$B \rightarrow DK$ measurements at CDF

Johannes Mülmenstädt

U.C. Berkeley and LBL for the CDF Collaboration

October 30, 2006

Outline

Motivation

- determination of γ from B^+ decays
- determination of γ from B^0_s decays

CDF measurement of $\mathcal{B}(B^+ \to \overline{D}{}^0K^+)/\mathcal{B}(B^+ \to \overline{D}{}^0\pi^+)$

- sample
- fit method
- result

Projection

- $B^+ \to \overline{D}{}^0 K^+$
- $B^+ \to D^0_{CP} K^+$
- $B_s^0 \to D_s^{\mp} K^{\pm}$

Motivation: CKM angle γ

 $\gamma = \phi_3 = \arg(-V_{ud}V_{ub}^*/V_{cd}V_{cb}^*)$ is the weak phase associated with $b \to u$ transition For observable effect, need interference:

- two diagrams with relative phase γ
- and with comparable amplitude

Determination of γ from B^+ decays

 $B^+\to \overline{D}{}^0K^+$ and $B^+\to D^0K^+$ have relative weak phase $\gamma;$ decay width ratio ~ 10

Multiple methods for interference: GLW^1 , ADS^2 , Dalitz plot³

GLW uses $B^+ \to \overline{D}{}^0 (\to f_{CP}) K^+$, $B^+ \to D^0 (\to f_{CP}) K^+$

At CDF: f_{CP} is $D^0_{CP+} \to K^+ K^-$, $D^0_{CP+} \to \pi^+ \pi^-$

Advantage of B^+ measurement: no B-tagging, no time-dependence required

³A. Giri, Y. Grossman, A. Soffer and J. Zupan, Phys. Rev. D **68**, 054018 (2003) [arXiv:hep-ph/0303187].

¹M. Gronau and D. London., Phys. Lett. B **253**, 483 (1991); M. Gronau and D. Wyler, Phys. Lett. B **265**, 172 (1991).

²D. Atwood, I. Dunietz and A. Soni, Phys. Rev. D **63**, 036005 (2001) [arXiv:hep-ph/0008090].

Determination of γ from B^+ decays

Need to measure:⁴

$$R = \frac{\mathcal{B}(B^+ \to \overline{D}{}^0 K^+)}{\mathcal{B}(B^+ \to \overline{D}{}^0 \pi^+)}$$

$$R_{\pm} = \frac{\mathcal{B}(B^- \to D^0_{CP\pm} K^-) + \mathcal{B}(B^+ \to D^0_{CP\pm} K^+)}{\mathcal{B}(B^- \to D^0_{CP\pm} \pi^-) + \mathcal{B}(B^+ \to D^0_{CP\pm} \pi^+)}$$

$$A_{CP\pm} = \frac{\mathcal{B}(B^- \to D^0_{CP\pm} K^-) - \mathcal{B}(B^+ \to D^0_{CP\pm} K^+)}{\mathcal{B}(B^- \to D^0_{CP\pm} K^-) + \mathcal{B}(B^+ \to D^0_{CP\pm} K^+)}$$

$$r = \frac{\mathcal{B}(B^+ \to D^0 K^+)}{\mathcal{B}(B^+ \to \overline{D}{}^0 K^+)} \approx 0.1$$

to extract γ , strong phase δ (and r):

$$R_{CP\pm} = R_{\pm}/R = 1 + r^2 \pm 2r\cos\delta\cos\gamma$$

$$A_{CP+}R_{CP+} = -A_{CP-}R_{CP-} = 2r\sin\delta\sin\gamma$$

Measurement can be done with ratios of branching ratios

⁴M. Gronau, Phys. Rev. D **58**, 037301 (1998) [arXiv:hep-ph/9802315].

Determination of γ from B_s^0 decays

 $B^0_s \to D^-_s K^+$, $B^0_s \to D^+_s K^-$ have relative phase γ , comparable amplitude

 $B_s^0 \to D_s^- K^+$ interferes with $B_s^0 \stackrel{(\text{mixing})}{\to} \overline{B}_s^0 \to D_s^- K^+$

Time-dependent, flavor-tagged measurement⁵

⁵R. Aleksan, I. Dunietz and B. Kayser, Z. Phys. C **54**, 653 (1992).

Measuring $\mathcal{B}(B^+ \to \overline{D}{}^0K^+)/\mathcal{B}(B^+ \to \overline{D}{}^0\pi^+)$

 $R = \mathcal{B}(B^+ \to \overline{D}{}^0K^+)/\mathcal{B}(B^+ \to \overline{D}{}^0\pi^+)$ is first experimental step in GLW method: high-statistics mode compared to D_{CP}^0 modes

Strategy: use $D^0\pi$ mass and PID to separate $D^0\pi$, D^0K and backgrounds

Separating $D^0 K$ from $D^0 \pi$: dE/dx

Use dE/dx of track recoiling against D^0 :

$$ID = \frac{dE/dx_{\text{meas}} - dE/dx_{\text{exp}}(\pi)}{dE/dx_{\text{exp}}(K) - dE/dx_{\text{exp}}(\pi)}$$

Separating $D^0 K$ from $D^0 \pi$: Kinematics

Reconstructed $(D^0\pi)$ mass depends on momentum imbalance:

$$\alpha = \left\{ \begin{array}{ll} 1 - p_{\rm tr} / p_{D^0} & \mbox{if } p_{\rm tr} < p_{D^0} \\ -(1 - p_{D^0} / p_{\rm tr}) & \mbox{if } p_{\rm tr} \ge p_{D^0} \end{array} \right.$$

