BR & ACP of $B \rightarrow h^+h^-$
modes at CDF

G. Punzi
for the CDF collaboration

DPF and JPS 2006
Honolulu, HI
Charmless B decays are a great tool to explore CKM and possible NP

Single measurements hard to interpret: combination of multiple modes essential to understanding of data and comparison to theory

Tevatron access to all b-hadrons and large Luminosity is a great opportunity for extending the range of available measurements.

This talk: All modes into pairs of charged charmless hadrons:

$$(B_s / B^0 / \Lambda_b) \rightarrow h^+ h'^-$$ where $h = \pi, K$ (or p for Λ_b)

Known modes (larger BR):
- $B^0 \rightarrow K^+ \pi^-$
- $B^0 \rightarrow \pi^+ \pi^-$
- $B^0_s \rightarrow K^+ K^-$ (observed by CDF)

Yet unobserved modes:
- $B^0_s \rightarrow K^- \pi^+$
- $B^0 \rightarrow K^+ K^-$
- $\Lambda_b \rightarrow pK$
- $B^0_s \rightarrow \pi^+ \pi^-$
- $\Lambda_b \rightarrow p\pi$

CDF results with 1 fb$^{-1}$ sample [CDF public note 8579]
(Updates previous results with 180pb-1 or 360pb-1)
Important CDF features

- Central Drift chamber in B field
 - \(\sigma(p_T)/p_T^2 \sim 0.1\% \text{ GeV}^{-1} \)
 - dE/dx measurement (encoded in hit width)
- Silicon VerteX detector
 - I.P. resolution: 35\(\mu \text{m} @ 2\text{GeV} \)
- Time-of-Flight
 - Control systematics from possible proton background asymmetry
- Tracking trigger:
 - XFT at L1: 2D tracks in COT, \(p_T > 1.5 \text{ GeV/c}^2 \)
 - SVT at L2: 2D tracks in COT+SVX \(p_T > 2.0 \text{ GeV/c}^2 \)
 - Impact parameter measurement
It all begins in the trigger

- **Reject light-quark background**
 - Two oppositely-charged tracks
 - Transverse opening angle \([20^\circ, 135^\circ]\);
 - \(p_T^{T_1}, p_T^{T_2} > 2 \text{ GeV}\);
 - \(p_T^{T_1} + p_T^{T_2} > 5.5 \text{ GeV}\).

- **Long-lived candidate**
 - Track impact parameters >100 \(\mu m\);
 - Transverse decay length \(L > 200 \mu m\);

- **Reject multi-prongs and backgrounds**
 - B impact parameter < 140 \(\mu m\);

\[\sigma(d_0) \approx \text{offline:} \]
\[48 \mu m = 35 \ [\text{SVT}] \oplus 33 \ [\text{beam-spot}] \]
Signal with initial cuts

CDF Run II Preliminary $L_{\text{int}} = 1 \text{ fb}^{-1}$

~ 8500 events

$S/B \approx 0.7$ at the peak

Signal (BR $\sim 10^{-5}$) clearly visible with just trigger cuts confirmation

Further observable used for offline analysis:

- 3D Vertex chi-square
- Isolation:

$$I(B) = \frac{\text{Pt}(B)}{\text{Pt}(B) + \sum_{\text{cone}} \text{Pt}_i}$$

- Isolation effective in reducing light-quark background, 85% efficient on signal (analog of event shape at e^+e^-)
Choice of cuts

Cuts individually optimized by minimizing the expected statistical uncertainty on the quantity of interest. Its expression $\sigma(S,B)$ is determined from actual uncertainties observed in analysis of MC samples, and parameterized by an analytically-inspired model.

Signal yield S is derived from MC simulation while the background B is estimated from mass sidebands on data.

In practice, only 2 sets of cuts were needed:

- (1) optimize on $A_{CP}(B^0\to K^+\pi^-)$ => Loose cuts
 - good for all three “large modes” ($B^0\to K^+\pi^-$, $B^0\to \pi^+\pi^-$, $B^0_s\to K^+K^-$)
- (2) optimize on $B^0_s\to K^-\pi^+$ discovery/Limits [physics/0308063] => tight cuts
 - good for all “rare modes”

When compared with $S/\sqrt{(S+B)}$:

- $\sim 10\%$ better on $A_{CP}(B^0\to K^+\pi^-)$
- $\sim 27\%$ better on $BR(B^0_s\to K^-\pi^+)$
Offline signal (loose cuts)

Despite good mass resolution (≈ 22 MeV/c2), individual modes overlap in a single peak (width ≈ 35 MeV/c2)

Note that the use of a single mass assignment ($\pi\pi$) causes overlap even with perfect resolution

Blinded region of unobserved modes: $B^0_s \rightarrow K\pi$, $B^0_s \rightarrow \pi\pi$, $\Lambda^0_b \rightarrow p\pi/pK$

Need to determine signal composition with a Likelihood fit, combining information from kinematics (mass and momenta) and particle ID (dE/dx).
Offline signal (loose cuts)

Despite good mass resolution (≈ 22 MeV/c^2), individual modes overlap in a single peak (width ~ 35 MeV/c^2)

Note that the use of a single mass assignment ($\pi\pi$) causes overlap even with perfect resolution

Blinded region of unobserved modes: $B^0_s \rightarrow K\pi$, $B^0_s \rightarrow \pi\pi$, $\Lambda^0_b \rightarrow p\pi/pK$.

