

B Spectroscopy at CDF

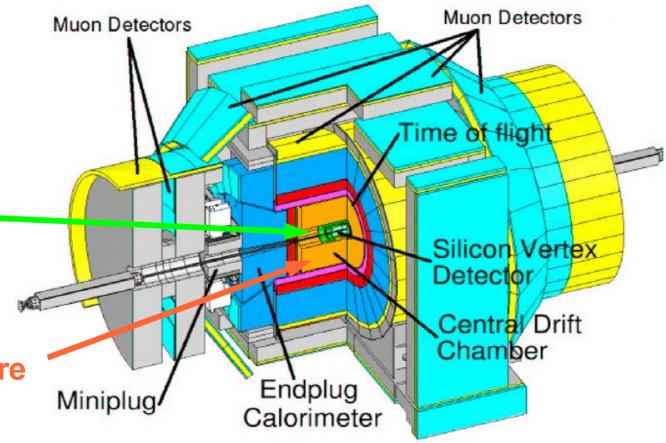
Petar Maksimovic, for the CDF collaboration

- Test: lattice calculations, potential models, HQET
- All already tested for heavy mesons (Qq) systems interesting to check for baryons (Qqq)

Featured:

- Refresher: best measurement of $B_{\rm s}$, $\Lambda_{\rm b}$ and $B_{\rm c}$ masses
- Discovery of $B_{s1}!$... Measurement of masses of 2 narrow B_{s}^{**}
- Discovery of $\Sigma_{b}!$... Measurement of 4 masses

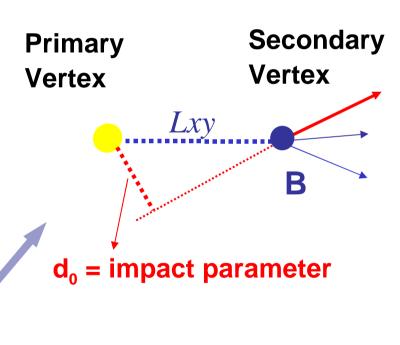
Te


Tevatron + CDF = b-hadron factory

- All species of b-hadrons produced!
- Tevatron's has been performing really well: here using
 1.1 fb⁻¹ of data

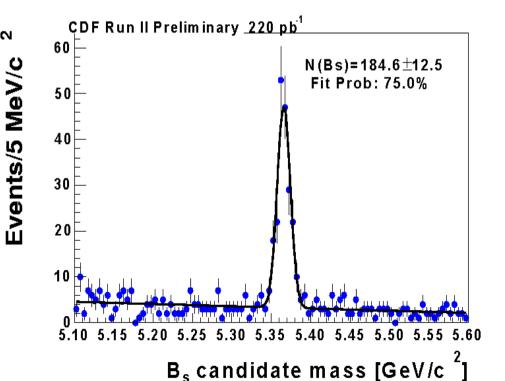
CDF has excellent tracking:

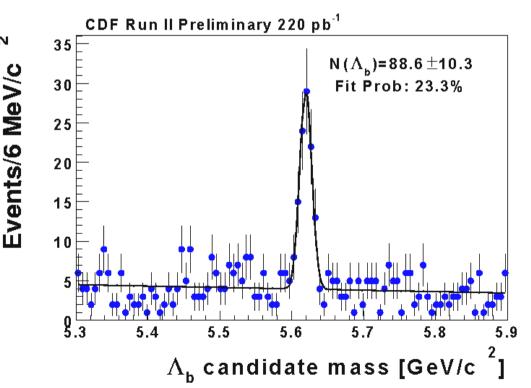
d₀ resolution
 (needed for B physics)


p_T resolution
 (needed to measure masses)

Mining b-hadrons

- $\sigma_{bar{b}}$ is very large, but cross section of soft QCD is 1000x larger
- b-physics program lives and dies by the trigger!
- Trigger paths used by these analyses:
 - 2 muons (J/ψ)
 - 2 displaced tracks (full hadronic decays)

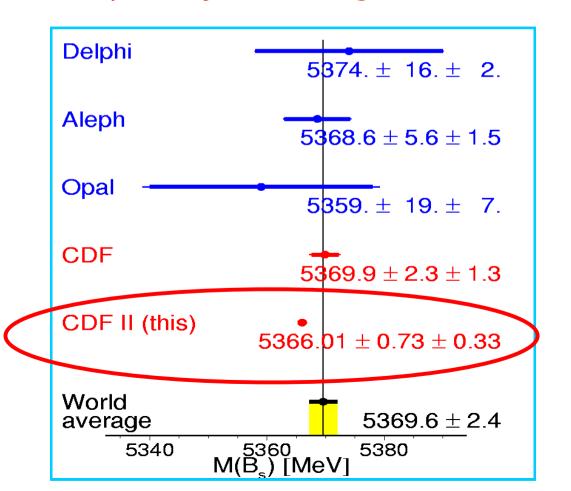

 Silicon Vertex Trigger (SVT) – part of trigger system that finds displaced tracks and triggers on heavy flavor

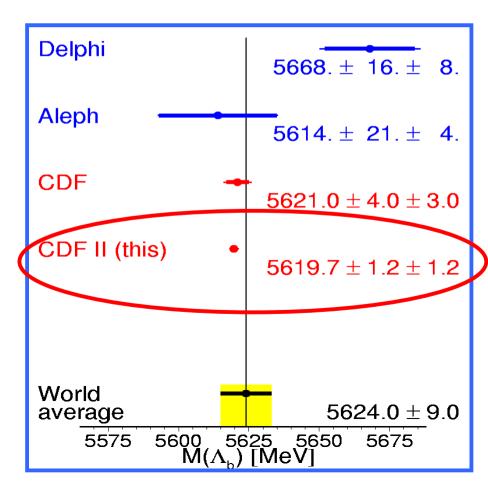

Refresher: B_s and Λ_b masses

- Both from di-muon trigger: $J/\psi \to \mu^+\mu^-$
- Cuts optimized to make background low and flat

$$B_s o J/\psi \phi, \phi o K^+K^-$$

$$\Lambda_b o J/\psi \Lambda, \Lambda o p\pi$$



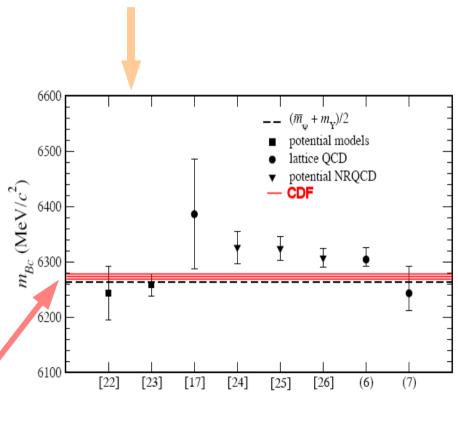


Refresher: B_s and Λ_b masses

Both significantly better than the world average!

(Really in a league of their own!...)





Mass of B_{c}

 Largest sample of fully reco. B decays

 Already challenging theoretical predictions

$$m(B_c) = 6276.5 \pm 4.0 (stat) \pm 2.7 (syst) \; {
m MeV}/c^2$$

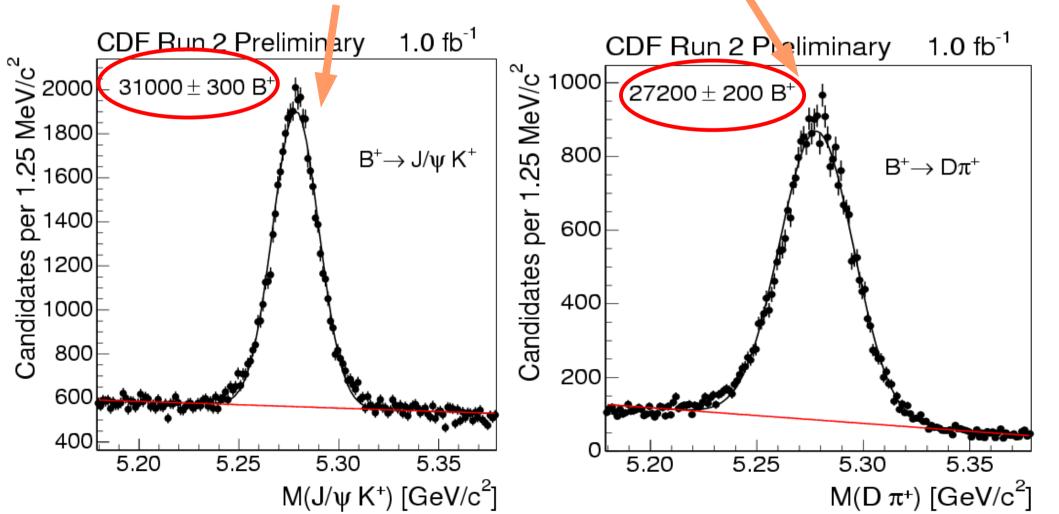
Search for orbitally excited B_s**

L=1 states observed for D, D_s, B_d, B_u

• For L=1, expect:

