed

2

functional forms. The variable

z(t, t0) =

√
t+ − t −

√
t+ − t0√

t+ − t +
√

t+ − t0
, (6)

maps t+ < t < ∞ onto |z| = 1 and −∞ < t < t+ onto z ∈
[−1, 1]. t0 is a free parameter that can be chosen to attain
the tightest possible bounds, and it defines z(t0, t0) = 0.
We take t0 = 0.65 t− giving −0.34 ≤ z ≤ 0.22 for the
B → π range. In Eq. (5) the “Blaschke” factor P (t)
eliminates sub-threshold poles, so P (t) = 1 for f0, while
P (t) = z(t; m2

B∗) for f+ due to the B∗ pole. Finally, the
“outer” function is given by

φ(t, t0)=

√

nI

Kχ(0)
J

(√

t+−t+
√

t+−t0
) (t+−t)(a+1)/4

(t+−t0)1/4

×
(
√

t+−t+
√

t+
)−(b+3)(√

t+−t+
√

t+−t−
)a/2

, (7)

where nI = 3/2 and for f+: (K = 48π, a = 3, b = 2),

while for f0: (K = 16π/(t+t−), a = 1, b = 1). Here χ(0)
J

corresponds to the lowest moment of Π(q2) computed
with an OPE. At two loops in terms of the pole mass
and condensates and taking µ = mb [11, 13]

χ(0)
f+

=
3
[

1+1.140 αs(mb)
]

32π2m2
b

−
mb 〈ūu〉

m6
b

−
〈αsG2〉
12πm6

b

,

χ(0)
f0

=

[

1+0.751 αs(mb)
]

8π2
+

mb 〈ūu〉
m4

b

+
〈αsG2〉
12πm4

b

, (8)

with mb〈ūu〉 * −0.076 GeV4, 〈αsG2〉 * 0.063GeV4. We
use mpole

b = 4.88 GeV as a central value. With Eq. (5)
the dispersive bound gives a constraint on the coefficients

nA
∑

k=0

a2
k ≤ 1 , (9)

for any choice of nA.
Eqs. (5) and (9) give only a weak constraint on the

normalization of the form factor f+. In particular, data
favors a0 ∼ 0.02, so a2

0 , 1. The main power of ana-
lyticity is that if we fix f+(q2) at nA input points then
it constrains the q2 shape between these points. With
nA = 5 the error from the bounds is negligibly small rel-
ative to other uncertainties, as we see below (our analysis

is also insensitive to the exact values of χ(0)
J or mb). The

bounds can be strengthened using heavy quark symme-
try or higher moments of Π(q2) [12], but since this uncer-
tainty is very small we do not use these improvements.

Input Points. A constraint at q2 = 0 is useful in pin-
ning down the form factor in the small q2 region. Here we
implement a constraint at q2 = 0 on |Vub|f+(0) that fol-
lows from a B → ππ factorization theorem derived with
SCET [7]. The result holds in QCD and uses isospin sym-
metry and data to eliminate effects due to the relative
magnitude and strong phase of penguin contributions.

Manipulating formulas in [7] we can write the result in
terms of observables

|Vub|f+(0) =

[

64π

m3
Bf2

π

Br(B− → π0π−)

τB− |Vud|2G2
F

]1/2

(10)

×
[

(C1 + C2)tc − C2

C2
1 − C2

2

][

1 + O
(

αs(mb),
ΛQCD

mb

)

]

,

where C1 = 1.08 and C2 = −0.177 are parameters in the
electroweak Hamiltonian at µ = mb (we drop the tiny
C3,4), and tc is a hadronic parameter whose deviation
from 1 measures the size of color suppressed amplitudes.
In terms of the angles β, γ of the unitarity triangle and
CP-asymmetries Sπ+π− and Cπ+π− in B → π+π−,

tc =

√

Rc
(1+Bπ+π− cos 2β + Sπ+π− sin 2β)

2 sin2γ
, (11)

with Rc =[Br(B0 → π+π−)τB− ]/[2Br(B− → π0π−)τB0 ],
and Bπ+π− = (1− C2

π+π−
−S2

π+π−
)1/2. Eqs. (10,11) im-

prove on relations between B → ππ and B → π(ν̄
derived earlier, such as in Ref. [14], because they do not
rely on expanding in αs(

√
mbΛ) or require the use of

QCD sum rules for input parameters to calculate tc.
Using the latest B → ππ data [1], Eq. (10) gives

f0
in = |Vub|f+(0) = (7.2 ± 1.8) × 10−4 . (12)

This estimate of 25% uncertainty accounts for the 10%
experimental uncertainty, and ∼ 20% theory uncertainty
from perturbative and power corrections. The experi-
mental uncertainty includes γ = 70◦ ± 15◦ which cov-
ers the range from global fits and that preferred by the
SCET based B → ππ method from Ref. [15]. As noted
in [7] the dependence of |Vub|f+(0) on γ is mild for larger
γ’s. Estimates for perturbative and power corrections to
Eq. (10) are each at the ∼ 10% level even when “chirally
enhanced” terms are included [14, 16].

