BR & ACP of B→h⁺h⁻ modes at CDF

G. Punzi for the CDF collaboration

> DPF and JPS 2006 Honolulu, HI

Outline

- Charmless B decays are a great tool to explore CKM and possible NP
- Single measurements hard to interpret: combination of multiple modes essential to understanding of data and comparison to theory
- Tevatron access to all b-hadrons and large Luminosity is a great opportunity for extending the range of available measurements.
- This talk: All modes into pairs of charged charmless hadrons:
 (B_s / B⁰ / Λ_b) → h⁺h⁻ where h = π, K (or p for Λ_b)

Known modes (larger BR):
B⁰ → K⁺π⁻
B⁰ → π⁺π⁻
B⁰_s → K⁺K⁻ (observed by CDF)
Yet unobserved modes:
B⁰_s → K⁻π⁺
A_b → pK
A_b → pπ

CDF results with 1 fb⁻¹ sample [CDF public note 8579] (Updates previous results with 180pb-1 or 360pb-1)

Important CDF features

- Central Drift chamber in B field
 - σ(p_T)/p_T² ~ 0.1% GeV⁻¹
 - dE/dx measurement (encoded in hit width)
- Silicon VerteX detector
 - I.P. resolution: 35µm@2GeV
- Time-of-Flight
 - Contol systematics from possible proton background asymmetry

Tracking trigger:

- XFT at L1: 2D tracks in COT, p_T > 1.5 GeV/c²
- SVT at L2: 2D tracks in COT+SVX p_T > 2.0 GeV/c²
 - Impact parameter measurement

It all begins in the trigger

- Reject light-quark background
 - Two oppositely-charged tracks
 - Transverse opening angle [20°, 135°];
 - p_{T1} , p_{T2} > 2 GeV;
 - p_{T1}+p_{T2} > 5.5 GeV.
- Long-lived candidate
 - Track impact parameters >100 μ m;
 - Transverse decay length L> 200 μ m;
- Reject multi-prongs and backgrounds
 - B impact parameter < 140 μ m;

Trigger $\sigma(d_0) \approx \text{offline}$: 48µm =35 [SVT] \oplus 33 [beam-spot]

Signal with initial cuts

Signal (BR ~ 10⁻⁵⁾ clearly visible with just trigger cuts confirmation

Further observable used for offline analysis:

- 3D Vertex chi-square
- Isolation:

$$(B) = \frac{Pt(B)}{Pt(B) + \sum_{cone} Pt_i}$$

 Isolation effective in reducing light-quark background, 85% efficient on signal (analog of event shape at e⁺e⁻)

Choice of cuts

Cuts individually optimized by minimizing the expected statistical uncertainty on the quantity of interest. Its expression $\sigma(S,B)$ is determined from actual uncertainties observed in analysis of MC samples, and parameterized by an analitically-inspired model.

Signal yield S is derived from MC simulation while the background B is estimated from mass sidebands on data.

In practice, only 2 sets of cuts were needed:

• (1) optimize on $A_{CP}(B^0 \rightarrow K^+\pi^-) \implies$ Loose cuts

• good for all three "large modes" (B⁰ \rightarrow K⁺ π ⁻, B⁰ \rightarrow π ⁺ π ⁻, B⁰_s \rightarrow K⁺K⁻)

• (2) optimize on $B^{0}_{s} \rightarrow K^{-}\pi^{+}$ *discovery/Limits* [physics/0308063] \Rightarrow tight cuts

good for all "rare modes"

When compared with $S/\sqrt{(S+B)}$:

~10% better on $A_{CP}(B^0 \rightarrow K^+\pi^-)$

~27% better on BR(B⁰_s \rightarrow K⁻ π ⁺)

Offline signal (loose cuts)

Despite good mass resolution (\cong 22 MeV/c²), individual modes overlap in a single peak (width ~35 MeV/c²)

Note that the use of a single mass assignment $(\pi\pi)$ causes overlap even with perfect resolution

Blinded region of unobserved modes: $B_{s}^{0} \rightarrow K\pi$, $B_{s}^{0} \rightarrow \pi\pi$, $\Lambda_{b}^{0} \rightarrow p\pi/pK$.