Fit

- unbinned maximum-likelihood fit
- fit in narrow range [5.17, 5.6] GeV
- fit components: $D^0\pi$, D^0K , $D^{*0}\pi$, combinatorial background
- fit variables: $m(D^0\pi)$, α , dE/dx

Systematic errors

error
0.0006
0.001
0.0015
0.001
0.001
0.003
0.002
0.004
-

largest error: D^{*0} mass pdf

Result

CDF result on 360 pb⁻¹ ($\sim 3300 D^0 \pi$ events):

$$R = \frac{\mathcal{B}(B^+ \to \overline{D}{}^0 K^+)}{\mathcal{B}(B^+ \to \overline{D}{}^0 \pi^+)} = (6.5 \pm 0.7 (\text{stat}) \pm 0.4 (\text{syst})) \times 10^{-2}$$

Also measured by BaBar⁶, CLEO⁷ and Belle:⁸

experiment	measurement (10^{-2})	$D^0\pi$ sample size	
BaBar	$8.31 \pm 0.35 \pm 0.20$	~ 10000	$(61.0 \times 10^6 \ B\overline{B})$
CLEO	$9.9^{+1.4+0.7}_{-1.2-0.6}$	~ 500	(15.3 fb^{-1})
Belle	$7.7\pm0.5\pm0.6$	~ 6000	$(85.4 \times 10^6 \ B\overline{B})$

⁶B. Aubert *et al.* [BABAR Collaboration], Phys. Rev. Lett. **92**, 202002 (2004) [arXiv:hep-ex/0311032].

⁷A. Bornheim *et al.* [CLEO Collaboration], Phys. Rev. D **68**, 052002 (2003) [arXiv:hep-ex/0302026].

⁸S. K. Swain *et al.* [Belle Collaboration], Phys. Rev. D **68**, 051101 (2003) [arXiv:hep-ex/0304032].

Outlook: $B^+ \rightarrow D^0_{CP} K^+$

Statistics in 360 pb⁻¹: 3300 $D^0\pi$, 500 $D^0_{CP+}\pi$

Analysis in progress on 1 fb⁻¹:

- $\times 3$ statistics
- template mass pdfs
- wider fit range
- improved BG model

Outlook: $\mathcal{B}(B^0_s \to D_s K) / \mathcal{B}(B^0_s \to D_s \pi)$

- $\mathcal{B}(B_s \to D_s K) / \mathcal{B}(B_s \to D_s \pi)$ measurement in progress
- first measurement of this ratio; potentially large interference
- this measurement will decide how much data is required for time-dependent, flavor-tagged $B_s^0 \rightarrow D_s^{\pm} K^{\mp}$ analysis

In summary

CDF has measured R in 360 pb⁻¹:

$$R = \frac{\mathcal{B}(B^+ \to \overline{D}{}^0 K^+)}{\mathcal{B}(B^+ \to \overline{D}{}^0 \pi^+)} = (6.5 \pm 0.7 (\text{stat}) \pm 0.4 (\text{syst})) \times 10^{-2}$$

Future steps in Cabibbo-suppressed program at CDF:

- R measurement in 1 fb⁻¹ in progress
- A_{CP+} and R_{CP+} are next
- $\mathcal{B}(B_s \to D_s K) / \mathcal{B}(B_s \to D_s \pi)$ is also in the pipeline

Bonus slides

Sample selection

- $\chi^2_{\rm 3D}(B) < 15$
- $\bullet \quad \mathrm{iso} > 0.5$
- $L_{xy}(B)/\sigma_{L_{xy}}(B) > 8$
- $L_{xy}(B \rightarrow D) > 150 \ \mu m$
- $|d_0(B)| < 80 \ \mu m$
- $\Delta R < 2$
- $p_{\mathrm{T}}(\pi_B) > 2.0 \ \mathrm{GeV}$
- π_B is trigger track

Remove prompt physics and combinatorial background

Fit

fit in narrow range [5.17, 5.6] GeV fit components: $D^0\pi$, D^0K , $D^{*0}\pi$, combinatorial background fit variables: m, α , p_{tot} , dE/dx

$$\log \mathcal{L} = \sum_{i}^{N_{\text{events}}} \left((1-b)(f_{\pi}F_{\pi}(\boldsymbol{\theta}_{i}) + (1-f_{\pi})F_{K}(\boldsymbol{\theta}_{i})) + b(f_{D^{*}}B_{D^{*}}(\boldsymbol{\theta}_{i}) + (1-f_{D^{*}})B_{\text{comb}}(\boldsymbol{\theta}_{i})), \quad \boldsymbol{\theta} = (\alpha, p_{\text{tot}}, m_{D^{0}\pi}, ID) \right)$$

$$F_{j}(\alpha, p_{\text{tot}}, m_{D^{0}\pi}, ID) = G(m_{D^{0}\pi} - M(\alpha, p_{\text{tot}}))P(\alpha, p_{\text{tot}})P(ID)$$
$$B_{j}(\alpha, p_{\text{tot}}, m_{D^{0}\pi}, ID) = B(m_{D^{0}\pi})P(\alpha, p_{\text{tot}})P(ID)$$

 $P(\alpha,p_{\rm tot})$ from MC for $B\mbox{-}p\mbox{-}p\mbox{-}s\mbox{-}l\mbox{-$