Next we consider lattice QCD input points, fk
in, which

are crucial in fixing the form factor normalization. Tech-
nically, using staggered fermions might add model depen-
dence from the (detM)1/4 trick. We take the remark-
able agreement in [17] as an indication that this model
dependence is small.Using the unquenched MILC config-
urations, Refs [2, 3] find consistent results with different
heavy quark actions. As our default we use the Fermilab
results since they have a point at larger q2:

f1
in = f+(15.87) = 0.799± 0.058 ± 0.088 , (13)

f2
in = f+(18.58) = 1.128± 0.086 ± 0.124 ,

f3
in = f+(24.09) = 3.262± 0.324 ± 0.359 .

The first errors in (13) are statistical, ±σi, and the second
are 11% systematic errors, ±yf i

in, with y = 0.11. For the
lattice error matrix, we use Eij = σ2

i δij + y2f i
inf

j
in, which

takes σi uncorrelated and includes 100% correlation in

2

functional forms. The variable

z(t, t0) =

√
t+ − t −

√
t+ − t0√

t+ − t +
√

t+ − t0
, (6)

maps t+ < t < ∞ onto |z| = 1 and −∞ < t < t+ onto z ∈
[−1, 1]. t0 is a free parameter that can be chosen to attain
the tightest possible bounds, and it defines z(t0, t0) = 0.
We take t0 = 0.65 t− giving −0.34 ≤ z ≤ 0.22 for the
B → π range. In Eq. (5) the “Blaschke” factor P (t)
eliminates sub-threshold poles, so P (t) = 1 for f0, while
P (t) = z(t; m2

B∗) for f+ due to the B∗ pole. Finally, the
“outer” function is given by

φ(t, t0)=

√

nI

Kχ(0)
J

(√

t+−t+
√

t+−t0
) (t+−t)(a+1)/4

(t+−t0)1/4

×
(
√

t+−t+
√

t+
)−(b+3)(√

t+−t+
√

t+−t−
)a/2

, (7)

where nI = 3/2 and for f+: (K = 48π, a = 3, b = 2),

while for f0: (K = 16π/(t+t−), a = 1, b = 1). Here χ(0)
J

corresponds to the lowest moment of Π(q2) computed
with an OPE. At two loops in terms of the pole mass
and condensates and taking µ = mb [11, 13]

χ(0)
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=
3
[
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]

32π2m2
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−
mb 〈ūu〉

m6
b

−
〈αsG2〉
12πm6

b
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=
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]
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mb 〈ūu〉
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+
〈αsG2〉
12πm4

b

, (8)

with mb〈ūu〉 * −0.076 GeV4, 〈αsG2〉 * 0.063GeV4. We
use mpole

b = 4.88 GeV as a central value. With Eq. (5)
the dispersive bound gives a constraint on the coefficients

nA
∑

k=0

a2
k ≤ 1 , (9)

for any choice of nA.
Eqs. (5) and (9) give only a weak constraint on the

normalization of the form factor f+. In particular, data
favors a0 ∼ 0.02, so a2

0 , 1. The main power of ana-
lyticity is that if we fix f+(q2) at nA input points then
it constrains the q2 shape between these points. With
nA = 5 the error from the bounds is negligibly small rel-
ative to other uncertainties, as we see below (our analysis

is also insensitive to the exact values of χ(0)
J or mb). The

bounds can be strengthened using heavy quark symme-
try or higher moments of Π(q2) [12], but since this uncer-
tainty is very small we do not use these improvements.

Input Points. A constraint at q2 = 0 is useful in pin-
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implement a constraint at q2 = 0 on |Vub|f+(0) that fol-
lows from a B → ππ factorization theorem derived with
SCET [7]. The result holds in QCD and uses isospin sym-
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magnitude and strong phase of penguin contributions.

Manipulating formulas in [7] we can write the result in
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×
[

(C1 + C2)tc − C2
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(
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where C1 = 1.08 and C2 = −0.177 are parameters in the
electroweak Hamiltonian at µ = mb (we drop the tiny
C3,4), and tc is a hadronic parameter whose deviation
from 1 measures the size of color suppressed amplitudes.
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derived earlier, such as in Ref. [14], because they do not
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mbΛ) or require the use of

QCD sum rules for input parameters to calculate tc.
Using the latest B → ππ data [1], Eq. (10) gives

f0
in = |Vub|f+(0) = (7.2 ± 1.8) × 10−4 . (12)

This estimate of 25% uncertainty accounts for the 10%
experimental uncertainty, and ∼ 20% theory uncertainty
from perturbative and power corrections. The experi-
mental uncertainty includes γ = 70◦ ± 15◦ which cov-
ers the range from global fits and that preferred by the
SCET based B → ππ method from Ref. [15]. As noted
in [7] the dependence of |Vub|f+(0) on γ is mild for larger
γ’s. Estimates for perturbative and power corrections to
Eq. (10) are each at the ∼ 10% level even when “chirally
enhanced” terms are included [14, 16].