Need to determine signal composition with a Likelihood fit, combining information from kinematics (mass and momenta) and particle ID (dE/dx).

Offline signal (loose cuts)

Despite good mass resolution (\cong 22 MeV/c²), individual modes overlap in a single peak (width ~35 MeV/c²)

Note that the use of a single mass assignment $(\pi\pi)$ causes overlap even with perfect resolution

Blinded region of unobserved modes: $B_{s}^{0} \rightarrow K\pi$, $B_{s}^{0} \rightarrow \pi\pi$, $\Lambda_{b}^{0} \rightarrow p\pi/pK$.

Need to determine signal composition with a Likelihood fit, combining information from kinematics (mass and momenta) and particle ID (dE/dx).

Handle 1:invariant mass

Different modes are somewhat separated in mass (~50 MeV between $B^0 \rightarrow Kpi$ and $B_s \rightarrow KK$)

However, results depend on assumed mass resolution and details of the lineshape (rare modes confuse with the tails of larger modes)

Need good control of non-gaussian resolution tails and effects of Final State Radiation

Calibrating Mass resolution and tails from the D⁰→Kpi peak

- 1. Accurate parameterization of *individual track parameters* resolution functions from full MC (including non-gaussian tails)
- 2. Add calculated QED radiation [Baracchini,Isidori PL B633:309-313,2006]
- 3. Generate mass lineshapes with a simple kinematical MC
- 4. Compare results with a huge sample of $D^0 \rightarrow K\pi$ \Rightarrow perfect match, no tuning necessary \Rightarrow small systematics
- 5. Generate $B \rightarrow hh$ templates and use them in the Likelihood fit.

Handle 2: track momenta

CDF MC

Kinematic variables:

p_{min} (p_{max}) is the 3D track momentum with p_{min} <p_{max} M_{ππ} invariant ππ-mass
 α = (1-p_{min}/p_{max})q_{min} signed p-imbalance
 p_{tot}= p_{min}+p_{max} scalar sum of 3-momenta

Each mode has an individual mass distribution $p(M_{\pi\pi}) = G(M_{\pi\pi} - F(\alpha, p_{tot}))$ This offers good discrimination amongst modes and between K⁺ π ⁻ / K⁻ π ⁺.

Handle 3: dE/dx

dE/dx carefully calibrated over tracking volume and time.

Detailed model includes tails, momentum dependence, two-track correlations

1.4 σ K/ π separation for p>2GeV achieve a statistical uncertainty on separating classes of particles which is just 60% worse than 'perfect' PID

Signal shapes: from MC and analytic formula Background shapes: from data sidebands sign and bckg shapes from $D^0 \rightarrow K^-\pi^+$

Fit projections

of=19

0.8

- Many crosschecks: -Gaussian fit pulls -PID-less fit agrees with regular fit
- Free-mass-resolution fit agrees with standard fit - Free-mass-scale fit agrees and returns mass shift $\delta = 0.2 \pm 0.6 \text{ MeV/c}^2$

Results for known modes

$\mathsf{BR}(\mathsf{B}^{0}\to\pi^{+}\pi^{-})$

 $\frac{BR(B^0 \to \pi^+\pi^-)}{BR(B^0 \to K^+\pi^-)} = 0.259 \pm 0.017 \text{ (stat.)} \pm 0.016 \text{ (syst.)}$

 $BR(B^0 \to \pi^+\pi^-) = (5.10 \pm 0.33 \ (stat.) \pm 0.36 \ (syst.)) \times 10^{-6}$

Precision measurements.
 systematic≅ statistics.

 Confirm previous results in a very different experimental setting

•Good yield, bright perspectives for timedependent measurements: expect similar resolution to e+e- with full runII sample

Direct ACP ($B^0 \rightarrow K^+\pi^-$)

Large sample >4000 events allows measuring DCPV Plot of $L(B^0)/[L(B^0)+L(\overline{B}^0)]$ shows good separation achieved between B^0 and \overline{B}^0 (mass, alpha, dE/dx)

Significant raw asymmetry, good resolution:

$$A_{\mathsf{CP}}\Big|_{\mathrm{raw}} = \frac{N_{\mathrm{raw}}(\overline{B}^0 \to K^- \pi^+) - N_{\mathrm{raw}}(B^0 \to K^+ \pi^-)}{N_{\mathrm{raw}}(\overline{B}^0 \to K^- \pi^+) + N_{\mathrm{raw}}(B^0 \to K^+ \pi^-)} = -0.092 \pm 0.023$$