Need to determine signal composition with a Likelihood fit, combining information from kinematics (mass and momenta) and particle ID (dE/dx).
Different modes are somewhat separated in mass (~50 MeV between $B^0 \to K\pi i$ and $B_s \to K K$).

However, results depend on assumed mass resolution and details of the lineshape (rare modes confuse with the tails of larger modes).

Need good control of non-gaussian resolution tails and effects of Final State Radiation.
1. Accurate parameterization of *individual track parameters* resolution functions from full MC (including non-gaussian tails)
3. Generate mass lineshapes with a simple kinematical MC
4. Compare results with a huge sample of $D^0 \rightarrow K\pi$
 ⇒ perfect match, no tuning necessary ⇒ small systematics
5. Generate $B \rightarrow hh$ templates and use them in the Likelihood fit.
Kinematic variables:
\(p_{\text{min}} (p_{\text{max}}) \) is the 3D track momentum with \(p_{\text{min}} < p_{\text{max}} \)

1) \(M_{\pi\pi} \) invariant \(\pi\pi \)-mass
2) \(\alpha = (1-p_{\text{min}}/p_{\text{max}})q_{\text{min}} \) signed p-imbalance
3) \(p_{\text{tot}} = p_{\text{min}} + p_{\text{max}} \) scalar sum of 3-momenta

Each mode has an individual mass distribution \(p(M_{\pi\pi}) = G(M_{\pi\pi} - F(\alpha, p_{\text{tot}})) \)
This offers good discrimination amongst modes and between \(K^+\pi^- / K^-\pi^+ \).
Handle 3: dE/dx

Calibrate on pure K and π samples from decay:
$D^{*+} \rightarrow D^0\pi^+ \rightarrow [K^-\pi^+]\pi^+$
(sign of D^{*+} pion tags D^0 sign)

Useful quantity to plot (‘kaonness’):

$$ID(\text{track}) = \frac{\frac{dE}{dx}}{|\text{meas (track)}| - \frac{dE}{dx}|_{\exp-\pi}(\text{track})} - \frac{dE}{dx}|_{\exp-K}(\text{track}) - \frac{dE}{dx}|_{\exp-\pi}(\text{track})$$

$$<ID>(\text{pion}) = 0$$
$$<ID>(\text{kaon}) = 1$$

(independent of p)

dE/dx carefully calibrated over tracking volume and time.
Detailed model includes tails, momentum dependence, two-track correlations

1.4σ K/π separation for $p>2 GeV$
achieve a statistical uncertainty on
separating classes of particles which
is just 60% worse than ‘perfect’ PID
Putting it all together

Unbinned ML fit based on 5 observables

\[\mathcal{L}(\theta) = \prod_{i=1}^{N} \mathcal{L}_i(\theta) \]

\[\mathcal{L}_i(\theta) = (1 - b) \sum_j f_j \mathcal{L}_{i,j}^{\text{sign}} + b \mathcal{L}_{i,bckg} \]

Signal shapes: from MC and analytic formula
Background shapes: from data sidebands

mass term
momentum term
PID term

fraction of \(j^{\text{th}} \) mode, to be determined by the fit

NB: Only measure relative BRs and normalize to \(B^0 \to K^+\pi^- \).
(Use HFAG06)
Loose cuts, raw fit results

CDF Run II Preliminary $L_{\text{int}}=1\ fb^{-1}$

Uncorrected fractions

- $B^0 \to K^+\pi^-$: 7% (16%)
- $B^0 \to K^+\pi^-$: 19% (26%)
- $B^0 \to K^+\pi^-$: 32%
- $B^0 \to \pi^+\pi^-$: ~7000 events total

- B^0 yields comparable to e^+e^-
- Large $B^0_s \to K^+K^-$ sample
- Good separation: compare to \sqrt{N} below

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Fraction (σ/σ_{ideal})</th>
<th>Yield</th>
</tr>
</thead>
<tbody>
<tr>
<td>$B^0 \to \pi^+\pi^-$ + c.c.</td>
<td>(0.160 ± 0.009)</td>
<td>1121 ± 63</td>
</tr>
<tr>
<td>$B^0 \to K^+\pi^-$ + c.c.</td>
<td>(0.577 ± 0.010)</td>
<td>4045 ± 84</td>
</tr>
<tr>
<td>$B^0 \to K^+K^-$ + c.c.</td>
<td>(0.186 ± 0.009)</td>
<td>1307 ± 64</td>
</tr>
</tbody>
</table>
Fit projections

Many crosschecks:
- Gaussian fit pulls
- PID-less fit agrees with regular fit
- Free-mass-resolution fit agrees with standard fit
- Free-mass-scale fit agrees and returns mass shift
 \[\delta = 0.2 \pm 0.6 \text{ MeV}/c^2 \]
Results for known modes
\[\frac{BR(B^0 \to \pi^+\pi^-)}{BR(B^0 \to K^{+}\pi^-)} = 0.259 \pm 0.017 \text{ (stat.)} \pm 0.016 \text{ (syst.)} \]

\[BR(B^0 \to \pi^+\pi^-) = (5.10 \pm 0.33 \text{ (stat.)} \pm 0.36 \text{ (syst.)}) \times 10^{-6} \]