Next we consider lattice QCD input points, fk
in, which

are crucial in fixing the form factor normalization. Tech-
nically, using staggered fermions might add model depen-
dence from the (detM)1/4 trick. We take the remark-
able agreement in [17] as an indication that this model
dependence is small.Using the unquenched MILC config-
urations, Refs [2, 3] find consistent results with different
heavy quark actions. As our default we use the Fermilab
results since they have a point at larger q2:

f1
in = f+(15.87) = 0.799± 0.058 ± 0.088 , (13)

f2
in = f+(18.58) = 1.128± 0.086 ± 0.124 ,

f3
in = f+(24.09) = 3.262± 0.324 ± 0.359 .

The first errors in (13) are statistical, ±σi, and the second
are 11% systematic errors, ±yf i

in, with y = 0.11. For the
lattice error matrix, we use Eij = σ2
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inf
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in, which

takes σi uncorrelated and includes 100% correlation in
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We take t0 = 0.65 t− giving −0.34 ≤ z ≤ 0.22 for the
B → π range. In Eq. (5) the “Blaschke” factor P (t)
eliminates sub-threshold poles, so P (t) = 1 for f0, while
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while for f0: (K = 16π/(t+t−), a = 1, b = 1). Here χ(0)
J

corresponds to the lowest moment of Π(q2) computed
with an OPE. At two loops in terms of the pole mass
and condensates and taking µ = mb [11, 13]
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with mb〈ūu〉 * −0.076 GeV4, 〈αsG2〉 * 0.063GeV4. We
use mpole

b = 4.88 GeV as a central value. With Eq. (5)
the dispersive bound gives a constraint on the coefficients

nA
∑

k=0

a2
k ≤ 1 , (9)

for any choice of nA.
Eqs. (5) and (9) give only a weak constraint on the

normalization of the form factor f+. In particular, data
favors a0 ∼ 0.02, so a2

0 , 1. The main power of ana-
lyticity is that if we fix f+(q2) at nA input points then
it constrains the q2 shape between these points. With
nA = 5 the error from the bounds is negligibly small rel-
ative to other uncertainties, as we see below (our analysis

is also insensitive to the exact values of χ(0)
J or mb). The

bounds can be strengthened using heavy quark symme-
try or higher moments of Π(q2) [12], but since this uncer-
tainty is very small we do not use these improvements.

Input Points. A constraint at q2 = 0 is useful in pin-
ning down the form factor in the small q2 region. Here we
implement a constraint at q2 = 0 on |Vub|f+(0) that fol-
lows from a B → ππ factorization theorem derived with
SCET [7]. The result holds in QCD and uses isospin sym-
metry and data to eliminate effects due to the relative
magnitude and strong phase of penguin contributions.

Manipulating formulas in [7] we can write the result in
terms of observables

|Vub|f+(0) =

[

64π

m3
Bf2

π

Br(B− → π0π−)
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,

where C1 = 1.08 and C2 = −0.177 are parameters in the
electroweak Hamiltonian at µ = mb (we drop the tiny
C3,4), and tc is a hadronic parameter whose deviation
from 1 measures the size of color suppressed amplitudes.
In terms of the angles β, γ of the unitarity triangle and
CP-asymmetries Sπ+π− and Cπ+π− in B → π+π−,

tc =

√

Rc
(1+Bπ+π− cos 2β + Sπ+π− sin 2β)

2 sin2γ
, (11)

with Rc =[Br(B0 → π+π−)τB− ]/[2Br(B− → π0π−)τB0 ],
and Bπ+π− = (1− C2

π+π−
−S2

π+π−
)1/2. Eqs. (10,11) im-

prove on relations between B → ππ and B → π(ν̄
derived earlier, such as in Ref. [14], because they do not
rely on expanding in αs(

√
mbΛ) or require the use of

QCD sum rules for input parameters to calculate tc.
Using the latest B → ππ data [1], Eq. (10) gives

f0
in = |Vub|f+(0) = (7.2 ± 1.8) × 10−4 . (12)

This estimate of 25% uncertainty accounts for the 10%
experimental uncertainty, and ∼ 20% theory uncertainty
from perturbative and power corrections. The experi-
mental uncertainty includes γ = 70◦ ± 15◦ which cov-
ers the range from global fits and that preferred by the
SCET based B → ππ method from Ref. [15]. As noted
in [7] the dependence of |Vub|f+(0) on γ is mild for larger
γ’s. Estimates for perturbative and power corrections to
Eq. (10) are each at the ∼ 10% level even when “chirally
enhanced” terms are included [14, 16].