too broad

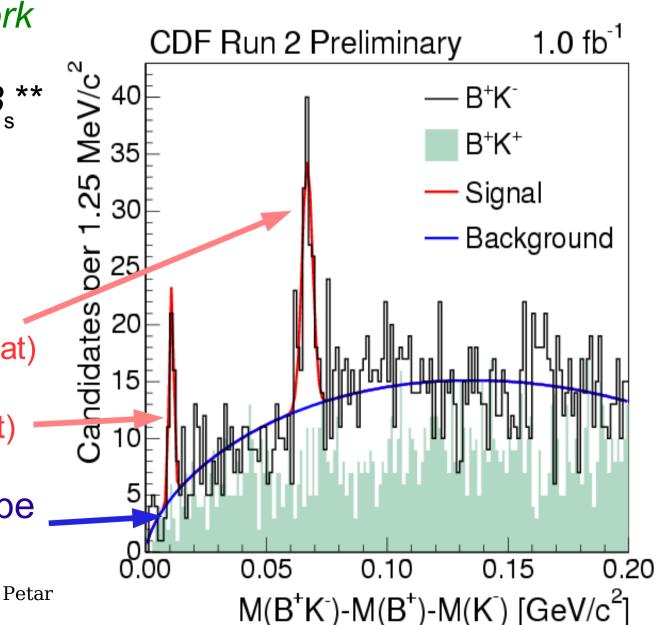
j_q	J^P	B_s^{**} state	decay mode	width
1/2	0_{+}	B_{s0}^*	BK	broad (S-wave)
1/2	1+	B_{s1}	B^*K	broad (S-wave)
3/2	1+	B_{s1}	B^*K	narrow (D-wave)
3/2	2+	B_{s2}^*	BK, B^*K	narrow (D-wave)


few MeV wide, good S/B – doable

One Bs** state observed by OPAL, DELPHI, D0
 ...but ... which one?

B_s^{**} Reco: Use ~ 60k B^{+} 's!

- Reconstruct as $B_s^{**} o B^+ K^-$ (kaon is prompt!)
- Use $B^+ o J/\psi K^+$ and $B^+ o ar D^0 \pi^+, ar D^0 o K^+ \pi^-$

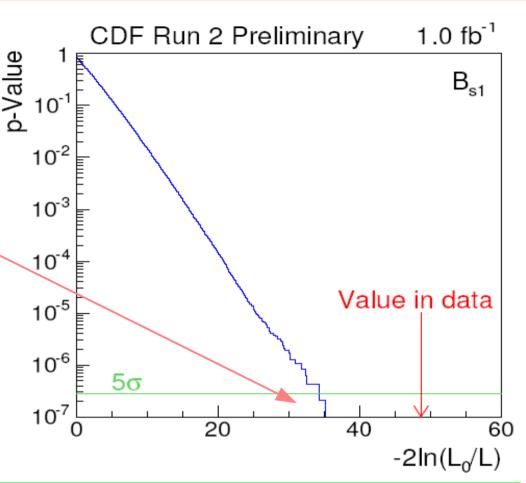

B_s** Masses

- Use Neural Network
 to simultaneously
 optimize B⁺ and B_s**
 selection
- Observe both narrow states!

$$N(B_{s2}^*) = 94.8 \pm 23.4$$
 (stat)

$$N(B_{s1}) = 36.4 \pm 9.0 \text{ (stat)}$$

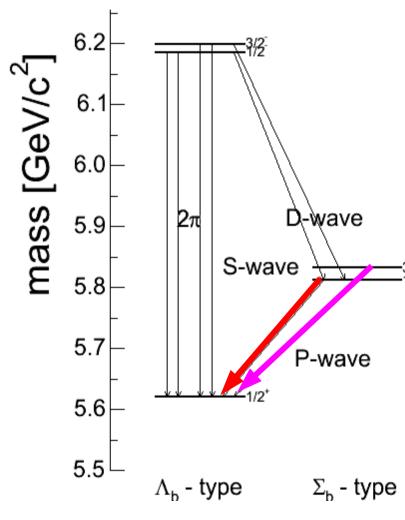
Empirical bkg shape



Discovery of $B_{s1}!$

- Significance of B_{s1} peak evaluated by Toy MC
- p-value < 2 * 10⁻⁷

• Significance is $> 5\sigma$!



Measurement of masses:

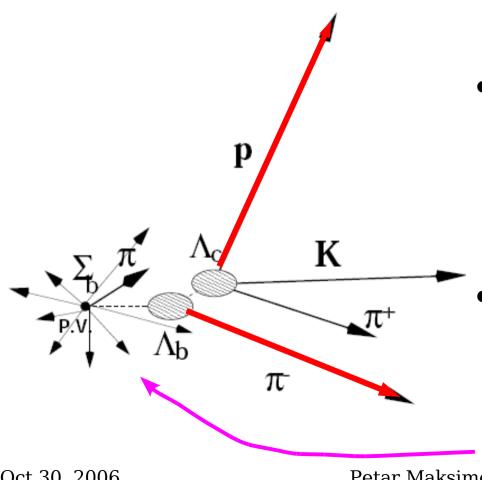
$$m(B_{s1}) = 5829.41 \pm 0.21 \text{ (stat)} \pm 0.14 \text{ (syst)} \pm 0.6 \text{ (PDG)} \text{ MeV/c}^2$$

 $m(B_{s2}^*) = 5839.64 \pm 0.39 \text{ (stat)} \pm 0.14 \text{ (syst)} \pm 0.5 \text{ (PDG)} \text{ MeV/c}^2$

Σ_{b} : motivation

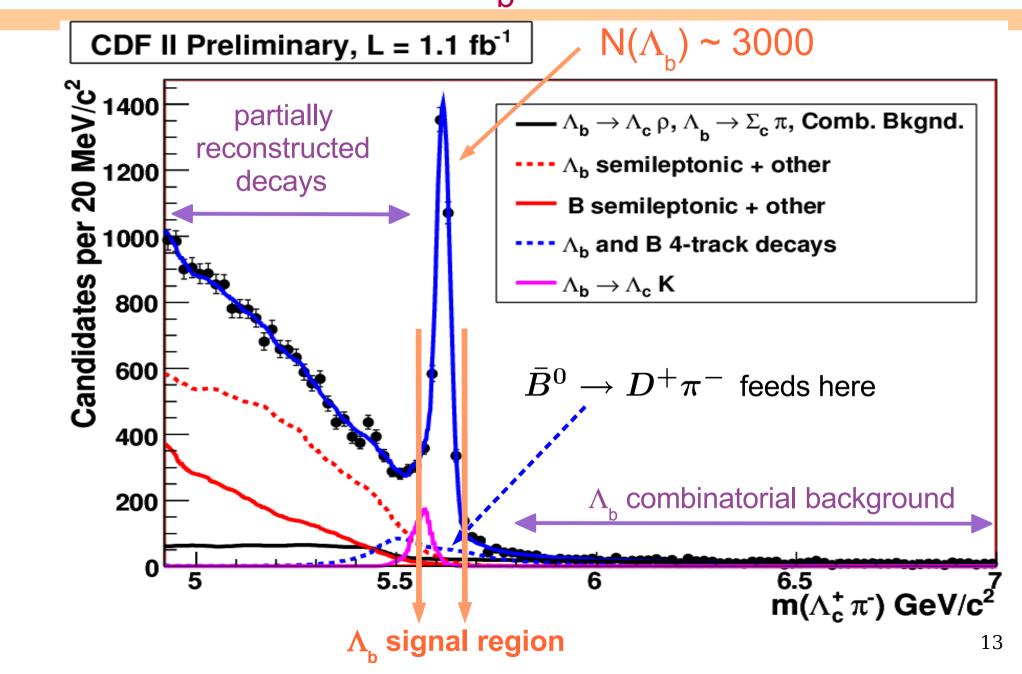
- Λ_b only established *B* baryon
- Enough statistics at Tevatron to probe other heavy baryons
- Next accessible baryons:

$$\Sigma_b$$
 b{qq}, q = u,d; $J^p = S_Q + S_{qq}$ = 1/2+ $(\Sigma_b)^2$


Σ_b property	Expected value (MeV/c^2)		
$m(\Sigma_b)$ - $m(\Lambda_b^0)$	180 - 210		
$m(\Sigma_b^*)$ - $m(\Sigma_b)$	10 - 40		
$m(\Sigma_b^-)$ - $m(\Sigma_b^+)$	5 - 7		
$\Gamma(\Sigma_b^*), \Gamma(\Sigma_b^*)$	\sim 8, \sim 15		

Oct 30, 2006

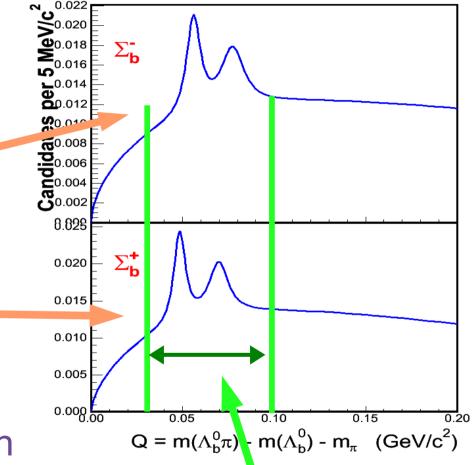
Reconstructing Λ_{k} and Σ_{k}


$$\Lambda_b^0 o \Lambda_c^+ \pi^- \ \stackrel{}{\searrow} pK^- \pi^+$$

- Proton and π from $\Lambda_{_{h}}$ usually fire Two (displaced) Track Trigger (based on SVT)
- $ar{B}^0 o D^+\pi^-$ has similar topology, and can be mistaken for $\Lambda_b o \Lambda_c^+ \pi^$ decay
 - π from Σ_{h} comes from primary vertex, along with tracks from hadronization and Underlying Event

