Λ_b Lifetime in Fully Reconstructed Decay at CDF

Mark Neubauer

University of California, San Diego for the CDF Collaboration

辈 Fermilab

Mark Neubauer

UCSD

Lifetimes: Why Do We Care?

increasing $m_{Q}^{-} \longrightarrow \infty$ (spectator ansatz)

Mark Neubauer

Lifetimes of *b*-Flavored Hadrons

Critical testbed for theoretical framework used to predict heavy quark quantities:

- Qualitatively expect: $\tau(B_c) \ll \tau(\Lambda_b) < \tau(B_s) \approx \tau(B^0) < \tau(B^+)$ but one can do better than this...!
- *b*-hadron lifetime ratios can be calculated with reasonable precision:

2% for $\tau(B^+)/\tau(B^0)$, **1%** for $\tau(B_s)/\tau(B^0)$, **6%** for $\tau(\Lambda_b)/\tau(B^0)$

using Heavy Quark Expansion (HQE) since $m_h \gg \Lambda_{OCD} \rightarrow$ large energy release in decay

Mark Neubauer

Heavy Quark Expansion

Inclusive decay width expressed as an operator product expansion (OPE) in Λ_{ocn}/m_{h} and $\alpha_{s}(m_{h})$

• $c_i^{(n)}$ contain short-distance physics from scales $\ge \mu = O(m_b)$ \rightarrow perturbatively calculable

 Matrix elements contain long-distance physics → hard! especially for baryons

• Spectator contributions enter at 1/m_b³ (~5-10%)

NLO QCD and sub-leading spectator corrections can be important! For $\tau(\Lambda_b)/\tau(B^0)$:

- NLO QCD: -8% (hep-ph/0203089)
- Sub-leading spectator: -(2-3)% (hep-ph/0407004)

Λ_b Lifetime: Before Us

Experiment

Theory

For $\tau (\Lambda_b)/\tau (B^0)$, early theory predictions (~0.94) and experiment differed by more than $2\sigma \rightarrow "\Lambda_b$ lifetime puzzle" ⁰ Current NLO QCD + $1/m_b^4$ calculation: $\tau(\Lambda_b) / \tau(B^0) = 0.86 \pm 0.05$

consistent w/ HFAG 2005 world avg: $\tau(\Lambda_b) / \tau(B^0) = 0.803 \pm 0.047$

The situation is far from resolved - need more experimental input on $\tau(\Lambda_{h})!$

Mark Neubauer

DPF 2006 / Honolulu, Hawaii

hep-ph/0203089

The Fermilab Tevatron

World's highest energy particle collider until turn-on of LHC @ CERN

The CDF II Detector

Mark Neubauer

Λ_b Lifetime: Analysis Strategy

DPF 2006 / Honolulu, Hawaii

b-Hadron Lifetimes We Measure

$B^0 \rightarrow J/\psi K_{s'}$	$J/\psi \rightarrow \mu\mu, K_s \rightarrow \pi\pi$	Full systematics		
ψ(2S) K	$\psi(2S) \rightarrow \mu\mu, \ K_s \rightarrow \pi\pi$			
ψ(2S) K	$\psi(2S) \rightarrow J/\psi \pi \pi, J/\psi \rightarrow \mu \mu, K_s \rightarrow \pi \pi$			
$B^{0} \rightarrow J/\psi K^{*0},$	$J/\psi \rightarrow \mu\mu, K^{*0} \rightarrow K\pi$			
$\psi(2S) K^*$	$\psi(2S) \rightarrow \mu\mu, K^{*0} \rightarrow K\pi$	Statistical errors		
ψ(23) κ	, $\psi(23) \rightarrow J/\psi \pi \pi, J/\psi \rightarrow \mu \mu, \kappa \rightarrow \kappa \pi$	only (for cross-√)		
$B^+ \rightarrow J/\psi K^+,$	$J/\psi \rightarrow \mu\mu$			
$\psi(2S) \mathbf{K}^{\dagger}$	$\psi(2S) \rightarrow \mu\mu$ $\psi(2S) \rightarrow I/\mu\pi\pi$ $I/\mu \rightarrow \mu\mu$			
ψ(20) κ	$, \psi(20) = \int \int \psi(00, \eta) \psi(0$			
$B^+ \rightarrow J/\psi K^{*+}$,	$J/\psi \to \mu\mu, \ K^{*+} \to K_s\pi$			
$\mathbf{A} \rightarrow \mathbf{T} \mathbf{h} \mathbf{r} \mathbf{A}^0$	$\mathbf{L}_{\mathbf{h}\mathbf{u}}$ \mathbf{A}^{0} $\mathbf{D}\boldsymbol{\pi}$	Full custometics		
$\Lambda_{\rm b} \rightarrow J/\psi \Lambda ,$	$J/\psi \rightarrow \mu\mu, \Lambda \rightarrow p\pi$	Full Systematics		
Our primary goal				