Next we consider lattice QCD input points, fk
in, which

are crucial in fixing the form factor normalization. Tech-
nically, using staggered fermions might add model depen-
dence from the (detM)1/4 trick. We take the remark-
able agreement in [17] as an indication that this model
dependence is small.Using the unquenched MILC config-
urations, Refs [2, 3] find consistent results with different
heavy quark actions. As our default we use the Fermilab
results since they have a point at larger q2:

f1
in = f+(15.87) = 0.799± 0.058 ± 0.088 , (13)

f2
in = f+(18.58) = 1.128± 0.086 ± 0.124 ,

f3
in = f+(24.09) = 3.262± 0.324 ± 0.359 .

The first errors in (13) are statistical, ±σi, and the second
are 11% systematic errors, ±yf i

in, with y = 0.11. For the
lattice error matrix, we use Eij = σ2

i δij + y2f i
inf

j
in, which

takes σi uncorrelated and includes 100% correlation in
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maps t+ < t < ∞ onto |z| = 1 and −∞ < t < t+ onto z ∈
[−1, 1]. t0 is a free parameter that can be chosen to attain
the tightest possible bounds, and it defines z(t0, t0) = 0.
We take t0 = 0.65 t− giving −0.34 ≤ z ≤ 0.22 for the
B → π range. In Eq. (5) the “Blaschke” factor P (t)
eliminates sub-threshold poles, so P (t) = 1 for f0, while
P (t) = z(t; m2

B∗) for f+ due to the B∗ pole. Finally, the
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while for f0: (K = 16π/(t+t−), a = 1, b = 1). Here χ(0)
J

corresponds to the lowest moment of Π(q2) computed
with an OPE. At two loops in terms of the pole mass
and condensates and taking µ = mb [11, 13]
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with mb〈ūu〉 * −0.076 GeV4, 〈αsG2〉 * 0.063GeV4. We
use mpole

b = 4.88 GeV as a central value. With Eq. (5)
the dispersive bound gives a constraint on the coefficients

nA
∑

k=0

a2
k ≤ 1 , (9)

for any choice of nA.
Eqs. (5) and (9) give only a weak constraint on the

normalization of the form factor f+. In particular, data
favors a0 ∼ 0.02, so a2

0 , 1. The main power of ana-
lyticity is that if we fix f+(q2) at nA input points then
it constrains the q2 shape between these points. With
nA = 5 the error from the bounds is negligibly small rel-
ative to other uncertainties, as we see below (our analysis

is also insensitive to the exact values of χ(0)
J or mb). The

bounds can be strengthened using heavy quark symme-
try or higher moments of Π(q2) [12], but since this uncer-
tainty is very small we do not use these improvements.

Input Points. A constraint at q2 = 0 is useful in pin-
ning down the form factor in the small q2 region. Here we
implement a constraint at q2 = 0 on |Vub|f+(0) that fol-
lows from a B → ππ factorization theorem derived with
SCET [7]. The result holds in QCD and uses isospin sym-
metry and data to eliminate effects due to the relative
magnitude and strong phase of penguin contributions.

Manipulating formulas in [7] we can write the result in
terms of observables

|Vub|f+(0) =

[

64π
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Bf2

π
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F
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where C1 = 1.08 and C2 = −0.177 are parameters in the
electroweak Hamiltonian at µ = mb (we drop the tiny
C3,4), and tc is a hadronic parameter whose deviation
from 1 measures the size of color suppressed amplitudes.
In terms of the angles β, γ of the unitarity triangle and
CP-asymmetries Sπ+π− and Cπ+π− in B → π+π−,

tc =

√

Rc
(1+Bπ+π− cos 2β + Sπ+π− sin 2β)

2 sin2γ
, (11)

with Rc =[Br(B0 → π+π−)τB− ]/[2Br(B− → π0π−)τB0 ],
and Bπ+π− = (1− C2

π+π−
−S2

π+π−
)1/2. Eqs. (10,11) im-

prove on relations between B → ππ and B → π(ν̄
derived earlier, such as in Ref. [14], because they do not
rely on expanding in αs(

√
mbΛ) or require the use of

QCD sum rules for input parameters to calculate tc.
Using the latest B → ππ data [1], Eq. (10) gives

f0
in = |Vub|f+(0) = (7.2 ± 1.8) × 10−4 . (12)

This estimate of 25% uncertainty accounts for the 10%
experimental uncertainty, and ∼ 20% theory uncertainty
from perturbative and power corrections. The experi-
mental uncertainty includes γ = 70◦ ± 15◦ which cov-
ers the range from global fits and that preferred by the
SCET based B → ππ method from Ref. [15]. As noted
in [7] the dependence of |Vub|f+(0) on γ is mild for larger
γ’s. Estimates for perturbative and power corrections to
Eq. (10) are each at the ∼ 10% level even when “chirally
enhanced” terms are included [14, 16].