- Precision measurements. systematic\text{\approx} statistics.
- Confirm previous results in a very different experimental setting
- Good yield, bright perspectives for time-dependent measurements: expect similar resolution to e+e- with full runII sample
Direct ACP ($B^0 \rightarrow K^+\pi^-$)

Large sample >4000 events allows measuring DCPV
Plot of $L(B^0)/[L(B^0)+L(\bar{B}^0)]$
shows good separation achieved between B^0 and \bar{B}^0
(mass, alpha, dE/dx)

Significant raw asymmetry, good resolution:

$$A_{CP} \bigg|_{raw} = \frac{N_{raw}(\bar{B}^0 \rightarrow K^-\pi^+)}{N_{raw}(\bar{B}^0 \rightarrow K^-\pi^+)} - \frac{N_{raw}(B^0 \rightarrow K^+\pi^-)}{N_{raw}(B^0 \rightarrow K^+\pi^-)} = -0.092 \pm 0.023$$
Correcting the raw A_{CP}

$$A_{CP}(B^0 \rightarrow K^+\pi^-) = \frac{N_{raw}(\bar{B}^0 \rightarrow K^-\pi^+)}{N_{raw}(\bar{B}^0 \rightarrow K^-\pi^+)} \cdot \frac{\epsilon(K^+\pi^-)}{\epsilon(K^-\pi^+)} - \frac{N_{raw}(B^0 \rightarrow K^+\pi^-)}{N_{raw}(B^0 \rightarrow K^+\pi^-)} \cdot \frac{\epsilon(K^+\pi^-)}{\epsilon(K^-\pi^+)}$$

Only the different K^+/K^- interaction rate with material matters. K^- has a larger hadronic cross section than K^+.

Huge sample of prompt $D^0 \rightarrow h^+h^-$ (15M).

Kinematic fit using the *same code* of the $B \rightarrow hh$ fit

Direct $A_{CP}(D^0 \rightarrow K\pi)$ very small:

⇒ extract from DATA correction for $\epsilon(K^-\pi^+)/\epsilon(K^+\pi^-)$ plus any other possible spurious asymmetries.

$$\frac{\epsilon(K^+\pi^-)}{\epsilon(K^-\pi^+)} = 1.0131 \pm 0.0028 \ (stat.).$$

Small (~0.6%) correction. Agrees with independent evaluation from CDF simulation.
Results on $A_{CP}(B^0 \rightarrow K^+\pi^-)$

$A_{CP} = \frac{N(B^0 \rightarrow K^-\pi^+) - N(B^0 \rightarrow K^+\pi^-)}{N(B^0 \rightarrow K^-\pi^+) + N(B^0 \rightarrow K^+\pi^-)} = -0.086 \pm 0.023 \, (\text{stat.}) \pm 0.009 \, (\text{syst.})$

- CDF agrees with e^+e^- (3.5σ effect)
- WA significance 6 σ \rightarrow 7 σ
- Discrepancy with $A_{CP}(B^+ \rightarrow K^+\pi^0)$ now up to 4.9 σ
- Whether this really means new physics has been subject to debate.
- CDF can help clarifying the issue by a much more robust test, based on $B_s \rightarrow K\pi$ (more on this shortly)
Systematics $A_{CP}(B^0 \rightarrow K^+\pi^-)$

- dE/dx model (± 0.0064);
- Nominal B-meson masses (± 0.005);
- Global mass scale;
- Charge-asymmetries (± 0.0014);
- Background model (± 0.003).

Total systematic uncertainty is 0.9%, compare with 2.3% statistical.

Largest effect (dE/dx) also verified with additional crosscheck: measurement of $A_{CP}(D^0 \rightarrow K\pi)$ based on dE/dx-only. Discrepancy with the kinematic fit (≈ 0.006) within quoted systematics.

Systematics can still decrease with larger calibration samples. Prospects for a runII CDF measurement with <1% uncertainty.
B_s
Conservative systematics at the moment, expect syst ≈ stat for final result

Interesting comparison to predictions:

- **Naively:** \(\text{BR}(B^0_s \rightarrow K^+K^-) \equiv \text{BR}(B^0 \rightarrow K^+\pi^-) \equiv 20 \cdot 10^{-6} \)
- **QCDF:** \(\text{BR} \approx 23-36 \cdot 10^{-6} \) [Beneke&Neubert NP B675, 333(2003)]
- **QCD sum rules predict large SU(3) breaking** \(\text{BR} \approx 35 \cdot 10^{-6} \)

- **More recently,** 1/mb corrections give lower values again: \(\text{BR}=(20\pm9) \cdot 10^{-6} \)

 [Descotes-Genon et al. PRL97, 061801, 2006]

Further useful results expected from upcoming time-dependent measurements
Search for new modes
Rare modes search (tight cuts)