(fully reconstructed)

The largest Λ sample in the world



Reconstructing Σ_{b}

Split into two sub-samples:

Look for
$$\Sigma_{
m b}^{-}$$
 and $\Sigma_{
m b}^{*-}$ in $\Lambda_b^0\pi^-{
m and}~ \overline{\Lambda}_b^0\pi^+$

Look for
$$\Sigma_{
m b}^{+}$$
 and $\Sigma_{
m b}^{*+}$ in $\Lambda_b^0\pi^+{
m and}~ \overline{\Lambda}_b^0\pi^-$

• Remove effect of $\Lambda_{_{\rm b}}$ resolution by looking at

$$Q \equiv m(\Lambda_b\pi) - m(\Lambda_b) - m_\pi$$

signal region (blinded at first)

Σ_{b} : Composition of backgrounds

Background type		Source	Contribution	
Λ_b hadroniza	ntion	PYTHIA	dominant	
Combinatorial		Upper $\Lambda_{\rm b}$ sideband m($\Lambda_{\rm b}$) \in [5.8, 7.0]	small	
B meson had	dronization	<i>B</i> ^o data	small	
	$\pi_{\scriptscriptstyle \Sigma}$ from B hadronization	B ^o PYTHIA	Dominant within B°	
All B meson reflections	$\pi_{\scriptscriptstyle \Sigma}$ from B decay (D*, D**)	Inclusive b-had MC	negligible	
	$\pi_{\scriptscriptstyle \Sigma}$ from B**	B ^o PYTHIA	negligible	

Will be ignored from now on

CDF II Preliminary, L = 1.1 fb⁻¹ Fit Prob. = 76% Candidates per 5 MeV/c² Total Fit 50 Background $\Sigma_{\rm b} \to \Lambda_{\rm b}^0 \pi$ 30 20 Total Fit 50 Background 40 30 20 10 8.00 0.10 0.15 0.05 $Q = m(\Lambda_b^0 \pi) - m(\Lambda_b^0) - m_{\pi} \quad (GeV/c^2)$

$\Sigma_{\rm b}$ Fit

- Backgrounds frozen
- Signal: 4 peaks, each
 - 2 Breit-Wigners (resolution has 2 Gaussians)
 - $\Gamma(\Sigma_b)$ as a function of center of each peak [hep-ph/9406359]
- $m(\Sigma_b^*)$ - $m(\Sigma_b)$ common parameter

$\Sigma_{\rm b}$ Yields (including systematics)

•
$$N(\Sigma_b^-) = 60^{+14.8}_{-13.8} \text{ (stat) } ^{+8.4}_{-4.0} \text{ (syst)}$$

•
$$N(\Sigma_b^+) = 29^{+12.4}_{-11.6} \text{ (stat) } ^{+5.0}_{-3.4} \text{ (syst)}$$

•
$$N(\Sigma_b^{*-}) = 74^{+18.2}_{-17.4} \text{ (stat) } ^{+15.6}_{-5.0} \text{ (syst)}$$

•
$$N(\Sigma_b^{*+}) = 74^{+17.2}_{-16.3} \text{ (stat) } ^{+10.3}_{-5.7} \text{ (syst)}$$

In total, a very significant signal

- Naïve $S/\sqrt{S+B}$ gives ~ 9 σ !
- P-value calculation > 5σ : don't have enough Toy MC to probe the 9σ -level (extrapolation too imprecise)

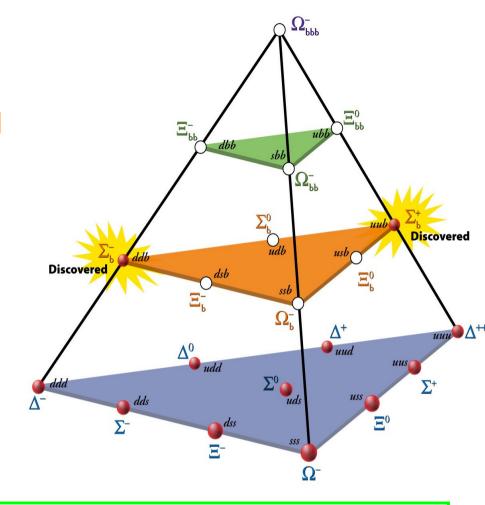
Strenght of Σ_{b} hypothesis

Evaluated by Likelihood Ratio:

$$LR \equiv \frac{L_{\rm no~peak~fit}}{L_{\rm 4~peak~fit}}$$

Evaluate LR for multiple fit models and pick the worst case scenario!

Overall	cianifia	200
Overall	significa	ance


- Four or only two peaks?
- What if one peak is fake?

Hypothesis	$\Delta(-\ln(L))$	1/LR
Null	44.7	2.6e19
2 peaks	14.3	1.6e6
No Σ_b^- Peak	10.4	3.3e4
No Σ_b^{+} Peak	1.1	3
No Σ_b^{*-} Peak	10.1	2.4e4
No Σ_b^{*+} Peak	9.8	1.8e4

Discovered $\Sigma_{l}!$

• "It is ~ 2.6×10^{19} more likely that this is a 4 peak $\Sigma_{\rm b}$ signal than that it's a background fluctuation!"

Their masses:

- $m(\Sigma_b^-)$ $m(\Lambda_b^0)$ $m(\pi) = 55.9^{+1.0}_{-1.0}$ (stat) ± 0.1 (syst) MeV/c²
- $m(\Sigma_b^+)$ $m(\Lambda_b^0)$ $m(\pi) = 48.4^{+2.0}_{-2.3}$ (stat) ± 0.1 (syst) MeV/c²
- $m(\Sigma_b^{*-})$ $m(\Sigma_b^{-})$ = $m(\Sigma_b^{*+})$ $m(\Sigma_b^{+})$ = $21.3^{+2.0}_{-1.9}$ (stat) $^{+0.4}_{-0.2}$ (syst) MeV/c²

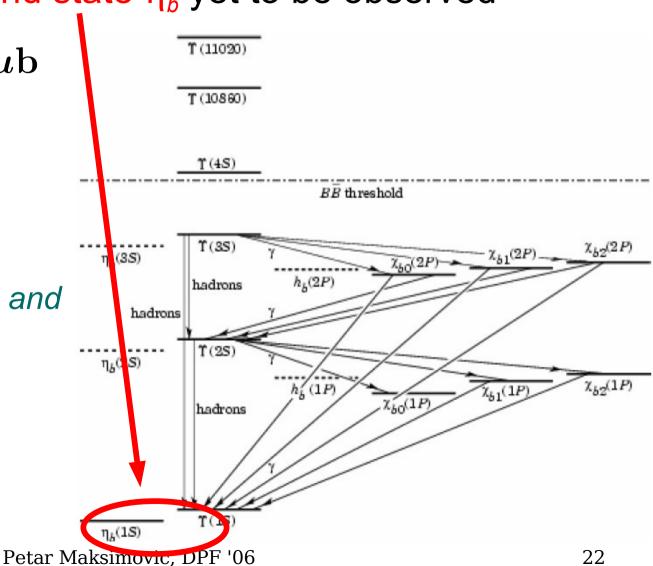
Summary

- Best measurement of B_s , Λ_b and B_c masses
- First observation of B_{s1} state!
 - Precision measurements of both B_s^{**} states
- First observation of lowest lying charged Σ_b states!
 - With $m(\Lambda_b) = 5619.7 \pm 1.2$ (stat) ± 1.2 (syst) MeV/c²,

$$m(\Sigma_b^-) = 5816^{+1.0}_{-1.0} \text{ (stat)} \pm 1.7 \text{ (syst)} \text{ MeV/c}^2$$

 $m(\Sigma_b^+) = 5808^{+2.0}_{-2.3} \text{ (stat)} \pm 1.7 \text{ (syst)} \text{ MeV/c}^2$
 $m(\Sigma_b^{*-}) = 5837^{+2.1}_{-1.9} \text{ (stat)} \pm 1.7 \text{ (syst)} \text{ MeV/c}^2$
 $m(\Sigma_b^{*+}) = 5829^{+1.6}_{-1.8} \text{ (stat)} \pm 1.7 \text{ (syst)} \text{ MeV/c}^2$

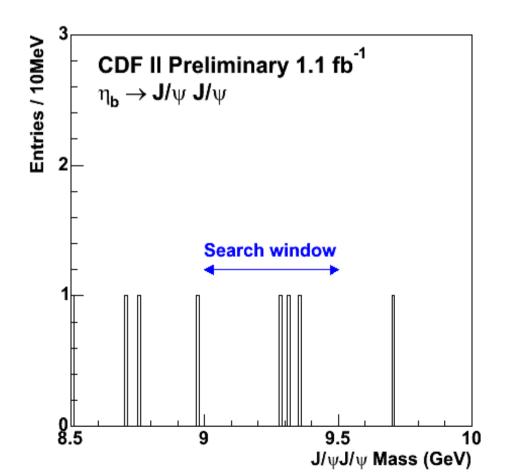
...and this is only from the first inverse femtobarn...

