Observation of B_s^0 - \bar{B}_s^0 Oscillations in Hadronic Decays at CDF

Jeffrey Miles Massachusetts Institute of Technology

For the CDF Collaboration

DPF MEETING - October 30, 2006

Neutral B Mixing

Ratio of frequencies for B^0 , B_s : $\frac{\Delta m_s}{\Delta m_d} = \frac{m_{B_s}}{m_{B_d}} \xi^2 \frac{|V_{ts}|^2}{|V_{td}|^2}$

Many QCD uncertainties cancel! $\xi = 1.210^{+0.047}_{-0.035}$ from lattice QCD (hep/lat-0510113)

...But emphasis today is DEFINITIVE OBSERVATION, not just measurement!

Hamiltonian connecting $|B\rangle$, $|\bar{B}\rangle$: $H = \begin{pmatrix} M & M_{12} \\ M_{12}^* & M \end{pmatrix} - \frac{i}{2} \begin{pmatrix} \Gamma & \Gamma_{12} \\ \Gamma_{12}^* & \Gamma \end{pmatrix}$ Diagonalize \Rightarrow 2 energy e'states: $\Delta m \equiv m_H - m_L$ $\Delta \Gamma \equiv \Gamma_L - \Gamma_H$

Historic Steps

1987

- First evidence of B⁰ mixing from UA1 C. Albajar *et al.*, PLB **186**, 247 (1987)
- Argus observes B^0 mixing \Rightarrow UA1 result points to

large B_s mixing ($m_t > 50 \text{ GeV}/c^2$) H. Albrecht *et al.*, PLB **192**, 245 (1987) **1990's**

- Inclusive measurements of *B* mixing from LEP establish B_s mixing
 D. Buskulic *et al.*, PLB **313**, 498 (1993)
- First time dependent measurement of Δm_d from Aleph
- First lower limit on Δm_s from Aleph: $\Delta m_s > 12 \cdot 10^{-4} \text{ eV}/c^2 \text{ CDF 06: } 0.011 \text{ eV}/c^2$ D. Buskulic *et al.*, PLB **322**, 441 (1994) 1999
- CDF Run I result on Δm_s : $\Delta m_s > 5.8 \text{ ps}^{-1}$ F. Abe *et al.*, PRL **82**, 3576 (1999) 2000's
- CDF Run II first result on Δm_s : $\Delta m_s > 7.9 \text{ ps}^{-1}$
- D0 reports interval: $\Delta m_s \in [17, 21] \text{ ps}^{-1}$ at 90% CL

The point is: Decades of attempts at this result!

Ingredients for Statistical Significance

$$\frac{1}{\sigma_A} = \sqrt{\frac{S}{S+B}} \cdot e^{-\frac{\Delta m_s^2 \sigma_{ct}^2}{2}} \cdot \sqrt{S \frac{\epsilon D^2}{2}}$$

Signal statistics

- Hadronic modes: $B_s \rightarrow D_s \pi$, $D_s 3\pi$, $D_s \rho$, $D_s^* \pi$
- Good \mathcal{S}/\mathcal{B} separation

Proper decay time resolution

- Exponential dependence ⇒ Hadronics' main asset!
- Fully reconstructed signal provides best precision

b-flavor tagging

• Effective statistics scale with ϵD^2

Hadronic Sample Overview

Displaced track trigger:

- \rightarrow decisions at 25 kHz
- \rightarrow unique Tevatron capability

Recent upgrades:

- Partially reconstructed channels
- Neural network for selection
- Particle ID in selection
- Additional 6π channel

General attributes:

- Excellent proper time resolution!
- Good S/B
- Small branching fractions \Rightarrow smaller yields than ℓD_s