CDF Run II Preliminary $L_{int} = 1$ fb$^{-1}$

Candidates per 20 MeV/c2

- $B^0 \rightarrow K^+\pi$
- $B^0 \rightarrow K^-\pi^+$
- $B^+_s/B^-_s \rightarrow K^+K^-$
- $B^{0}/\bar{B}^{0} \rightarrow \pi^+\pi^-$
- $B^0_s \rightarrow K^-\pi^+ + \bar{B}^0_s \rightarrow K^+\pi^-$
- $\Lambda^0 \rightarrow p\pi + \bar{\Lambda}^0 \rightarrow \bar{p}\pi^-$
- $\Lambda^0 \rightarrow pK + \bar{\Lambda}^0 \rightarrow \bar{p}K^+$
- Combinatorial backg.
- Three-body B decays
First observation (8σ)

$$N_{\text{raw}}(B_s^0 \to K^-\pi^+) = 230 \pm 34 \text{ (stat.)} \pm 16 \text{ (syst.)}$$
BR(B_{s0} \rightarrow K^{-}\pi^{+})

\[
\frac{f_{s} \cdot BR(B_{s0}^{0} \rightarrow K^{-}\pi^{+})}{f_{d} \cdot BR(B^{0} \rightarrow K^{+}\pi^{-})} = 0.066 \pm 0.010 \ (\text{stat.}) \pm 0.010 \ (\text{syst.})
\]

\[
BR(B_{s0}^{0} \rightarrow K^{-}\pi^{+}) = (5.0 \pm 0.75 \ (\text{stat.}) \pm 1.0 \ (\text{syst.})) \times 10^{-6}
\]

Previous limit (CDF) < 5.4 @90% CL

SOME PREDICTIONS:

QCDF [7 \div 10] \cdot 10^{-6}
pQCD: [6 \div 10] \cdot 10^{-6}
[Yu, Li, Yu, PRD71: 074026 (2005)]
SCET: (4.9 \pm 1.8) \cdot 10^{-6}

Results agree with recent lower estimates

Large sensitivity to angle \alpha/\phi_{2}

Observation of this decay offers a unique opportunity of investigating the source of CP violation, and the reason for the discrepancy in B^0 vs B^+:

“Is observed direct CP violation in $B^0 \rightarrow K^+\pi^-$ due to new physics? Check standard Model prediction of equal violation in $B^0_s \rightarrow K^-\pi^+$”

$$\left| A(B_s \rightarrow \pi^+K^-) \right|^2 - \left| A(\bar{B}_s \rightarrow \pi^-K^+) \right|^2 = \left| A(\bar{B}_d \rightarrow \pi^+K^-) \right|^2 - \left| A(B_d \rightarrow \pi^-K^+) \right|^2$$

This comparison of $B^0 \rightarrow K^+\pi^-$ and $B^0_s \rightarrow K^-\pi^+$ is a probe of NP in CP violation based on really minimal assumption. Currently unique to CDF.

$$\frac{A_{CP}(B_s \rightarrow K^-\pi^+)}{A_{CP}(B_d \rightarrow K^+\pi^-)} = \frac{BR(B_d \rightarrow K^+\pi^-)}{BR(B_s \rightarrow K^-\pi^+)}$$

From our measured low BR, expect large asymmetry $\approx 37\%$
DCPV $B^0_s \rightarrow K^-\pi^+$

$$A_{CP} = \frac{N(\bar{B}^0_s \rightarrow K^+\pi^-) - N(B^0_s \rightarrow K^-\pi^+)}{N(\bar{B}^0_s \rightarrow K^+\pi^-) + N(B^0_s \rightarrow K^-\pi^+)} = 0.39 \pm 0.15 \text{ (stat.)} \pm 0.08 \text{ (syst.)}$$

$$|A(\bar{B}_d \rightarrow \pi^+K^-)|^2 - |A(B_d \rightarrow \pi^-K^+)|^2$$

$$= 0.84 \pm 0.42\text{ (stat.)} \pm 0.15\text{ (syst.)} \quad \text{(SM =1)}$$

First measurement of DCPV in the Bs
Sign and magnitude agree with SM predictions within errors
⇒ no evidence for exotic sources of CP violation (yet)

Exciting to pursue with more data
Even rarer modes:
Weak annihilation
Pure-annihilation modes

- All final-state quarks different from initial state quarks. ⇒ only via annihilation-type diagrams
- Not yet observed. Small BR, with large uncertainties.
- Depends on hard-to-predict hadronic parameters ⇒ large source of uncertainty in calculations.
- CDF can look for $B_s \rightarrow \pi^+ \pi^-$ in addition to $B_d \rightarrow K^+ K^-$, B_s is expected larger by $x3$-$x4$.