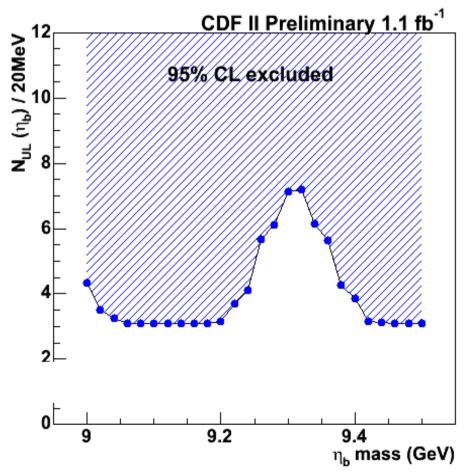

BACKUP SLIDES

Search for $\eta_b \rightarrow J/\psi J/\psi$

Spin-singlet bb bound state η, yet to be observed

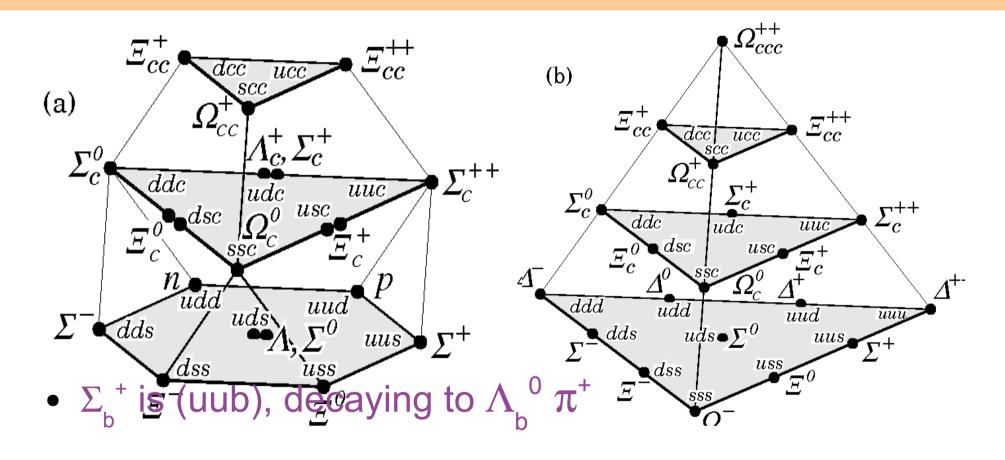
- $\sigma(p\bar{p} \to \eta_b X) \sim \mu b$
- Look for $\eta_b \to J/\psi J/\psi$ in 1.1 fb⁻¹
 - Large uncertainty in expected BR
 - Expect between 0.2 and 20 events with both $J/\psi o \mu^+\mu^-$
 - Reconstruct as 3μ + track





Search for $\eta_b \rightarrow J/\psi J/\psi$

- Expected 3.6 bkg events; observe 3 events
- Upper limit for production cross section:


$$\sigma(p\bar{p}\to\eta_b X, |y(\eta_b)|<0.6, p_T(\eta_b)>3GeV)\cdot Br(\eta_b\to J/\psi J/\psi)\cdot [Br(J/\psi\to\mu\mu)]^2<2.6~\mathrm{pb}$$

Heavy baryon classification

• $\Sigma_{\rm b}^{-}$ is (ddb), decaying to $\Lambda_{\rm b}^{-0}$ π^{-}

b-baryons with $B=1,C=0,J^{P}=1/2^{+},\ 3/2^{+}$

	Notation	Quark content	J۴	SU(3)	(I,I ₃)	S	В	Mass
7	$\Lambda_{\rm b}^{0}$	b[ud]	1/2+	3*	(0,0)	0	1	5619.7±1.2±1.2 MeV
	E o	b[su]	1/2+	3*	(1/2,1/2)	-1	1	5.80 GeV
	[I]	b[sd]	1/2+	3*	(1/2,-1/2)	-1	1	5.80 GeV
	$\Sigma_{\rm b}^{^+}$	buu	1/2+	6	(1,1)	0	1	5.82 GeV
	$\Sigma_{\rm b}^{\ 0}$	b{ud}	1/2+	6	(1,0)	0	1	5.82 GeV
	$\Sigma_{ m b}$	bdd	1/2+	6	(1,-1)	0	1	5.82 GeV
	Ξ _b	b{su}	1/2+	6	(1/2,1/2)	-1	1	5.94 GeV
	Ξ _b °'	b{sd}	1/2+	6	(1/2,-1/2)	1	1	5.94 GeV
	$\Omega_{b}^{}0}$	bss	1/2+	6	(0,0)	-2	1	6.04 GeV
	Σ_{b}^{*+}	buu	3/2+	6	(1,1)	0	1	5.84 GeV
	Σ_{b}^{*0}	bud	3/2+	6	(1,0)	0	1	5.84 GeV
	Σ_{b}^{*-}	bdd	3/2+	6	(1,-1)	0	1	5.84 GeV

(1/2, 1/2)

(1/2, -1/2)

(0,0)

nm hep-ph/9406359

search for

6

6

6

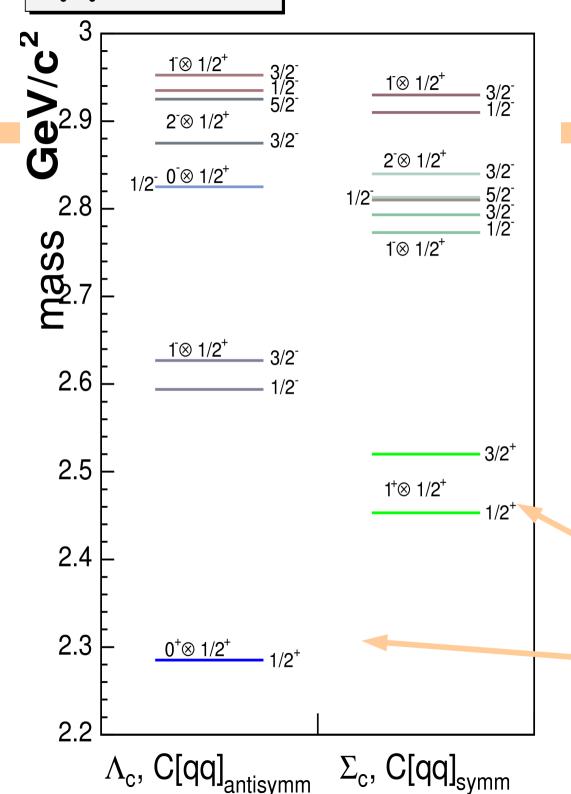
3/2+

3/2+

3/2+

bus

bds


bss

 $\Omega_{\mathsf{b}}^{\;\star\text{-}}$

5.94 GeV

5.94 GeV

6.06 GeV

Λ_{c} and Σ_{c} states

- Typical decay of Σ type to Λ -type + π
- For Σ_{b} , expect similar relationship

$$\Sigma_{\rm c}$$
 and $\Sigma_{\rm c}^*$

 $\Lambda_{_{_{\mathbf{C}}}}$

Why $\sum_{k}^{(\hat{r})}$?

- Most b-mesons found and studied (Measurement of Δm_{a} a testament to this program)
- Comparatively little is known about heavy baryons -- and there are more of them
- Finding and studying b-baryons completes and checks the Standard Model
- Measuring masses, decay rates tests Heavy Quark Effective Theory (description different from B mesons!)
- Discovering new particles is cool! (And good practice) Petar Maksimovic, DPF '06

Theoretical expectations

 Predictions from a combinations of potential models, HQET and lattice

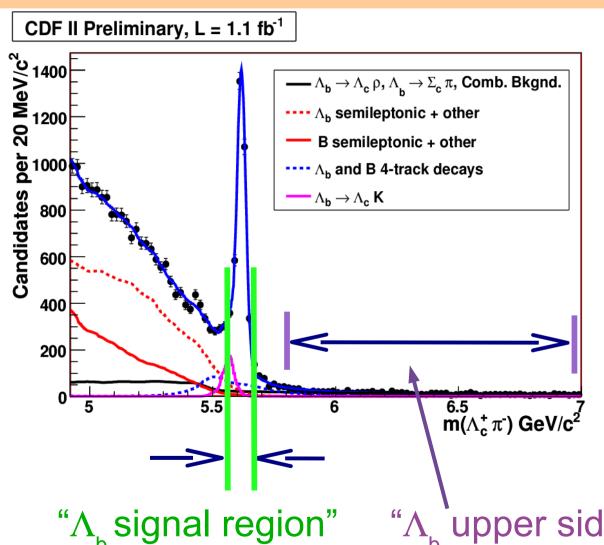
Σ_b property	Expected value (MeV/c ²)
$m(\Sigma_b)$ - $m(\Lambda_b^0)$	180 - 210
$m(\Sigma_b^*)$ - $m(\Sigma_b)$	10 - 40
$m(\Sigma_b^-)$ - $m(\Sigma_b^+)$	5 - 7
$\Gamma(\Sigma_b), \Gamma(\Sigma_b^*)$	\sim 8, \sim 15