Next we consider lattice QCD input points, fk
in, which

are crucial in fixing the form factor normalization. Tech-
nically, using staggered fermions might add model depen-
dence from the (detM)1/4 trick. We take the remark-
able agreement in [17] as an indication that this model
dependence is small.Using the unquenched MILC config-
urations, Refs [2, 3] find consistent results with different
heavy quark actions. As our default we use the Fermilab
results since they have a point at larger q2:

f1
in = f+(15.87) = 0.799± 0.058 ± 0.088 , (13)

f2
in = f+(18.58) = 1.128± 0.086 ± 0.124 ,

f3
in = f+(24.09) = 3.262± 0.324 ± 0.359 .

The first errors in (13) are statistical, ±σi, and the second
are 11% systematic errors, ±yf i

in, with y = 0.11. For the
lattice error matrix, we use Eij = σ2

i δij + y2f i
inf

j
in, which

takes σi uncorrelated and includes 100% correlation in

P and phi contain most of the complexity of the 
form factors.  Unitarity requires simply that

Builds in effects of B* pole without spoiling 
unitarity constraints.
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The allowed range of z in physical semileptonic decay is small
B->π l ν:   -0.34<z<0.22,
D->π l ν :  -0.17<z<0.16,
D->K l ν :  -0.04<z<0.06,
B->D l ν :  -0.02<z<0.04.

Since                    ,

to obtain the form factors to high accuracy, say 1%, only a small 
number of parameters is needed, only 5 or 6 even in the case of 
B->π l ν.
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A Precision Model Independent Determination of |Vub| from B → πlν
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A precision method for determining |Vub| using the full range in q2 of B → π"ν data is presented.
At large q2 the form factor is taken from unquenched lattice QCD, at q2 = 0 we impose a model
independent constraint obtained from B → ππ using the soft-collinear effective theory, and the shape
is constrained using QCD dispersion relations. We find |Vub| = (3.54 ± 0.17 ± 0.44) × 10−3. With
5% experimental error and 12% theory error, this is competitive with inclusive methods. Theory
error is dominated by the input points, with negligible uncertainty from the dispersion relations.

The remarkable success of the B-factories have lead to
a new era for precision results in the CKM sector of the
standard model. For |Vub| inclusive and exclusive mea-
surements from semileptonic decays should yield a precise
value, but must surmount the now dominant theoreti-
cal uncertainties. For inclusive decays measuring |Vub| is
more difficult than |Vcb| because cuts make observables
either sensitive to a structure function which demands
input from radiative decays, or require neutrino recon-
struction. The heavy flavor averaging group (HFAG)’s
average from inclusive decays based on operator product
expansion techniques is 103|Vub| = 4.7±0.4 [1]. Exclusive
techniques for |Vcb| use heavy quark symmetry (HQS) to
normalize the form factors. For |Vub| from B → π"ν̄ sym-
metry techniques fall flat, and model independent form
factor information relies on precision lattice QCD.

Recently, the Fermilab [2] and HPQCD [3] groups have
presented unquenched lattice results for B → π form
factors. Uncertainties in the discretization restrict the
kinematics to pions that are not too energetic Eπ

<∼
1 GeV, which for the invariant mass of the lepton pair
is 15 GeV2 <∼ q2 ≤ 26.4 GeV2. Unfortunately, since the
phase space goes as |$pπ|3, there are less events and more
experimental uncertainty in this region. For B̄0 → π+"ν̄

dΓ/dq2 = N |Vub|2 |$pπ|3 |f+(q2)|2 , (1)

where N = G2
F /(24π3). For example, Belle [4] found

103 |Vub|q2≥16 =

{

3.87 ± 0.70 ± 0.22+0.85
−0.51 (FNAL)

4.73 ± 0.85 ± 0.27+0.74
−0.50 (HPQCD)

(2)

where the errors are statistical, systematic, and theoret-
ical. In quadrature this is an uncertainty of ∼ 25%.

The latest Babar, CLEO, and Belle average is [5],

Br(B̄0 → π+"−ν̄) = (1.39 ± 0.12)× 10−4 , (3)

which should yield |Vub| at the % 5% level. So far extrac-
tions of |Vub| from the total Br rely on QCD sum rules [6]
and quark models for input. For example, HFAG reports
results on Br(B → {π, ρ, ω}"ν̄) that lead to central values

103|Vub| = 2.9 to 3.9 [1]. Due to the uncertainty they do
not currently average over exclusive extractions of |Vub|.