Reconstructed Channels

Partially reconstructed:

$$\begin{array}{c} \mathsf{B}_{\mathsf{s}} \to \mathsf{D}_{\mathsf{s}}^{-}\rho^{+} \\ \mathsf{B}_{\mathsf{s}} \to \mathsf{D}_{\mathsf{s}}^{*}{}^{-}\pi^{+} \end{array} \right\} \otimes \left\{ \begin{array}{c} \mathsf{D}_{\mathsf{s}}^{-} \to \phi\pi^{-} \\ \Rightarrow \text{ both in same sample as } B_{s} \to D_{s}\pi, D_{s} \to \phi\pi \end{array} \right.$$

Addition of Partially Reconstructed Signals

 \Rightarrow Developed in B^0/B^+ samples

Performance of Neural Network Selection

- Trained to accept "signal-like" events
- Admits more signal than cut-based
- No inefficiency!
- \Rightarrow Smarter selection
- ⇒ Major upgrade across hadronic sample

"Golden" Sample

Most powerful individual sample

CDF Hadronic B_s Mixing

Other Hadronic Channels

• Particle ID suppresses B^0 contamination in K^*K modes per Decay Yield S/B Gain candidates 11.3 13% $B_s \to D_s(\phi \pi) \pi$ 2000 Partially Reco'd 3100 3.4 n.a. 1400 2.0 35% $B_s \to D_s(K^*K)\pi$ $B_s \to D_s(3\pi)\pi$ 700 2.1 22% 92% $B_s \to D_s(\phi\pi)3\pi$ 700 2.7 $B_s \to D_s(K^*K)3\pi$ 600 1.1 110% $B_s \to D_s(3\pi)3\pi$ 200 2.6 n.a. Total 8700

• NN important for non-golden modes

golden alone

Reconstruction of Proper Time

Fully reconstructed:

- \rightarrow negligible $\frac{\sigma_p}{p}$
- \rightarrow excellent $\sigma_{ct} = \sigma_{ct}^0$

Partially reconstructed:

- $\rightarrow \frac{\sigma_p}{p}$ quantified by κ <u>width</u>
- \rightarrow indicates σ_{ct} rise vs. ct
- \rightarrow hadronic: narrow κ ; still valuable!

Proper Time Resolution

Calibration of Proper Time Measurement

 σ_{ct}^0 correction parameterized by event kinematics

CDF Hadronic B_s Mixing

b-Flavor Tagging

Opposite side algorithms:

- Soft lepton tagger
- Jet charge tagger
- Opp. side kaon tagger
- \rightarrow Combined via NN into single OST
- $\rightarrow \epsilon D^2 = 1.8\%$ (20% relative increase)
- \Rightarrow Identical to semileptonics

Same side tagger:

- \rightarrow NN combines particle ID and kinematics
- $\rightarrow \epsilon \mathcal{D}^2 = 3.7\%$
- \Rightarrow Slightly less than semi- ℓ due to triggers

Amplitude Scans by Sample

 $\mathcal{A} = 1.27 \pm 0.34$

- Focus here on $\mathcal{A}(\Delta m_s = 17.75)$
- Consistent with signal! (A = 1)
- Inconsistent with bkg! (A = 0)

CDF Hadronic B_s Mixing

Combined Amplitude Scan

Combine hadronic and semileptonic scans:

CDF Hadronic B_s Mixing

- Ratio of combined analysis likelihood at: $\rightarrow A = 1$ (hypothesis of signal); and
 - $\rightarrow \mathcal{A} = 0$ (hypothesis of random tags)
- Used to extract significance and Δm_s measurement

P-value Estimation

Δm_s Measurement

Limits

- [17.56, 17.96]ps⁻¹ @ 90% C.L.
- [16.51, 18.00]ps⁻¹ @ 95% C.L.