- Enough to use as a rough guide
- Expect: $\Sigma_{\rm b}^{\ (*)}$ is massive enough to decay strongly to

 $\Lambda_{\text{Oct }30,\ 2006}$, but just barely

Analysis strategy

• Reconstruct Λ_{h} as:


$$egin{aligned} \Lambda_b^0 &
ightarrow \Lambda_c^+ \pi^- \ & \Lambda_c^+
ightarrow p K^- \pi^+ \end{aligned}$$

• Then combine $\Lambda_{_{\rm b}}$ with pions around it to form $\Sigma_{_{\rm b}}$, but treat $\pi^{\scriptscriptstyle +}$ and $\pi^{\scriptscriptstyle -}$ separately:

$$egin{aligned} \Sigma_b^{(*)+} &
ightarrow \Lambda_b^0 \pi^+ \ \Sigma_b^{(*)-} &
ightarrow \Lambda_b^0 \pi^- \end{aligned}$$

Reconstructing Σ_{k}

- Use $\Lambda_{_{\! h}}$ candidates from " Λ_{h} signal region"
- Combine those with prompt tracks to form

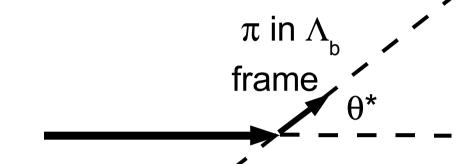
$$egin{aligned} \Sigma_b^{(*)+} &
ightarrow \Lambda_b^0 \pi^+ \ \Sigma_b^{(*)-} &
ightarrow \Lambda_b^0 \pi^- \end{aligned}$$

"A upper sideband"

(source of fake Λ_{h} background)

Composition of Λ_{b} signal window

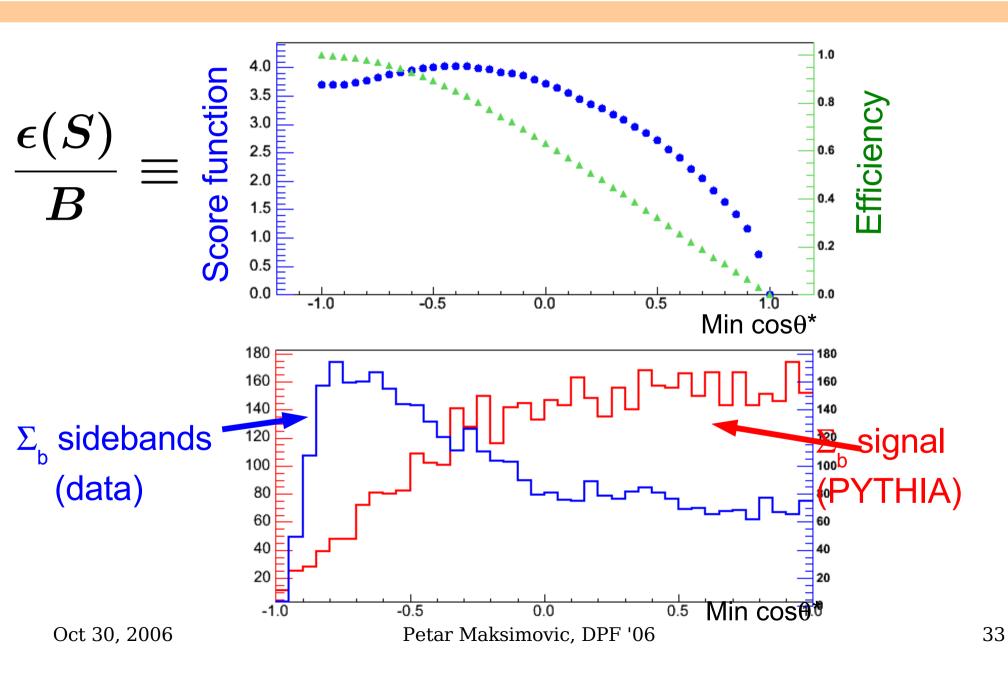
- 86.4% of $\Lambda_{\rm b}$ (all decays)
- 9.3% of B mesons (all decays)
- 4.2% of fake Λ_{b} (combinatorial)


For Σ_{b} search, use these numbers to normalize backgrounds on Q distribution

Systematics: shuffle up to 200 events from Λ_b component to two backgrounds

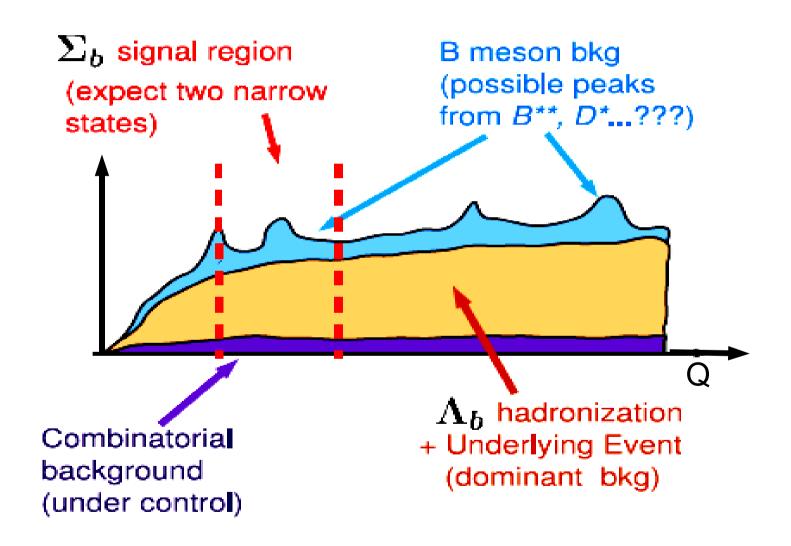
$\Sigma_{\rm b}$ optimization

- Only $\Lambda_{_{\rm b}}$ candidates from $\Lambda_{_{\rm b}}$ signal region (3 σ around $\Lambda_{_{\rm b}}$ peak)
- Note: no cut on $p_{T}(\pi \text{ from } \Sigma_{h})$!
- Only cosθ* makes substantial difference
- Optimized cuts



 $\Sigma_{\rm b}$ boost direction in lab frame

Variable	Cut value
$p_{\mathrm{T}}(\Sigma_b)$	$> 9.5~{ m GeV/c}$
$ d_0/\sigma_{d_0} $	< 3.0
$\cos \theta^*$	> -0.35



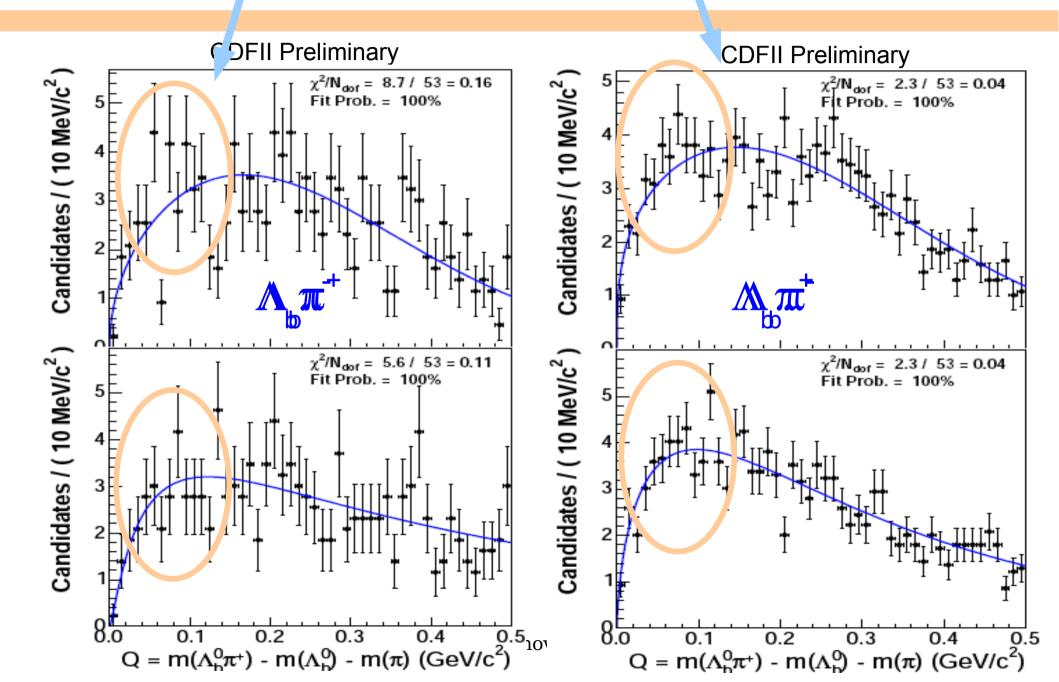
$\Sigma_{\rm h}$ optimization: N-1 scan for $\cos \theta^*$