In this letter we present a model independent exclu-
sive method for determining the entire B → π form fac-
tor f+(q2) and thus |Vub|. A total uncertainty δ|Vub| %
13% is achieved by combining 1) the unquenched lat-
tice results [2, 3], 2) a constraint at q2 = 0 derived
from SCET [7] and B → ππ data, which determines
|Vub|f+(0), and 3) dispersion relations and analyticity
which allow us to interpolate over the entire region
of q2 by bounding the shape of f+(q2) between input
points [8, 9]. The SCET constraint induces an additional
implicit functional dependence on |Vub| in the form fac-
tors. Our first analysis uses just the total Br, yielding an
analytic formula for |Vub|. The second includes q2-spectra
with a χ2 minimization which allows the experimental
data to constrain the theoretical uncertainty. A differ-
ent approach for including the q2-spectra was developed
in [10] based on the Lellouch distribution method [11].

Analyticity Bounds. We briefly review how analytic-
ity constrains the B → π form factors, f+ and f0, re-
ferring to [8, 9, 12] for more detail. Our notation fol-
lows [12], and we set t± = (mB ± mπ)2. Suitable mo-
ments of a time ordered product of currents, Πµν(q2) =
i
∫

d4x eiqx〈0|TJµ(x)J†ν (0)|0〉 can be computed with an
OPE in QCD and are related by a dispersion relation to
a positive definite sum over exclusive states

ImΠµν=

∫

[p.s.] δ(q−pBπ)〈0|J†ν |B̄π〉〈B̄π|Jµ|0〉 + . . . (4)

Keeping this first term bounds a weighted integral over
t+ ≤ t ≤ ∞ of the squared Bπ production form factor.
Using analyticity and crossing symmetry this constrains
the shape in t = q2 of the form factors for B → π in the
physical region 0 ≤ t ≤ t−. The results are simple to
express by writing each of f+(t), f0(t) as a series

f(t) =
1

P (t)φ(t, t0)

∞
∑

k=0

ak(t0) z(t, t0)
k , (5)

with coefficients ak that parameterize different allowed

X XXXXXX →

q2
z
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Strong q2 dependence in form factor is due to calculable effects.  When those are factored out, two parameters 
suffice to describe the current experimental data.  (Just like B➙Dlν, K➙πlν?!!)

“Arbitrary” analytic function -- 
choice only affects particular 

values of coefficients (a’s)

Vanishes at
 subthreshold 
(e.g. B*) poles

P (t) φ(t, t0) f(t) =
∞∑

k=0

ak(t0)z(t, t0)
k
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Coefficients in z 
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compatible with 
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a1:
a2:
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- Raw lattice data,
- Not extrapolated in m 
or a,
- Momentum dependent 
discretization errors not 
yet included.

Combined fits of f+ and f0 
may give surprisingly good 
prediction for form factors 
well beyond the range of 
lattice data.

How can the results of such fits best be compared with experiment?
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Summary
• Fermilab and MILC are calculating an extensive set of 

semileptonic form factors at several lattice spacings.

• D➔{π,K}lν

• B➔D{*}lν

• B➔πlν

• B➔Kl+l-

• The analyticity-based z expansion limits the number of 
parameters needed to describe form factor data, 
without introducing model dependence.

• In terms of the z expansion, all semileptonic form factor 
data, both lattice and experiment are consistent with 
straight lines: normalization and slope.

• Even B→πlν. 
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Extra slides

23



Paul Mackenzie DPF/JPS 2006.  October  31, 2006.

To obtain Vcb from data, theory must supply only 
normalization, which can be obtained from                 
at zero recoil.

B➙Dlν

24

Constraint on Isgur–Wise function for B → D semileptonic decays 2025

Figure 1. The function F(ω) for α = 0 (full line), 0.02 (short broken) and 0.08 (long broken).

These values of α result from setting g = 0.27 (see main text) and E = 0, 0.5 and 1 GeV,

respectively.

For #π we then obtain the expression†,

#π (ε, ω) = 1

2

∫
d4pπ

(2π)3
δ(p2π )δ(ε − v′ · pπ )Tr('+(v)ρπ'+(v′)ρπ )

= 3

8π2
g2

f 20
εξ 2(ω)

[
ω − 1√

ω2 − 1
log

(
ω +

√
ω2 − 1

)]
. (11)

Thus, inequality (7) can be explicitly written as,

ξ(ω) ! F(ω) ≡
[
1+ ω

2
+ α

(
ω − 1√

ω2 − 1
log

(
ω +

√
ω2 − 1

))]− 1
2

(12)

α = 3

16π2
g2E2

f 20
. (13)

The value of E must meet the requirement that contributions to F(ω) from higher order

corrections in the perturbative chiral expansion must be small. If, as we expect, the

expansion parameter is gE/(4πf0), a value of E = 0.5 GeV should be appropriate. In

fact, given the relative smallness of g, such choice may be somewhat conservative.