- To extract annihilation hadronic parameters, need BOTH measurements:

$$\frac{1}{\epsilon} \left[\frac{\text{BR}(B_d \rightarrow K^+ K^-)}{\text{BR}(B_s \rightarrow \pi^+ \pi^-)} \right] \frac{\tau_{B_s}}{\tau_{B_d}} = \frac{1 + 2 \varphi_{PA} \cos \vartheta_{PA} \cos \gamma + \varphi_{PA}^2}{\epsilon^2 - 2 \epsilon \varphi_{PA} \cos \vartheta_{PA} \cos \gamma + \varphi_{PA}^2}$$

Results on $B^0_s \to \pi^+\pi^-$, $B^0 \to K^+K^-$

\[BR(B^0 \to K^+K^-) = (0.39 \pm 0.16 \text{ (stat.)} \pm 0.12 \text{ (syst.)}) \times 10^{-6} (< 0.7 \cdot 10^{-6} \text{ @ 90\% CL}) \]

New WA: 0.16 ± 0.11 [speaker’s calculation]

Expectations: $[0.007 \div 0.08] \cdot 10^{-6}$
⇒ now in the region of interest

Best current limit
\[<1.36 \cdot 10^{-6} \text{ @ 90\% CL} \]

Expectations: $[0.024 \div 0.16] \cdot 10^{-6}$ [Beneke&Neubert NP B675, 333(2003)]
$0.42 \pm 0.06 \cdot 10^{-6}$ [Li et al. hep-ph/0404028]

We have reached the interesting region for these channels. A signal may be just around the corner.
\[\Lambda_0^b \rightarrow p\pi^- \text{ and } \Lambda_0^b \rightarrow pK^- \]

First observation, 6 σ

\[N_{\text{raw}}(\Lambda_0^b \rightarrow pK^-) = 156 \pm 20 \text{ (stat.)} \pm 11 \text{ (syst.)} \]

\[N_{\text{raw}}(\Lambda_0^b \rightarrow p\pi^-) = 110 \pm 18 \text{ (stat.)} \pm 16 \text{ (syst.)} \]

\[\frac{BR(\Lambda_0^b \rightarrow p\pi^-)}{BR(\Lambda_0^b \rightarrow pK^-)} = 0.66 \pm 0.14 \text{ (stat.)} \pm 0.08 \text{ (syst.)} \]

See for the first time a charmless decay of a B barion

Ratio of BR in agreement with predictions (0.60-0.62)

Individual BR and ACP measurements in progress
Summary

- **First observation** of $B^0_s \rightarrow K^-\pi^+$ mode
- **First measurement** of DCPV in B^0_s:
 $A_{CP}(B^0_s \rightarrow K^-\pi^+)$ at 2.5σ, in agreement with SM
- **First observation** of B-baryon modes $\Lambda_b \rightarrow pK / p\pi$
- Precision $A_{CP}(B^0 \rightarrow K^+\pi^-)$ confirms B-factories results.
 Increase significance of DCPV to 7σ, and discrepancy with B^+ to 4.9σ.
- Updated BR($B^0_s \rightarrow K^+K^-$) agrees with latest predictions, no indication of large U-spin breaking.
- Improved results on annihilation: $B^0 \rightarrow K^+K^- \quad B^0_s \rightarrow \pi^+\pi^-$

CDF has fresh new results in Charmless two-body decays of the B^0, plus unique results on B^0_s and baryons.
Now ready to start time-dependent measurements ($B^0 \rightarrow \pi^+\pi^-, B^0_s \rightarrow K^+K^-$)
Many more results expected with progressing of RunII.
Backup
Separating $B^0_s \rightarrow K^+K^-$ from $B^0 \rightarrow \pi^+\pi^-$

PID separation $\pi\pi/KK \equiv 2\sigma$
Isolation cut efficiency

In order to normalize Bs Branching Fraction, need to know the relative efficiency.

The Isolation cut may affect Bs and B0 differently. Use data to measure it (p_T dependent)

Need low-p_T samples: low edge of $p_T \sim 3$ GeV

Maximum Likelihood fit of yields in exclusive modes.

<table>
<thead>
<tr>
<th>$p_T(B) < 6$</th>
<th>$\varepsilon_{Isol}(B_d)$</th>
<th>$\varepsilon_{Isol}(B_s)$</th>
<th>$\varepsilon_{Isol}(B_d)/\varepsilon_{Isol}(B_s)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>GeV/c</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$p_T(B) < 6$</td>
<td>57.5±9.7</td>
<td>70.1±14.6</td>
<td>0.82±0.22</td>
</tr>
<tr>
<td>6 < $p_T(B)$ < 10</td>
<td>84.6±2.4</td>
<td>84.8±5.7</td>
<td>1.00±0.08</td>
</tr>
<tr>
<td>$p_T(B) > 10$</td>
<td>93.8±1.2</td>
<td>90.4±2.8</td>
<td>1.04±0.03</td>
</tr>
</tbody>
</table>
Cuts optimized for ACP(BdKpi)