Correcting the raw A_{CP}

$$A_{\mathsf{CP}}(B^0 \to K^+ \pi^-) = \frac{N_{\mathrm{raw}}(\overline{B}^0 \to K^- \pi^+) \cdot \frac{\varepsilon(K^+ \pi^-)}{\varepsilon(K^- \pi^+)} - N_{\mathrm{raw}}(B^0 \to K^+ \pi^-)}{N_{\mathrm{raw}}(\overline{B}^0 \to K^- \pi^+) \cdot \frac{\varepsilon(K^+ \pi^-)}{\varepsilon(K^- \pi^+)} + N_{\mathrm{raw}}(B^0 \to K^+ \pi^-)}$$

Only the different K^+/K^- interaction rate with material matters. K^- has a larger hadronic cross section than K^+ .

Huge sample of prompt $D^0 \rightarrow h^+h^-$ (15M). <u>Kinematic</u> fit using the same code of the B \rightarrow hh fit Direct $A_{CP}(D^0 \rightarrow K\pi)$ very small: \Rightarrow extract from DATA correction for $\varepsilon(K^-\pi^+)/\varepsilon(K^+\pi^-)$ plus any other possible spurious asymmetries.

$$\frac{\epsilon(K^+\pi^-)}{\epsilon(K^-\pi^+)} = 1.0131 \pm 0.0028 \ (stat.).$$

Small (~0.6%) correction. Agrees with indipendent evaluation from CDF simulation.

Results on $A_{CP}(B^0 \rightarrow K^+\pi^-)$

$$A_{\mathsf{CP}} = \frac{N(\overline{B}^0 \to K^- \pi^+) - N(B^0 \to K^+ \pi^-)}{N(\overline{B}^0 \to K^- \pi^+) + N(B^0 \to K^+ \pi^-)}$$

 $\mathbf{A}_{CP}(\mathbf{B}^{0}\rightarrow\mathbf{K}^{+}\pi^{-})$ $-0.040 \pm 0.160 \pm 0.020$ Cleo $-0.108 \pm 0.024 \pm 0.008$ BaBar $-0.093 \pm 0.018 \pm 0.008$ Belle CDF 355pb⁻¹ $-0.058 \pm 0.039 \pm 0.007$ **HFAG 2006** -0.093 ± 0.015 CDF 1 fb⁻¹ $-0.086 \pm 0.023 \pm 0.009$ New Average -0.095 ± 0.013 [un-official -0.1 -0.2 0.1

✓ CDF agrees with e⁺e⁻ (3.5 σ effect) ✓ WA significance 6 $\sigma \rightarrow 7 \sigma$ ✓ Discrepancy with A_{CP}(B⁺→K⁺ π^{0}) now up to 4.9 σ ✓ Whether this really means new physics has been subject to debate. ✓ CDF can help clarifying the issue by a much more robust test, based on Bs→K π (more on this shortly)

 $= -0.086 \pm 0.023 \ (stat.) \pm 0.009 \ (syst.)$

dE/dx model (±0.0064);

- Nominal *B*-meson masses (±0.005);
- Global mass scale;
- Charge-asymmetries (±0.0014);
- Background model (±0.003).

Total systematic uncertainty is 0.9%, compare with 2.3% statistical.

Largest effect (dE/dx) also verified with additional crosscheck: measurement of $A_{CP}(D^0 \rightarrow K\pi)$ based on dE/dx-only. Discrepancy with the kinematic fit ($\cong 0.006$) within quoted systematics.

Systematics can still decrease with larger calibration samples Prospects for a runII CDF measurement with <1% uncertainty.