Backgrounds to worry about

PDF form for background shapes

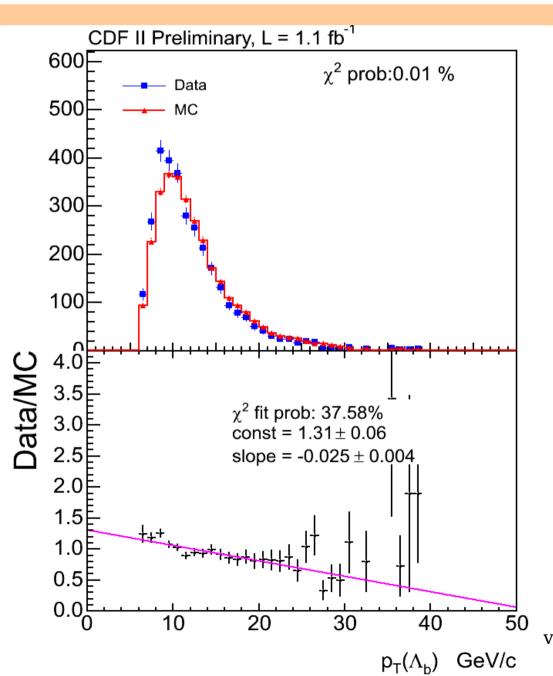
All backgrounds modeled with a PDF of this form:

$$f(Q; \alpha, Q_{max}, \gamma) = \left(\frac{Q}{Q_{max}}\right)^{\alpha} e^{-\frac{\alpha}{\gamma}(\left(\frac{Q}{Q_{max}}\right)^{\gamma} - 1)}$$


(fits well a whole range of B meson fragmentation shapes)

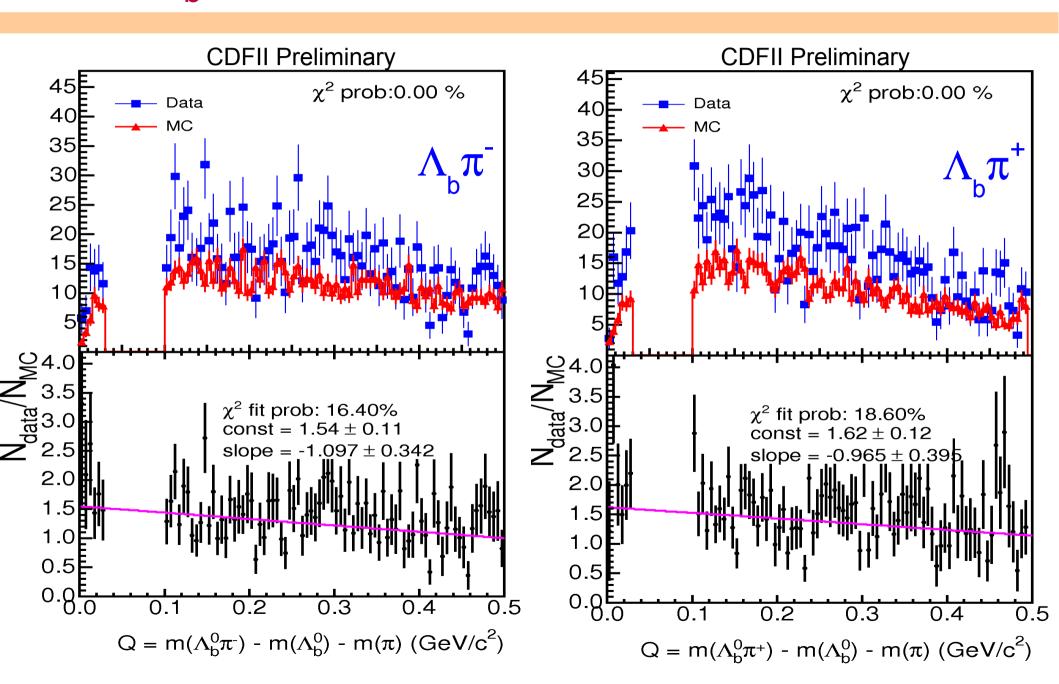
For every component, fit separately its source

Systematics: try alternative shapes



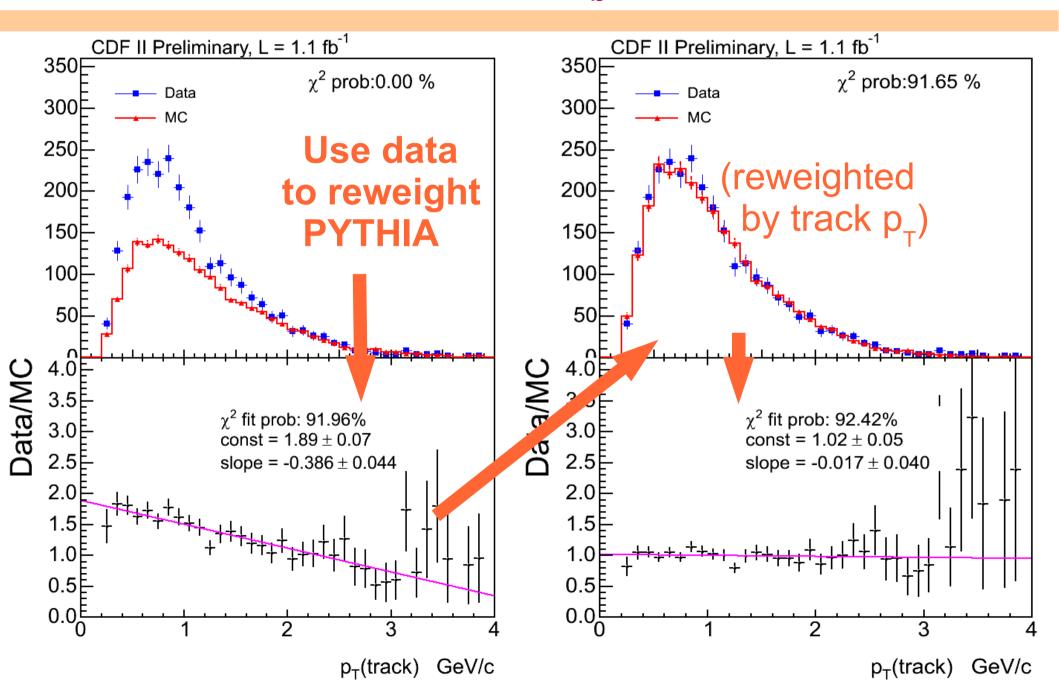
$\Lambda_{\rm p}$ combinatorial and B hadroniz. bkgs

$\Lambda_{\rm L}$ hadronization in PYTHIA

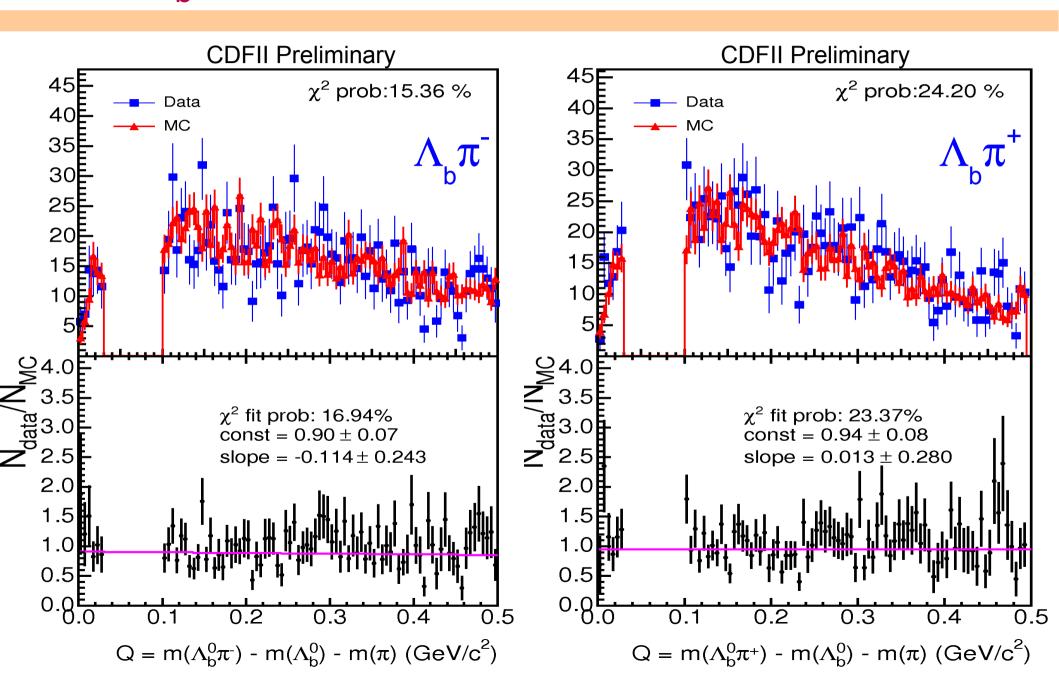


- Need hadronization and Underlying Event background (shape, norm)
- For B mesons, PYTHIA works like a charm
 - cf. SSKT for Bs mixing
- No guarantees for baryons!
- Same as for B mesons, $p_{\mathsf{T}}(\Lambda_{\mathsf{b}})$ spectrum $\underline{must\ be}$ $\underline{reweighted}$

vic, DPF '06



$\Lambda_{\scriptscriptstyle L}$ hadronization: PYTHIA vs data



Reweighting $\Lambda_{_{\rm b}}$ hadronization

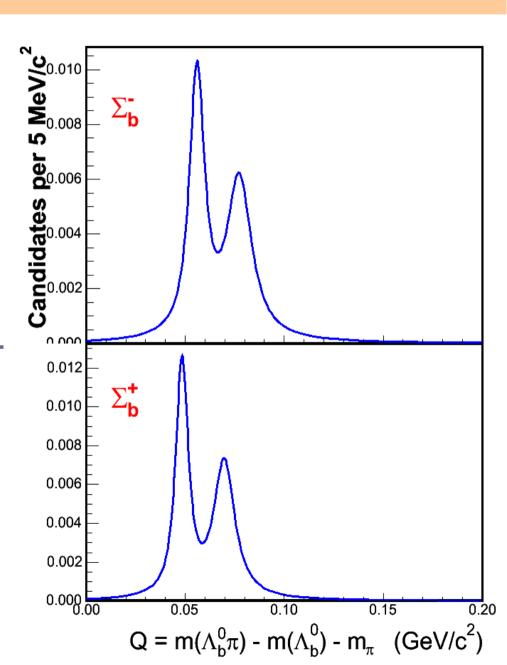
$\Lambda_{_{\rm h}}$ hadronization, after reweighting