DPF 2006 / Honolulu, Hawaii

b-Hadron Selection

want good

of b-hadron

decay vertex

determination

Select J/ψ:

- good track-stub match
- \geq 3 r- ϕ hits in silicon systems
- Vertex prob(χ^2) > 0.1% -

Select $\mathbf{V}^0 \equiv \mathbf{K}_s$, Λ^0 :

- \geq 2 COT axial, stereo SL with \geq 5 hits
- no Silicon hits requirement
- Vertex prob(χ^2) > 0.1%

Combine J/ ψ and V⁰ to construct *b*-hadron Candidates

Vertex Fit with kinematic constraints:

- J/ψ mass constrained to PDG value
- V^0 momentum constrained to point back to J/ ψ decay vertex in 3D

Cuts on $prob(\chi^2)$ and kinematics variables (e.g. b-hadron Pt), separately optimized for each mode using Monte Carlo for signal and data sidebands for background

$\sim 9M J/\psi \rightarrow \mu\mu$

DPF 2006 / Honolulu, Hawaii

K_{s} and Λ^{0} after b-Hadron Selection

• Veto Λ^0 in K_s and K_s in Λ^0 using $p \leftrightarrow \pi$ swapped-mass hypothesis to suppress V^0 cross-contamination

• Very clean \rightarrow Majority of background comes from combinations of real J/ ψ and real K_s, Λ^0

Mark Neubauer

Results: Yield

DPF 2006 / Honolulu, Hawaii

Fit Model: Overview

Overall probability density function (PDF) is a normalized sum of signal and background contributions:

$$P(\lambda_i, \sigma_i^{\lambda}, m_i, \sigma_i^m \mid \vec{\xi}) = (1 - f_b) P_{sig} + f_b P_{bkg}$$

where:

$$P_{\text{sig}}, P_{\text{bkg}} \text{ are products of PDL, PDLerror, and mass PDFs:}$$

$$P_{\text{sig,bkg}} = P_{\text{sig,bkg}}^{\lambda}(\lambda_{i}|\sigma_{i}^{\lambda},\vec{\alpha}) P_{\text{sig,bkg}}^{\sigma^{\lambda}}(\sigma_{i}^{\lambda}|\vec{\beta}) P_{\text{sig,bkg}}^{m}(m_{i}|\sigma_{i}^{m},\vec{\gamma})$$
Unbinned maximum likelihood fit to extract $\vec{\xi} = [\vec{\alpha}, \vec{\beta}, \vec{\gamma}, \vec{\delta}]$
 $(\vec{\xi} \text{ contains 18 parameters, including signal } c\tau)$

Mark Neubauer

Fit Model: Signal PDL

Signal PDL modeled as an exponential decay convoluted with a Gaussian resolution function :

$$\mathbf{P}_{\mathrm{sig}}^{\lambda}(\lambda_{\mathrm{i}},\sigma_{\mathrm{i}}^{\lambda}|\vec{\alpha}_{\mathrm{sig}}) = \mathbf{E}(\lambda_{\mathrm{i}}|\mathbf{c}\tau) * \mathbf{G}(\lambda_{\mathrm{i}},\sigma_{\mathrm{i}}^{\lambda}|\mathbf{s})$$

where:

 τ = signal lifetime (the goal)

s = overall scale factor on PDL errors

$$E(\lambda_{i}|c\tau) = \begin{vmatrix} \frac{1}{c\tau} e^{-\lambda_{i}/c\tau}, \lambda_{i} \ge 0\\ 0, \lambda_{i} < 0 \end{vmatrix}$$

$$G(\lambda_{i}, \sigma_{i}^{\lambda} | s) = \frac{1}{\sqrt{2\pi} s \sigma_{i}^{\lambda}} e^{\frac{-\lambda_{i}^{2}}{2(s\sigma_{i}^{\lambda})^{2}}}$$

Fit Model: Background PDL

Background PDL modeled as sum of four components:

DPF 2006 / Honolulu, Hawaii

Results: Lifetime

DPF 2006 / Honolulu, Hawaii

b-Hadron Lifetime Summary

We use these results to cross- $\!\!\!\sqrt$ our measurement of lifetimes in fully-reconstructed decay using J/ $\!\psi$ to determine B decay vertex