$\mathsf{BR}(\mathsf{B}^{0}_{s}\to\mathsf{K}^{+}\mathsf{K}^{-})$

 $\frac{f_s \cdot BR(B_s^0 \to K^+K^-)}{f_d \cdot BR(B^0 \to K^+\pi^-)} = 0.324 \pm 0.019 \ (stat.) \pm 0.041 \ (syst.)$

$$BR(B_s^0 \to K^+K^-) = (24.4 \pm 1.4 \ (stat.) \pm 4.6 \ (syst.)) \times 10^{-6}$$

Conservative systematics at the moment, expect syst≅ stat for final result

Interesting comparison to predictions:

Naively : BR(B⁰_s \rightarrow K⁺K⁻) \cong BR(B⁰ \rightarrow K⁺ π ⁻) \cong 20.10⁻⁶

QCDF : BR 23-36-10⁻⁶ [Beneke&Neubert NP B675, 333(2003)]

QCD sum rules predict large SU(3) breaking BR \cong 35.10⁻⁶ [Khodjamirian et al. PRD68:114007, 2003; Buras et al, Nucl. Phys. B697, 133,2004]

More recently, 1/mb corrections give lower values again: BR=(20±9)·10⁻⁶ [Descotes-Genon et al. PRL97, 061801, 2006]

Further useful results expected from upcoming time-dependent measurements

Search for new modes

COP

Rare modes search (tight cuts)

$$N_{\rm raw}(B_s^0 \to K^- \pi^+) = 230 \pm 34 \; (stat.) \pm 16 \; (syst.)$$

DCPV $B^0_s \rightarrow K^-\pi^+$

Observation of this decay offers a unique opportunity of investigating the source of CP violation, and the reason for the discrepancy in B⁰ vs B⁺: **"Is observed direct CP violation in B⁰** \rightarrow K⁺ π ⁻ due to new physics ? Check standard Model prediction of equal violation in B⁰_s \rightarrow K⁻ π ⁺ " [Lipkin, Phys. Lett. B621:126, .2005] [Gronau Rosner Phys.Rev. D71 (2005) 074019]

$$|A(B_s \to \pi^+ K^-)|^2 - |A(\bar{B}_s \to \pi^- K^+)|^2 = |A(\bar{B}_d \to \pi^+ K^-)|^2 - |A(B_d \to \pi^- K^+)|^2$$

This comparison of $B^0 \rightarrow K^+\pi^-$ and $B^0_s \rightarrow K^-\pi^+$ is a probe of NP in CP violation based on really minimal assumption. Currently unique to CDF.

$$\frac{A_{CP}(B_s \to K^- \pi^+)}{A_{CP}(B_d \to K^+ \pi^-)} = \frac{BR(B_d \to K^+ \pi^-)}{BR(B_s \to K^- \pi^+)}$$

From our measured low BR, expect large asymmetry $\simeq 37\%$

First measurement of DCPV in the Bs
Sign and magnitude agree with SM predictions within errors ⇒ no evidence for exotic sources of CP violation (yet)
Exciting to pursue with more data

Even rarer modes: Weak annihilation

Pure-annihilation modes

- All final-state quarks different from initial state quarks.
 ⇒only via annihilation-type diagrams
- Not yet observed. Small BR, with large uncertainties.
- Depends on hard-to-predict hadronic parameters ⇒ large source of uncertainty in calculations.
- CDF can look for B_s→π⁺π⁻ in addition to B_d→K⁺K⁻,
 B_s is expected larger by x3-x4.

• To extract annihilation hadronic parameters, need BOTH measurements:

$$\frac{1}{\epsilon} \left[\frac{\mathrm{BR}(B_d \to K^+ K^-)}{\mathrm{BR}(B_s \to \pi^+ \pi^-)} \right] \frac{\tau_{B_s^0}}{\tau_{B_d^0}} = \frac{1 + 2\varrho_{\mathcal{P}\mathcal{A}}\cos\vartheta_{\mathcal{P}\mathcal{A}}\cos\gamma + \varrho_{\mathcal{P}\mathcal{A}}^2}{\epsilon^2 - 2\epsilon\varrho_{\mathcal{P}\mathcal{A}}\cos\vartheta_{\mathcal{P}\mathcal{A}}\cos\gamma + \varrho_{\mathcal{P}\mathcal{A}}^2}$$

[Buras et al., Nucl.Phys. B697 (2004) 133]

Results on $B_{s}^{0} \rightarrow \pi^{+}\pi^{-}$, $B^{0} \rightarrow K^{+}K^{-}$