<table>
<thead>
<tr>
<th>variable</th>
<th>cut</th>
</tr>
</thead>
<tbody>
<tr>
<td># axial COT SL</td>
<td>≥ 2 (5 hits)</td>
</tr>
<tr>
<td># stereo COT SL</td>
<td>≥ 2 (5 hits)</td>
</tr>
<tr>
<td># $r-\phi$ SVX hits</td>
<td>≥ 3</td>
</tr>
<tr>
<td>tracking algorithm</td>
<td>sil. r-\phi and 90°z hits</td>
</tr>
<tr>
<td>$</td>
<td>\eta</td>
</tr>
<tr>
<td>p_T</td>
<td>≥ 2 GeV/c</td>
</tr>
<tr>
<td>$p_T(1) + p_T(2)$</td>
<td>≥ 5.5 GeV/c</td>
</tr>
<tr>
<td>$q(1) \cdot q(2)$</td>
<td>≤ 0</td>
</tr>
<tr>
<td>$\Delta \phi$</td>
<td>$\geq 20^\circ$</td>
</tr>
<tr>
<td>$\Delta \phi$</td>
<td>$\leq 135^\circ$</td>
</tr>
<tr>
<td>$</td>
<td>d_0</td>
</tr>
<tr>
<td>$</td>
<td>d_0</td>
</tr>
<tr>
<td>$d_0(1) \cdot d_0(2)$</td>
<td>< 0 cm2</td>
</tr>
</tbody>
</table>

CDF Run II Preliminary $L_{\text{in}} = 1$ fb$^{-1}$

6509 \pm 159 Signal events

$S/B \cong 6.5$ at the peak

<table>
<thead>
<tr>
<th>variable</th>
<th>cut</th>
</tr>
</thead>
<tbody>
<tr>
<td>$</td>
<td>\eta(B)</td>
</tr>
<tr>
<td>$</td>
<td>d_0(B)</td>
</tr>
<tr>
<td>$L_{xy}(B)$</td>
<td>≥ 300 μm</td>
</tr>
<tr>
<td>$\chi^2_{3D}(B)$</td>
<td>≤ 7</td>
</tr>
<tr>
<td>isolation $I_{R=1}$</td>
<td>≥ 0.5</td>
</tr>
</tbody>
</table>
Cuts optimized for rare modes

<table>
<thead>
<tr>
<th>variable</th>
<th>cut</th>
</tr>
</thead>
<tbody>
<tr>
<td># axial COT SL</td>
<td>≥ 2 (5 hits)</td>
</tr>
<tr>
<td># stereo COT SL</td>
<td>≥ 2 (5 hits)</td>
</tr>
<tr>
<td>$r - \phi$ SVXII hits</td>
<td>≥ 3</td>
</tr>
<tr>
<td>tracking algorithm</td>
<td>si. r-(\phi) and 90°(z) hits</td>
</tr>
<tr>
<td>$</td>
<td>\eta</td>
</tr>
<tr>
<td>p_T</td>
<td>≥ 2 GeV/c</td>
</tr>
<tr>
<td>$p_T(1) + p_T(2)$</td>
<td>≥ 5.5 GeV/c</td>
</tr>
<tr>
<td>$q(1) \cdot q(2)$</td>
<td>< 0</td>
</tr>
<tr>
<td>$\Delta \phi$</td>
<td>$\geq 20^\circ$</td>
</tr>
<tr>
<td>$\Delta \phi$</td>
<td>$\leq 135^\circ$</td>
</tr>
<tr>
<td>$</td>
<td>d_0</td>
</tr>
<tr>
<td>$</td>
<td>d_0</td>
</tr>
<tr>
<td>$d_0(1) \cdot d_0(2)$</td>
<td>< 0 cm2</td>
</tr>
</tbody>
</table>

CDF Run II Preliminary $L_{\text{int}} = 1$ fb$^{-1}$

4917 ± 209 Signal events
S/B ≃ 13 at the peak
ACP cuts: physical parameters

\[A_{CP} = \frac{N(B^0 \rightarrow K^-\pi^+) - N(B^0 \rightarrow K^+\pi^-)}{N(B^0 \rightarrow K^-\pi^+) + N(B^0 \rightarrow K^+\pi^-)} = -0.086 \pm 0.023 \text{ (stat.)} \pm 0.009 \text{ (syst.)} \]

\[\frac{BR(B^0 \rightarrow \pi^+\pi^-)}{BR(B^0 \rightarrow K^+\pi^-)} = 0.259 \pm 0.017 \text{ (stat.)} \pm 0.016 \text{ (syst.)} \]

\[\frac{f_s \cdot BR(B^0_s \rightarrow K^+K^-)}{f_d \cdot BR(B^0 \rightarrow K^+\pi^-)} = 0.324 \pm 0.019 \text{ (stat.)} \pm 0.041 \text{ (syst.)} \]

With HFAG 2006:

\[BR(B^0 \rightarrow \pi^+\pi^-) = (5.10 \pm 0.33 \text{ (stat.)} \pm 0.36 \text{ (syst.)}) \times 10^{-6} \]

\[BR(B^0_s \rightarrow K^+K^-) = (24.4 \pm 1.4 \text{ (stat.)} \pm 4.6 \text{ (syst.)}) \times 10^{-6} \]
BsKpi cuts: physical parameters (1)

\[
A_{CP} = \frac{N(B_s^0 \to K^+\pi^-) - N(B_s^0 \to K^-\pi^+)}{N(B_s^0 \to K^+\pi^-) + N(B_s^0 \to K^-\pi^+)} = 0.39 \pm 0.15 \text{ (stat.)} \pm 0.08 \text{ (syst.)}
\]

\[
\frac{N(B^0 \to K^-\pi^+) - N(B^0 \to K^+\pi^-)}{N(B_s^0 \to K^+\pi^-) - N(B_s^0 \to K^-\pi^+)} = -3.21 \pm 1.60 \text{ (stat.)} \pm 0.39 \text{ (syst.)}
\]

\[
N_{raw}(B_s^0 \to K^-\pi^+) = 230 \pm 34 \text{ (stat.)} \pm 16 \text{ (syst.)}
\]

\[
\frac{f_s \cdot BR(B_s^0 \to K^-\pi^+)}{f_d \cdot BR(B^0 \to K^+\pi^-)} = 0.066 \pm 0.010 \text{ (stat.)} \pm 0.010 \text{ (syst.)}
\]