$\chi^2/N_{dof} = 12.5 / 53 = 0.24$ Candidates / (10 MeV/c² Fit Prob. = 100% 30 20 50 Candidates / (10 MeV/c²) $\chi^2/N_{dof} = 8.7 / 53 = 0.16$ Fit Prob. = 100% 40 30 20 10 0.2 0.3 $Q = m(\Lambda_b^0 \pi^+) - m(\Lambda_b^0) - m(\pi) (GeV/c^2)$

Λ_b hadronization background

• Shape is $\frac{smooth}{\Sigma_{b}}$ in Σ_{b} signal region!

Systematics: use extremes of the track p_{T} spectrum to reweight


Expected signal (before unblinding)

Expect 4 peaks:

- Σ_{b}^{-} and Σ_{b}^{*-} in $\Lambda_{\mathrm{b}}^{-}\pi^{-}$
- $\Sigma_{\rm b}^{\ \ +}$ and $\Sigma_{\rm b}^{\ \ \star^+}$ in $\Lambda_{\rm b}^{\ }\pi^+$

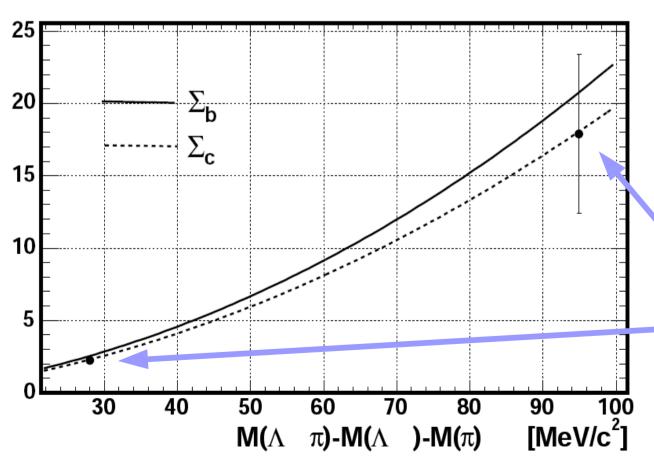

Each peak:

- Breit-Wigner (x) Resolution fun.
- $\Gamma(\Sigma_{b})$ predicted by HQET

Detector resolution of measuring Q

- Generated Σ_{b} PYTHIA MC
- $\Sigma_{\rm b}$ states with no natural width
- Resolution in MC checked on D*

Disagreement of 15-20% possible, taken as systematics!

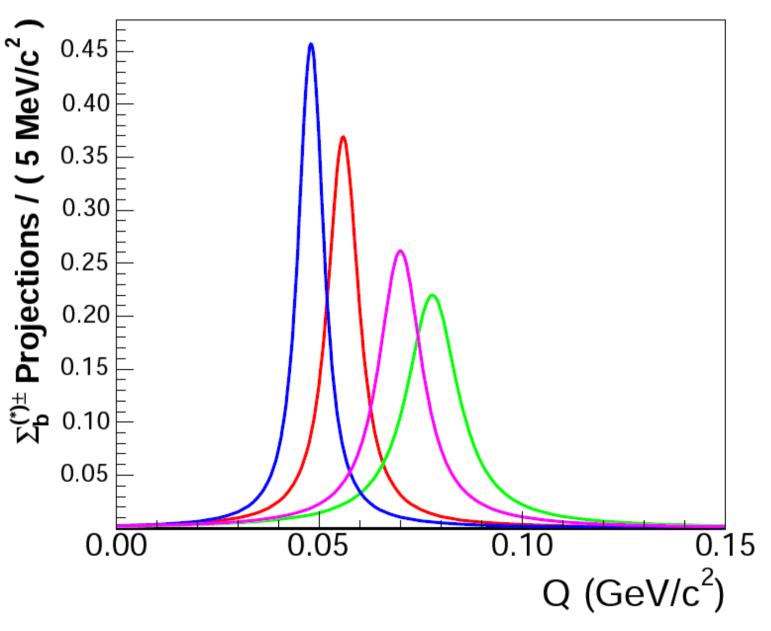

 Γ [MeV/c²]

$\Gamma(\Sigma_{\rm h})$ as a function of $M_{\Sigma_{\rm b}}$

• $\Gamma(\Sigma_{h})$ predicted by HQET:

$$\Gamma_{\Sigma_q \to \Lambda_q \pi} = \frac{1}{6\pi} \frac{M_{\Lambda_q}}{M_{\Sigma_q}} |f_p|^2 |\vec{p}_{\pi}|^3$$
 $f_p \equiv g_A / f_{\pi}; g_A = 0.75 \pm 0.05$

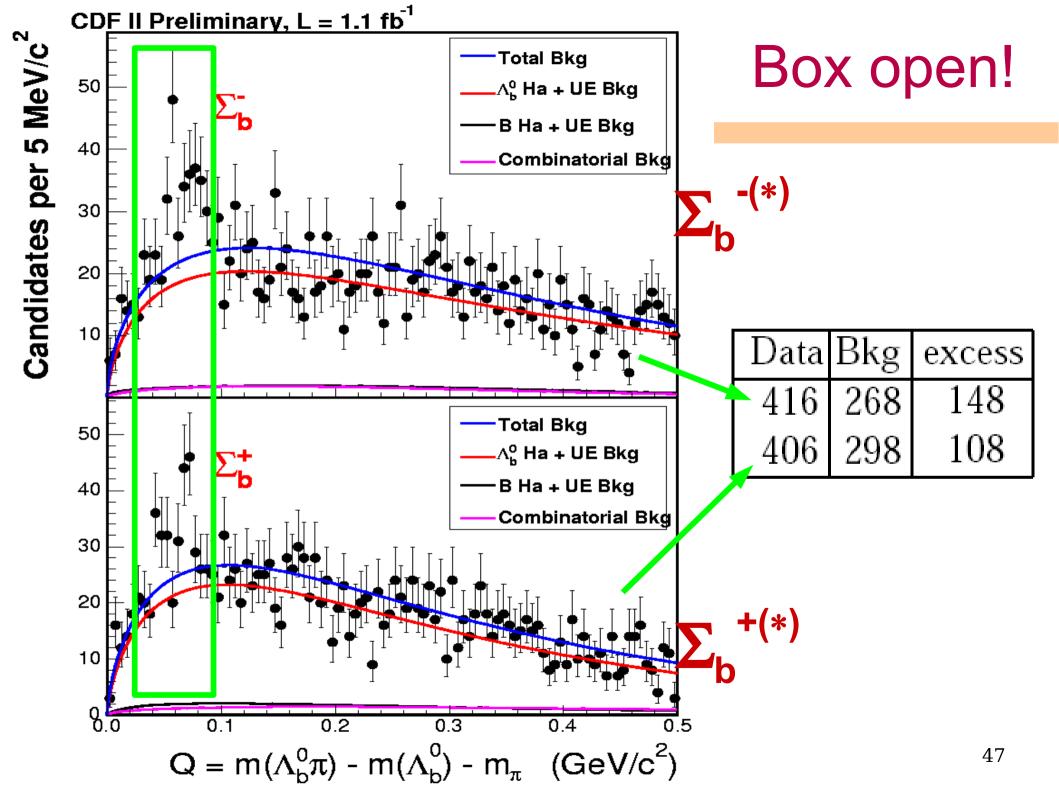
$$f_p \equiv g_A/f_{\pi}; g_A = 0.75 \pm 0.05$$


From fit to $\Sigma_{c}^{(*)++}$ states (use as systematics)

 $\Gamma(\Sigma_{c}^{(*)++})$ in an excellent agreement with **PDG**

44

Modeling Σ_{h} signal peaks



- Natural width from HQET formula
- Dominates over detector resolution!
- Breit-Wigner peaks get wider as m(Σ_b) goes up

CDF II Preliminary, L = 1.1 fb⁻¹ Candidates per 5 MeV/c² 40 Total Bkg Λ⁰ Ha + UE Bkg 35 B Ha + UE Bkg Combinatorial Bkd 30 25 20 40 Total Bkg ∆ն Ha + UE Bkg 35 B Ha + UE Bkg 30 Combinatorial Bkd 25 20 15 10 $Q = m(\Lambda_b^0 \pi) - m(\Lambda_b^0) - m_{\pi} \quad (GeV/c^2)$