Mark Neubauer

Systematic Uncertainties

Source	cτ (Bº) [μm]	cτ (Λ _b) [μm]
Fitter Bias	0.4	0.5
Fit Model:		
ct Resolution	3.1	5.5
Mass Signal	0.7	2.3
Mass Background	0.1	0.1
<i>ct</i> Background	0.5	0.7
σ^{ct} Distribution Modeling	0.1	0.2
σ^m Distribution Modeling	0.6	0.2
Mass-ct Background Correlation	1.9	4.1
<i>ct</i> -σ ^{<i>ct</i>} Background Correlation	0.3	1.3
Primary Vertex Determination	0.2	0.3
Alignment:		
SVX Internal	2.0	2.0
SVX/COT Global	2.2	3.2
V ^o Pointing	0.6	5.4
Total	4.9	9.9

Mark Neubauer

Summary of Results

We measure in decay mode $B^0 \rightarrow J/\psi K_s$:

 $c\tau$ (B⁰) = 456.8 $^{+9.0}_{-8.9}$ (stat.) ± 4.9 (syst.) µm

 $= 1.524 \pm 0.030$ (stat.) ± 0.016 (syst.) ps

consistent w/ PDG 2004 value of 1.530 ± 0.009 ps

We also measure in decay mode $\Lambda_{h} \rightarrow J/\psi \Lambda^{0}$:

 $c\tau (\Lambda_{b}) = 477.6^{+25.0}_{-23.4} \text{ (stat.)} \pm 9.9 \text{ (syst.)} \ \mu\text{m}$ = 1.593 $^{+0.083}_{-0.078} \text{ (stat.)} \pm 0.033 \text{ (syst.)} \text{ ps}$

Mark Neubauer

Conclusions

Using our Λ_{h} lifetime and the PDG 2004 B⁰ lifetime, we get

 $\tau(\Lambda_{\rm b}) / \tau({\rm B}^0) = 1.041 \pm 0.057 \text{ (stat.+syst.)}$

This result is higher than the PDG 2004 world average τ ($\Lambda_{\rm h}$) @ 3.2 σ level

Our $\tau(\Lambda_b)$ measurement is the world's most precise measurement \rightarrow best by far in a fully reconstructed decay channel

and consistent with theory

Summary / Outlook

 $\tau(\Lambda_{\rm b})$ in $\Lambda_{\rm b} \rightarrow \Lambda_{\rm c} \pi$ from CDF is also coming

DPF 2006 / Honolulu, Hawaii

Extras

Mark Neubauer

Integrated Tracking System

Tracking in a nutshell:

- 1) Segments formed from hits each COT superlayer (SL)
- 2) Segments linked together to form 2D track
- 3) Stereo segments linked into 2D track and helix fit is performed
- 4) COT track extrapolated into SVXII, outer layers first
- 5) SVXII hits consistent with COT track are added succession, with track refit after each iteration

CDF Tracking Volume

Silicon system:

SVX II

- 5 layers double-sided
- silicon \rightarrow r- ϕ , r-z tracking
- 2.5 < r < 10.6 cm
- 96 cm long
- $\rightarrow \times 2$ RunI acceptance

ISL

- 2 additional Si layers
- r < 28 cm; cover |η|<2

L00

• inner Si layer at beam pipe (R = 1.5 cm)

(L00 not used in our analysis)

DPF 2006 / Honolulu, Hawaii

Di-muon Trigger / Dataset

(central region)

(central region beyond CMU radius)

Di-muon triggers use tracks found in the drift chamber (COT) that are matched to stubs in 3 sets of muon chambers:

- Central muon chambers (CMU): $|\eta| < 0.6$
- Central muon plug (CMP): $|\eta| < 0.6$
- Central muon extension (CMX): $0.6 < |\eta| < 1.0$

collected on JPsi ($\psi \rightarrow \mu^+ \mu^-$) trigger

DPF 2006 / Honolulu, Hawaii

Selection Optimization

- Single-b Monte Carlo for signal
- "Far" sidebands in data for background
- N-1 Optimization of each for cut for best for S²/(S+B)

 $\Lambda^{0} L_{xy} \text{ significance } > 4.0$ $\Lambda^{0} \text{ mass window: } \pm 9 \text{ MeV}$ $\Lambda^{0} p_{t} > 2.6 \text{ GeV}$ $\Lambda_{b} p_{t} > 4.0 \text{ GeV}$ $\Lambda_{b} \text{ Prob}(\chi^{2}) > 10^{-4}$

 $K_{s} L_{xy} \text{ significance } > 6.0$ $K_{s} \text{ mass window: } \pm 25 \text{ MeV}$ $K_{s} p_{t} > 1.5 \text{ GeV}$ $B^{0} p_{t} > 4.0 \text{ GeV}$ $B^{0} \text{ Prob}(\chi^{2}) > 10^{-4}$

Mark Neubauer

 \mathbf{B}^0

DPF 2006 / Honolulu, Hawaii