With HFAG 2006:

\[
BR(B_s^0 \to K^-\pi^+) = (5.0 \pm 0.75 \text{ (stat.)} \pm 1.0 \text{ (syst.)}) \times 10^{-6}
\]
BsKpi cuts: physical parameters (2)

\[N_{\text{raw}}(B^0_s \rightarrow \pi^+\pi^-) = 26 \pm 16 \text{ (stat.)} \pm 14 \text{ (syst.)} \]

\[N_{\text{raw}}(B^0 \rightarrow K^+K^-) = 61 \pm 25 \text{ (stat.)} \pm 35 \text{ (syst.)} \]

\[\frac{f_s \cdot BR(B^0_s \rightarrow \pi^+\pi^-)}{f_d \cdot BR(B^0 \rightarrow K^+\pi^-)} = 0.007 \pm 0.004 \text{ (stat.)} \pm 0.005 \text{ (syst.)} \]

\[\frac{BR(B^0 \rightarrow K^+K^-)}{BR(B^0 \rightarrow K^+\pi^-)} = 0.020 \pm 0.008 \text{ (stat.)} \pm 0.006 \text{ (syst.)} \]

With HFAG 2006:

\[BR(B^0 \rightarrow K^+K^-) = (0.39 \pm 0.16 \text{ (stat.)} \pm 0.12 \text{ (syst.)}) \times 10^{-6} \]

\[BR(B^0 \rightarrow K^+K^-) \in [0.1 - 0.7] \cdot 10^{-6} \text{ @ 90% C.L.} \]

\[BR(B^0_s \rightarrow \pi^+\pi^-) = (0.53 \pm 0.31 \text{ (stat.)} \pm 0.40 \text{ (syst.)}) \times 10^{-6} \]

\[BR(B^0_s \rightarrow \pi^+\pi^-) < 1.36 \cdot 10^{-6} \text{ @ 90% C.L.} \]
BsKpi cuts: physical parameters (3)

\[N_{\text{raw}}(\Lambda_b^0 \to pK^-) = 156 \pm 20 \ (\text{stat.}) \pm 11 \ (\text{syst.}) \]

\[N_{\text{raw}}(\Lambda_b^0 \to p\pi^-) = 110 \pm 18 \ (\text{stat.}) \pm 16 \ (\text{syst.}) \]

\[\frac{BR(\Lambda_b^0 \to p\pi^-)}{BR(\Lambda_b^0 \to pK^-)} = 0.66 \pm 0.14 \ (\text{stat.}) \pm 0.08 \ (\text{syst.}) \]
Systematics: $A_{CP}(B^{0} \rightarrow K^{+}\pi^{-})$

<table>
<thead>
<tr>
<th>source</th>
<th>shift wrt central fit</th>
</tr>
</thead>
<tbody>
<tr>
<td>mass scale</td>
<td>0.0004</td>
</tr>
<tr>
<td>asymmetric momentum-p.d.f</td>
<td>0.0001</td>
</tr>
<tr>
<td>dE/dx</td>
<td>0.0064</td>
</tr>
<tr>
<td>input masses</td>
<td>0.0054</td>
</tr>
<tr>
<td>combinatorial background model</td>
<td>0.0027</td>
</tr>
<tr>
<td>momentum background model</td>
<td>0.0007</td>
</tr>
<tr>
<td>MC statistics</td>
<td>–</td>
</tr>
<tr>
<td>charge asymmetry</td>
<td>0.0014</td>
</tr>
<tr>
<td>$\Delta \Gamma_{s}/\Gamma_{s}$ Standard Model</td>
<td>–</td>
</tr>
<tr>
<td>lifetime</td>
<td>–</td>
</tr>
<tr>
<td>isolation efficiency</td>
<td>–</td>
</tr>
<tr>
<td>XFT-bias correction</td>
<td>–</td>
</tr>
<tr>
<td>TOTAL (sum in quadrature)</td>
<td>0.009</td>
</tr>
</tbody>
</table>
Systematics

$B^0 \rightarrow \pi^+\pi^-$ and $B^0_s \rightarrow K^+K^-$

\[
\begin{array}{c}
\frac{BR(B^0 \rightarrow \pi^+\pi^-)}{BR(B^0 \rightarrow K^+\pi^-)} \\
\frac{f_s \cdot BR(B^0_s \rightarrow K^+K^-)}{f_d \cdot BR(B^0 \rightarrow K^+\pi^-)}
\end{array}
\]