Bkgs before unblinding

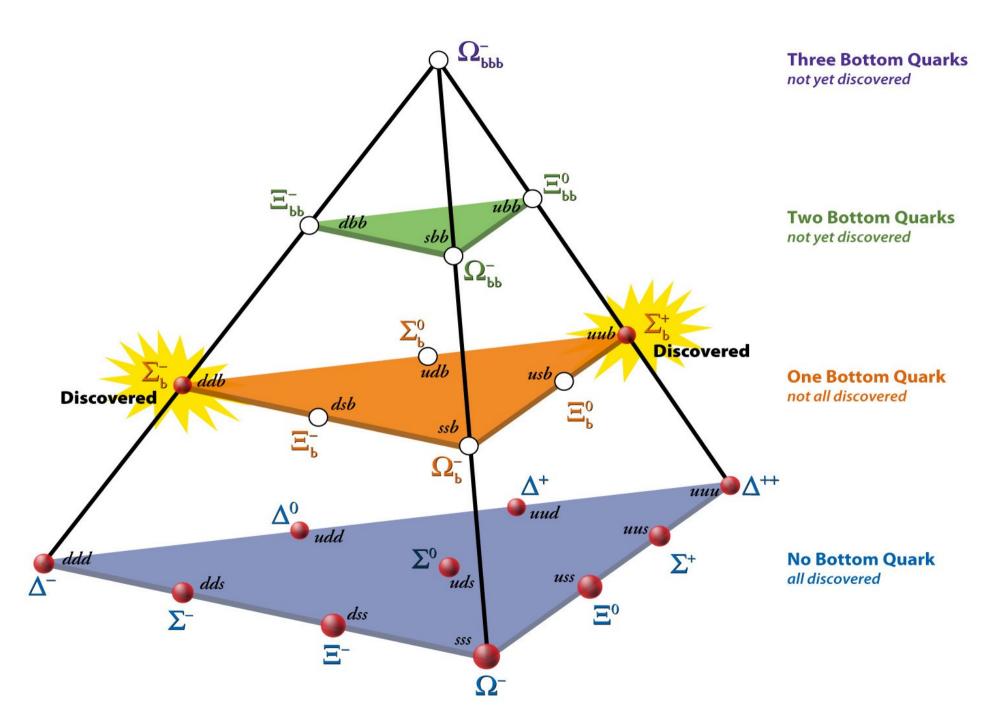
- Λ_b HA+UE dominates
- Small contribution from
 - B meson bkg
 - Combinatorial
- These backgrounds are fixed when we fit for $\Sigma_{\rm b}$ signals

Fit results

Parameter	Value	MINOS Errors
$\Sigma_b^- Q (\mathrm{MeV/c^2})$	55.9	(+0.990, -0.959)
Σ_b^- events	60	(+14.8, -13.8)
$\Sigma_b^+ Q (\mathrm{MeV/c^2})$	48.4	(+2.02, -2.29)
Σ_b^+ events	29	(+12.4, -11.6)
Σ_b^{*-} events	74	(+18.2, -17.4)
Σ_b^{*+} events	74	(+17.2, -16.3)
Σ_b^* - Σ_b Q (MeV/c ²)	21.3	(+2.03, -1.94)

• Only significant correlation between $Q(\Sigma_b^+)$ and $Q(\Sigma_b^+)$ - $Q(\Sigma_b^-)$ (because Σ_b^+ peak is weak...)

$$Q(\Sigma_b^*) - Q(\Sigma_b)$$


Systematics: procedure

- Already listed an array of "variations":
 - change: $\Lambda_{\rm b}$ signal region sample composition, det. resolution, natural width, functional form of background PDFs, extreme reweighting track $p_{\scriptscriptstyle T}$ distribution, etc.
- For each variation:
 - generate 1000 Toy MC experiments with "changed" PDF
 - fit with "baseline" PDF
 - average differences between fit results is the systematic error

All small for mass measurements Systematics: results

		-,-	,,				
Tracking	Λ_b^0 Comp.	Λ_b^0 Norm.	Λ_b^0 Shape	Reweight	Reso.	Σ_b Width	Total
0.06	0.03	0.013	0.013	0.0	0.0	10.0	0.07
-0.06	0.0	-0.013	0.0	-0.11	-0.014	-0.02	-0.13
0.06	0.0	0.009	0.0	0.04	0.0	0.009	0.07
-0.06	-0.03	-0.002	-0.011	-0.0004	-0.011	-0.005	-0.07
0.06	0.05	0.14	0.04	0.32	0.02	0.07	0.37
-0.06	0.0	-0.13	0.0	0.0	0.0	-0.07	-0.16
0.0	3.3	2.1	1.2	2.3	0.3	1.8	5.0
0.0	0.0	-2.1	0.0	-1.8	0.0	-2.0	-3.4
0.0	0.7	2.2	0.3	7.4	0.3	3.4	8.5
r = 0	nht ⁰ na I	ardest	fol ⁰	0.0	0.0	-3.4	-4.0
0.0	7.3	4.8	2.8	4.6	0.2	0.8	10.3
0.0	0.0	-4.8	0.0	-2.9	0.0	-0.8	-5.7
0.0	0.4	4.8	0.3	14.7	0.1	1.7	15.6
0.0	0.0	-4.7	0.0	0.0	0.0	-1.7	-5.0
	0.06 -0.06 -0.06 -0.06 -0.06 -0.00 0.0 0.0 0.0 0.0	-0.06 0.0 0.06 0.0 -0.06 -0.03 0.06 0.05 -0.06 0.0 0.0 3.3 0.0 0.0 0.0 0.7 0.0 0.7 0.0 7.3 0.0 0.0 0.0 0.0 0.0 0.4	0.06 0.03 0.013 -0.06 0.0 -0.013 0.06 0.0 0.009 -0.06 -0.03 -0.002 0.06 0.05 0.14 -0.06 0.0 -0.13 0.0 3.3 2.1 0.0 0.7 2.2 0.0 0.7 2.2 0.0 0.0 -4.8 0.0 0.4 4.8	0.06 0.03 0.013 0.013 -0.06 0.0 -0.013 0.0 0.06 0.0 0.009 0.0 -0.06 -0.03 -0.002 -0.011 0.06 0.05 0.14 0.04 -0.06 0.0 -0.13 0.0 0.0 3.3 2.1 1.2 0.0 0.0 -2.1 0.0 0.0 0.7 2.2 0.3 0.0 0.0 7.3 1.2 0.0 0.0 -4.8 0.0 0.0 0.4 4.8 0.3	0.06 0.03 0.013 0.013 0.0 -0.06 0.0 -0.013 0.0 -0.11 0.06 0.0 0.009 0.0 0.04 -0.06 -0.03 -0.002 -0.011 -0.0004 0.06 0.05 0.14 0.04 0.32 -0.06 0.0 -0.13 0.0 0.0 0.0 3.3 2.1 1.2 2.3 0.0 0.0 -2.1 0.0 -1.8 0.0 0.7 2.2 0.3 7.4 0.0 0.0 7.3 0.0 0.0 4.6 0.0 0.0 -4.8 0.0 -2.9 0.0 0.4 4.8 6.3 14.7	0.06 0.03 0.013 0.013 0.0 0.0 -0.06 0.0 -0.013 0.0 -0.11 -0.014 0.06 0.0 0.009 0.0 0.04 0.0 -0.06 -0.03 -0.002 -0.011 -0.0004 -0.011 0.06 0.05 0.14 0.04 0.32 0.02 -0.06 0.0 -0.13 0.0 0.0 0.0 0.0 3.3 2.1 1.2 2.3 0.3 0.0 0.7 2.2 0.3 7.4 0.3 0.0 0.7 2.2 0.3 7.4 0.3 0.0 0.0 7.3 4.8 0.0 4.6 0.2 0.0 0.0 -4.8 0.0 -2.9 0.0 0.0 0.4 4.8 0.3 14.7 0.1	0.06 0.03 0.013 0.013 0.0 0.0 0.01 -0.06 0.0 -0.013 0.0 -0.11 -0.014 -0.02 0.06 0.0 0.009 0.0 0.04 0.0 0.009 -0.06 -0.03 -0.002 -0.011 -0.0004 -0.011 -0.005 0.06 0.05 0.14 0.04 0.32 0.02 0.07 -0.06 0.0 -0.13 0.0 0.0 0.0 -0.07 0.0 3.3 2.1 1.2 2.3 0.3 1.8 0.0 0.0 -2.1 0.0 -1.8 0.0 -2.0 0.0 0.7 2.2 0.3 7.4 0.3 3.4 0.0 7.3 0.0 2.2 0.3 7.4 0.3 3.4 0.0 7.3 4.8 2.8 0.0 0.0 -3.4 0.0 0.4 4.8 0.0 -2.9 0.0

Baryons with Up, Down, Strange and Bottom Quarks and Highest Spin ($J = \frac{3}{2}$)

The shopping list: Hopes for the future Measure $\Delta m(\Sigma_b)$ in + and – data separately

• Measure production rate relative to $\hbar \psi \Lambda$

$$\Lambda_b o \Lambda_c^+ \pi^-$$

$$\Lambda_b o \Lambda_c 3\pi$$