 $BR(B^{0} \to K^{+}K^{-}) = (0.39 \pm 0.16 \text{ (stat.)} \pm 0.12 \text{ (syst.)}) \times 10^{-6} (< 0.7 \cdot 10^{-6} @ 90\% \text{ CL})$

Best current limit

<1.36 · 10⁻⁶ @ 90% CL

 $BR(B_s^0 \to \pi^+\pi^-) = (0.53 \pm 0.31 \ (stat.) \pm 0.40 \ (syst.)) \times 10^{-6}$

Expectations: [0.024 ÷ 0.16] ·10⁻⁶ [Beneke&Neubert NP B675, 333(2003)] 0.42 ± 0.06 ·10⁻⁶ [Li et al. hep-ph/0404028]

We have reached the interesting region for these channels. A signal may be just around the corner.

[Mohanta et al. Phys.Rev. D63 (2001) 074001]

Individual BR and ACP measurements in progress

Summary

- **First observation** of $B^0_s \rightarrow K^-\pi^+$ mode
- First measurement of DCPV in B⁰_s: $A_{CP}(B^0_s \rightarrow K^-\pi^+)$ at 2.5σ, in agreement with SM
- **First observation** of B-baryon modes $\Lambda_b \rightarrow pK / p\pi$
- Precision $A_{CP}(B^0 \rightarrow K^+\pi^-)$ confirms B-factories results. Increase significance of DCPV to 7σ , and discrepancy with B⁺ to 4.9 σ .
- Updated BR(B⁰_s → K⁺K⁻) agrees with latest predictions, no indication of large U-spin breaking.
- Improved results on annihilation: $B^0 \rightarrow K^+K^- B^0_{\ s} \rightarrow \pi^+\pi^-$

CDF has fresh new results in Charmless two-body decays of the B⁰, plus unique results on B⁰_s and baryons. Now ready to start time-dependent measurements (B⁰ $\rightarrow \pi^{+}\pi^{-}$, B⁰_s $\rightarrow K^{+}K^{-}$) Many more results expected with progressing of RunII.

Backup

Separating $B^0_{s} \rightarrow K^+K^-$ from $B^0 \rightarrow \pi^+\pi^-$

PID separation $\pi\pi/KK \cong 2\sigma$

Isolation cut efficiency

In order to normalize Bs Branching Fraction, need to know the relative efficiency.

The Isolation cut may affect Bs and B0 differently. Use data to measure it (p_T – dependent)

Need low- p_T samples: low edge of $p_T \sim 3 \text{ GeV}$

Maximum Likelihood fit of yields in exclusive modes.

DATA SAMPLE 1fb⁻¹

Cuts optimized for ACP(BdKpi)

variable	cut
# axial COT SL	$\geq 2(5 \text{ hits})$
# stereo COT SL	$\geq 2(5 \text{ hits})$
# $r - \phi$ SVXII hits	≥ 3
tracking algorithm	sil. r- ϕ and 90°z hits
$\mid \eta \mid$	≤1
p_T	$\geq 2~{ m GeV/c}$
$p_T(1) + p_T(2)$	$\geq 5.5 \text{ GeV/c}$
$q(1) \cdot q(2)$	< 0
$\Delta \phi$	$\geq 20^{\circ}$
$\Delta \phi$	$\leq 135^{\circ}$
$ d_0 $	≥100 µm
$ d_0 $	$\leq 1 \text{ mm}$
$d_0(1) \cdot d_0(2)$	<0 cm ²

variable	cut
$\mid \eta(B) \mid$	≤ 1
$\mid d_0(B) \mid$	$\leq 80 \; \mu { m m}$
$L_{xy}(B)$	$\geq 300~\mu{ m m}$
$\chi^2_{3D}(B)$	≤ 7
isolation $I_{R=1}$	≥ 0.5