<table>
<thead>
<tr>
<th>source</th>
<th>shift wrt central fit</th>
<th>shift wrt central fit</th>
</tr>
</thead>
<tbody>
<tr>
<td>mass scale</td>
<td>0.0036</td>
<td>0.0034</td>
</tr>
<tr>
<td>asymmetric momentum-p.d.f</td>
<td>0.0006</td>
<td>0.0030</td>
</tr>
<tr>
<td>dE/dx</td>
<td>0.0129</td>
<td>0.0107</td>
</tr>
<tr>
<td>input masses</td>
<td>0.0050</td>
<td>0.0050</td>
</tr>
<tr>
<td>combinatorial background model</td>
<td>0.0020</td>
<td>0.0020</td>
</tr>
<tr>
<td>momentum background model</td>
<td>0.0010</td>
<td>0.0060</td>
</tr>
<tr>
<td>MC statistics</td>
<td>0.0011</td>
<td>0.0012</td>
</tr>
<tr>
<td>charge asymmetry</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>$\Delta \Gamma_s/\Gamma_s$ Standard Model</td>
<td>–</td>
<td>0.0060</td>
</tr>
<tr>
<td>lifetime</td>
<td>–</td>
<td>0.0060</td>
</tr>
<tr>
<td>isolation efficiency</td>
<td>–</td>
<td>0.0370</td>
</tr>
<tr>
<td>XFT-bias correction</td>
<td>0.0050</td>
<td>0.0080</td>
</tr>
<tr>
<td>TOTAL (sum in quadrature)</td>
<td>0.0165</td>
<td>0.0413</td>
</tr>
</tbody>
</table>

Isolation efficiency $\varepsilon(B^0)/\varepsilon(B^0_s)$ from the data using 180 pb$^{-1}$
$A_{CP}(B^0 \rightarrow K^+\pi^-)$ cuts: other fit parameters

Combinatorial background

<table>
<thead>
<tr>
<th>parameter</th>
<th>value</th>
</tr>
</thead>
<tbody>
<tr>
<td>f_{π^+} (combinatorial)</td>
<td>0.545 ± 0.017</td>
</tr>
<tr>
<td>f_{e^+} (combinatorial)</td>
<td>0.036 ± 0.005</td>
</tr>
<tr>
<td>f_{π^-} (combinatorial)</td>
<td>0.080 ± 0.025</td>
</tr>
<tr>
<td>f_{K^+} (combinatorial)</td>
<td>0.337 ± 0.031</td>
</tr>
<tr>
<td>f_{π^-} (combinatorial)</td>
<td>0.533 ± 0.018</td>
</tr>
<tr>
<td>f_{e^-} (combinatorial)</td>
<td>0.030 ± 0.005</td>
</tr>
<tr>
<td>f_{p} (combinatorial)</td>
<td>0.132 ± 0.027</td>
</tr>
<tr>
<td>f_{K^-} (combinatorial)</td>
<td>0.304 ± 0.033</td>
</tr>
</tbody>
</table>

B\rightarrow3body background

- fraction of physics bckg (ARGUS norm.): 0.197 ± 0.016
- ARGUS cut-off [GeV/c2]: 5.135 ± 0.001
- ARGUS shape: 8.467 ± 3.45
- f_{π} (ARGUS): 0.728 ± 0.027
- f_{K} (ARGUS): 0.272 ± 0.027
- background fraction: 0.481 ± 0.008
- c_1 (background shape): -1.221 ± 0.124
Significance Table

(Statistical + systematic)

<table>
<thead>
<tr>
<th>mode</th>
<th>yield</th>
<th>TOY stat. ($f = 0$)</th>
<th>syst.</th>
<th>Sign.($\text{TOY stat.} (f = 0) + \text{ syst.}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$B^0 \to K^+ K^-$</td>
<td>61 ± 25</td>
<td>21</td>
<td>35</td>
<td>1.5σ</td>
</tr>
<tr>
<td>$B^0_s \to \pi^+ \pi^-$</td>
<td>26 ± 16</td>
<td>11</td>
<td>14</td>
<td>1.5σ</td>
</tr>
<tr>
<td>$B^0_s \to K^- \pi^+$</td>
<td>230 ± 34</td>
<td>23</td>
<td>16</td>
<td>8.2σ</td>
</tr>
<tr>
<td>$\Lambda^0_b \to p\pi^-$</td>
<td>110 ± 18</td>
<td>9</td>
<td>16</td>
<td>5.9σ</td>
</tr>
<tr>
<td>$\Lambda^0_b \to pK^-$</td>
<td>156 ± 20</td>
<td>8</td>
<td>11</td>
<td>11.5σ</td>
</tr>
</tbody>
</table>

- **Raw yield ± stat.** from fit on data
- **Systematic error**
- **Statistical uncertainty** from pseudo-experiments where the fractions of rare modes are fixed =0.
- **Statistical error** from the pseudo-experiment + systematic error. (Sum in quadrature).
Prospects for $A_{CP}(B^0_s \rightarrow K^+K^-)$

The large available sample allows expecting $\sigma(A_{CP}) \sim 0.2$ with runII sample

This allows searches for new physics. See below a recent work quoting the present measurement about SUSY search.

[Baek et al, hep-ph/0610109]