Consistent with SM

• $18.3 + 6.5 - 1 = 1.5 \text{ ps}^{-1}$ EPS 2005

Agrees with 1^{st} measurement

• $17.31 + 0.33 \pm 0.07 \text{ ps}^{-1}$ PRL 97, 062003 (2006)

 $\Delta m_s = 17.77 \pm 0.10(stat.) \pm 0.07(syst.) \ {
m ps^{-1}}$ Systematics dominated by ct scale; all other effects small

CDF Hadronic B₈ Mixing

Visualizing the Oscillation

Measurement of CKM Parameters

$$\bullet \frac{\Delta m_s}{\Delta m_d} = \frac{m_{B_s}}{m_{B_d}} \xi^2 \frac{|V_{ts}|^2}{|V_{td}|^2}$$

- $\frac{m_{B_s}}{m_{B_d}} = 0.98390$ CDF 2006
- $\Delta m_d = 0.507 \pm 0.005~{
 m ps}^{-1}$ W.-M. Yao *et al.* 2006
- $\Delta m_s = 17.77 \pm 0.10(stat.) \pm 0.07(syst.)~{
 m ps^{-1}}$ CDF 2006
- $\xi = 1.210^{+0.047}_{-0.035}$ Okamoto, Lattice 2006

$\implies |V_{td}|/|V_{ts}| = 0.2061 \pm 0.0007(exp.) + 0.0081_{-0.0060}(th.)$ No longer limited by experimental precision

CDF Hadronic *B_s* Mixing

Summary

- Historic observation of B^0_s - $ar{B^0_s}$ Oscillations 5.4σ
- Most precise measurement of oscillation frequency:

 $\Delta m_s = 17.77 \pm 0.10(stat.) \pm 0.07(syst.) \text{ ps}^{-1}$

• Accepted to PRL (hep-ex/0609040)

Back-up Slides

Reconstruction of Mixing Candidates

Must determine 3 properties of every B_s event:

- Proper decay length ct, in B rest frame
- *Final* flavor of *B* at decay
- Initial flavor of B at production
 CDF Hadronic B_s Mixing

All incorporated in simultaneous likelihood fit

Fourier Analysis

J. Miles

CDF II Detector

Relevant components for getting those ingredients:

- B_s reconstruction: low background, high statistics
 - Displaced track trigger
 - SVX/ISL/L00: vertexing
 - COT: momentum resolution
 - Muon Chambers and Calorimeters: lepton ID
- Proper decay time resolution:
 - L00: 10-20% improvement in track d_0 resolution
- *b*-flavor tagging: separation of kaons versus pions
 - dE/dx information from COT
 - Time-Of-Flight:
 - \rightarrow essential for Same-Side Kaon Tagging

Trigger Sculpting

- Displaced track trigger sculpts proper time distribution
- Modeled by efficiency $\epsilon(t)$ in PDFs
- Derived from realistic Monte Carlo

Validated in high statistics *B* lifetime measurements

Crucial Test of the fitter: B_d Mixing

To set limits on Δm_s , knowledge of tagger performance is crucial $reasure tagging dilution in kinematically similar <math>B^0/B^+$ samples (for OST) Δm_d and Δm_s fits are very complex reasonal combining several B flavor and several decay modes<math>reasonal combining several taggers reasonal lifetime templates for various backgrounds $<math>\Delta m_d$ measurement also important to test the fitter 0.2

CDF measurement:

 $\square \Delta m_d = 0.509 \pm 0.010 \pm 0.016 \text{ ps}^{-1}$

World average:

 $\bowtie \Delta m_d = 0.507 \pm 0.005$

Amplitude vs. Δm_s

Clear minimum at $\mathcal{A} \sim$ 1 and $\Delta m_s \sim 17.75~\mathrm{ps^{-1}}$

Systematic Uncertainties on $\ensuremath{\mathcal{A}}$

Systematic uncertainties \sim 0.15-0.20 at high Δm_s Analysis limited by statistics

Systematic Uncertainties on Δm_s

Source	Value (ps ⁻¹)
Silicon detector alignment	0.04
Track fit bias	0.05
Primary vertex bias	0.02
Hadronic k-factors	0.03
Amplitude scan systematic effects	< 0.01
Total	0.07

All relevant systematic uncertainties:

 \square related to ct scale

IS common between hadronic and semileptonic samples

Probability of Δm_s uncertainty