Setting E = 0.5 GeV yields α = 0.275g2. There is a recent determination of g from

D∗ → Dπ decay data [12], g = 0.27+0.04+0.05
−0.02−0.02, which leads to α = 0.020. (Note, however,

that larger values of g are not completely ruled out by current data [12].) The function

F(ω) is plotted in figure 1 for several values of α.

The derivative of F(ω) at zero recoil is given by

F ′(ω = 1) = −1
4

(
1+ 8α

3

)
. (14)

† #π vanishes at the zero-recoil point ω = 1 due to the factor in square brackets in (11), a result which holds

true also in the case of many pion emission [13].

Form factors are well described by the 
Isgur-Wise function.
Governed by two parameters to good 
approximation: normalization and slope.
Slope parameter is well measured by 
experiment.

B→ D(∗)l! decay

B(B→ D(∗)l!) " |Vcb|2|FB→D(∗)(1)|2
Z
dw f (∗)(w)
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Figure 4. Dispersive bound for f 0 and f + with UKQCD lattice

data. Model-independent QCD bounds with 90%, 70%, 50% and

30% confidence levels are given by the pair of curves. Figure

taken from Ref. [ 7].

in two different methods and equate the results. The two

computational methods are : (1) light cone expansion

which is expressed by the pion light-cone wavefunction

φπ(u) and (2) the dispersion relation which takes the fol-
lowing sum of the physical poles

CFv ∼
m2
B
fB

mb

f +(q2)
1

m2
B
− p2

B

+ higher poles, (5)

where higher poles are suppressed by Borel transformation

with M and approximated by the light-cone expansion re-

sults above a threshold s2
0
.

The theoretical input parameters are the parameters ai’s

of light-cone wavefunctions in the Gegenbauer polynomial

expansion,

φπ = 6u(1 − u)[1 + a2C3/22 (2u − 1) + · · ·], (6)

the B meson decay constant fB, the b quark mass mb, the

threshold s2
0
, and the parameter M for the Borel transfor-

mation.

We here give the new results of Ref. [ 12] as an example.

It is found that the radiative correction is about 10% and

the correction from higher twists ( twist 3) is ∼ 30%. The
results for q2 < 14 GeV2 are well fitted by

f +(q2) =
F(0)

1 − aq2/m2
B
+ b(q2/m2

B
)2
. (7)

Light-cone QCD sum rule results for q2 < 14 GeV2 can
also be fitted by the pole dominance ansatz.

f +(q2) =
c

1 − q2/m2
B∗

(8)

where c ≡ fB∗gBB∗π/(2mB∗) = 0.414+0.016−0.018 plus systematic

errors.

Fig. 2.1 shows the result by the light-cone QCD sum rule.

It is remarkable that the light-cone QCD sum rule give con-

sistent results with lattice QCD.

3 B→ ρlν

Recently, UKQCD collaboration [ 13] and SPQcdR col-

laboration [ 14] started studies of B → ρlν form factors.

Both collaborations use O(a)-improved Wilson action for

the heavy quark and extrapolate the numerical results of

mQ ∼ mc towards the physical b quark mass. The lattice

spacings are a−1= 2.0 and 2.7 GeV for UKQCD and a−1 =

2.7 and 3.7 GeV for SPQcdR.

UKQCD fits the lattice data for q2 > 14 GeV2 to the fol-
lowing form

1

|Vub|2
dΓ

dq2
=

G2
F
q2[λ(q2)]1/2

192π3m3
B

(a + b(q2 − q2max)), .

The fit coefficients are a = 38+8−5 ± 5 GeV
2 and b = 0 ± 2 ±

1, where the first error is statistical and the second is the

extrapolation error for both a and b .

SPQcdR collaboration obtains form factors for q2 > 10
GeV2. They find the results which is consistent with the

light-cone QCD sum rule results.

4 B→ D(∗)lν

One can extract |Vcb| from the B → D(∗)lν semileptonic
decay near zero recoil as

dΓ

dω
(B→ D(∗)) ∝ |Vcb|2|FB→D(∗)(ω)|2, (9)

where ω ≡ v · v′ and FB→D(∗)lν are the linear combinations
of form factors h±, hA1,2,3 . One important outcome from the
heavy quark symmetry is that the form factor FB→D(∗)lν is
equal to unity at zero recoil up to perturbatively calculable
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Ratio method: determine                   
from a ratio that goes to 1 with 
vanishing errors in the symmetry 
limit.
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from a ratio that goes to 1 with 
vanishing errors in the symmetry 
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Used in renormalization 
of the vector current.
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Uncertainties cancel in 
ratio in the symmetry limit.
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8]

〈π(kπ)|q̄γµb|B(v)〉 = 2
[

f1(v · kπ)vµ + f2(v · kπ)
k
µ
π

v · kπ

]

, (3)

is also useful for discussing the heavy quark symmetry and

the chiral symmetry of the form factors in a transparent

way.

2.1 Lattice results

Lattice calculation is possible only in limited situations.

Spatial momenta must be much smaller than the cutoff, i.e.

|#pB|, |#kπ| < 1 GeV. This means v·kπ ≡ Eπ < 1 GeV or equiv-
alently q2 > 18 GeV2. Another limitation is that due to
the slowing down, simulations with very small light quark

masses are difficult so that usual mass range for the light

quark masses in practical simulations is ms/3 ≤ mq ≤ ms

or mπ = 0.4 ∼ 0.8 GeV. Therefore in order to obtain phys-
ical results chiral extrapolations in the light quark masses

are necessary.

So far all the lattice calculations of the form factors are

done only in quenched approximation. APE collaboration

[ 1] and UKQCD collaboration computed B → πlν form
factors for a fine lattice with the inverse lattice spacing

a−1 ∼ 2.7 GeV. They used relativistic formalism for the

heavy quark and extrapolated the results of heavy-lightme-

son around charm quark masses to the bottom quark mass.

Fermilab collaboration [ 3] used the Fermilab formalism

for the heavy quark and computed the form factors on three

lattices with a−1 = 1.2 ∼ 2.6 GeV . JLQCD collaboration
[ 4] computed the form factors using NRQCD formalism

for the heavy quark on a a−1 = 1.64 GeV. NRQCD col-

laboration [ 5] also used NRQCD formalism for the heavy

quark and an improved light quark action (D234 action)

on a anisotropic lattice with a−1 = 1.2 GeV (spatial), 3.3
GeV (temporal). In all of these calculations the light pseu-

doscalar meson masses are 0.4 ∼ 0.8 GeV. Fig. 1 shows
the result by different lattice groups, f +(q2) agrees within

systematic errorswhile f 0(q2) shows deviations among dif-

ferent methods.

The reason for the discrepancies in f 0 can be attributed to

the systematic error in the chiral extrapolation and heavy

quark mass extrapolation (interpolation) error. In the fol-

lowing, we examine these errors in more detail. Light

quark mass mq dependence of form factors with fixed spa-

tial momenta ap = 2π
16
(1, 0, 0) is shown in Fig. 2. In con-

trast to the JLQCD data, Fermilab data shows a significant

increase towards the chiral limit. Large difference in Fer-

milab results and JLQCD results for f 0 in the chiral limit

arises from different mq dependence, but the raw data for

similar quark masses are not so different. Shigemitsu et al.

studied the mass dependence of f1 + f2 and find similar be-

havior as JLQCD. Further studies to clarify the light quark

mass dependence are required.
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Figure 1. B→ πlν form factors by different lattice groups.

Fig. 3 shows 1/MB dependence of form factors Φ0,+ ≡√
mB f

0,+ at v · kπ = 0.845 GeV for APE and JLQCD col-
laboration data. It is found that the difference of APE

(UKQCD) vs JLQCD (NRQCD) for f 0 arises from the ex-

trapolation in 1/M. Linear extrapolation in 1/M is consis-

tent, while the quadratic extrapolation gives higher value.

The quadratic extrapolation 1/M is chosen for APE’s result,

since higher value gives better agreement with the soft pion

theorem. Simulations with static heavy quark may resolve

the problem.

The error of the form factors in the present calculations is

around 20%. Some of the major errors are the quenching

error, chiral extrapolation error statistical error in all cal-

culations. In addition, a large discretization error appears

in JLQCD results and a large 1/M extrapolation error is

contained in APE and UKQCD results.

There are several proposals to improve the form factor de-

termination. The quenching error can be resolved only

by performing the unquenched calculations. Recently,

JLQCD and UKQCD collaborations has accumulated n f =

2 unquenched lattice configurations with O(a)-improved

Wilson fermions and n f = 2+1 unquenched configurations

with improved staggered fermions have been produced by

the MILC collaboration. These unquenched QCD data

should be applied to form factor calculations.

In order to reduce the chiral extrapolation error, simulation

with even smaller light quark masses are necessary. For

Wilson type fermions, simulations with mπ < 0.4 GeV will
be very slow and also appearance of exceptional configura-

tion may prevent the simulation for very light quark mass

range. On the other hand, MILC collaboration is now car-

rying out simulations with mπ = 0.3− 0.5 GeV, which cor-
responds tomq = 1/5ms−1/2ms [ 9]. Since n f = 2+1 sim-

ulations are performed by taking the square root or quar-

Onogi, CKM 2003.
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Results agree well with quenched 
results.  Probably not significant; 
not true for all quantities.
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