DATA SAMPLE 1fb⁻¹

Cuts optimized for rare modes

variable	cut
# axial COT SL	$\geq 2(5 \text{ hits})$
# stereo COT SL	$\geq 2(5 \text{ hits})$
# $r - \phi$ SVXII hits	≥ 3
tracking algorithm	sil. r- ϕ and 90° z hits
$\mid \eta \mid$	≤1
p_T	$\geq 2~{ m GeV/c}$
$p_T(1) + p_T(2)$	$\geq 5.5 \text{ GeV/c}$
$q(1)\cdot q(2)$	< 0
$\Delta \phi$	$\geq 20^{\circ}$
$\Delta \phi$	$\leq 135^{\circ}$
$ d_0 $	$\geq \! 120 \; \mu \mathrm{m}$
$\mid d_0 \mid$	$\leq 1 \text{ mm}$
$d_0(1) \cdot d_0(2)$	$<0 \text{ cm}^2$

variable	cut
$ \eta(B) $	≤ 1
$\mid d_0(B) \mid$	$\leq 60~\mu{ m m}$
$L_{xy}(B)$	$\geq 350~\mu{ m m}$
$\chi^{2}_{3D}(B)$	≤ 5
isolation $I_{R=1}$	≥ 0.525

ACP cuts: physical parameters

$$A_{\mathsf{CP}} = \frac{N(\overline{B}^0 \to K^- \pi^+) - N(B^0 \to K^+ \pi^-)}{N(\overline{B}^0 \to K^- \pi^+) + N(B^0 \to K^+ \pi^-)}$$

$$= -0.086 \pm 0.023 \; (stat.) \pm 0.009 \; (syst.)$$

$$\frac{BR(B^0 \to \pi^+ \pi^-)}{BR(B^0 \to K^+ \pi^-)} = 0.259 \pm 0.017 \ (stat.) \pm 0.016 \ (syst.)$$
$$\frac{f_s \cdot BR(B_s^0 \to K^+ K^-)}{f_d \cdot BR(B^0 \to K^+ \pi^-)} = 0.324 \pm 0.019 \ (stat.) \pm 0.041 \ (syst.)$$

With HFAG 2006:

$$BR(B^0 \to \pi^+\pi^-) = (5.10 \pm 0.33 \ (stat.) \pm 0.36 \ (syst.)) \times 10^{-6}$$

 $BR(B_s^0 \to K^+K^-) = (24.4 \pm 1.4 \ (stat.) \pm 4.6 \ (syst.)) \times 10^{-6}$

BsKpi cuts: physical parameters (1)

$$\begin{split} A_{\mathsf{CP}} &= \frac{N(\overline{B}_s^0 \to K^+ \pi^-) - N(B_s^0 \to K^- \pi^+)}{N(\overline{B}_s^0 \to K^+ \pi^-) + N(B_s^0 \to K^- \pi^+)} &= 0.39 \pm 0.15 \; (stat.) \pm 0.08 \; (syst.) \\ &\frac{N(\overline{B}^0 \to K^- \pi^+) - N(B^0 \to K^+ \pi^-)}{N(\overline{B}_s^0 \to K^- \pi^+) - N(B_s^0 \to K^- \pi^+)} &= -3.21 \pm 1.60 \; (stat.) \pm 0.39(sys.) \\ &N_{\mathsf{raw}}(B_s^0 \to K^- \pi^+) &= 230 \pm 34 \; (stat.) \pm 16 \; (syst.) \\ &\frac{f_s \cdot BR(B_s^0 \to K^- \pi^+)}{f_d \cdot BR(B^0 \to K^+ \pi^-)} &= 0.066 \pm 0.010 \; (stat.) \pm 0.010 \; (syst.) \end{split}$$

With HFAG 2006:

$$BR(B_s^0 \to K^- \pi^+) = (5.0 \pm 0.75 \ (stat.) \pm 1.0 \ (syst.)) \times 10^{-6}$$

BsKpi cuts: physical parameters (2)

 $N_{\rm raw}(B_s^0 \to \pi^+\pi^-) = 26 \pm 16 \; (stat.) \pm 14 \; (syst.)$

 $N_{\rm raw}(B^0 \to K^+ K^-) = 61 \pm 25 \; (stat.) \pm 35 \; (syst.)$

$$\frac{f_s \cdot BR(B_s^0 \to \pi^+\pi^-)}{f_d \cdot BR(B^0 \to K^+\pi^-)} = 0.007 \pm 0.004 \ (stat.) \pm 0.005 \ (syst.)$$
$$\frac{BR(B^0 \to K^+K^-)}{BR(B^0 \to K^+\pi^-)} = 0.020 \pm 0.008 \ (stat.) \pm 0.006 \ (syst.)$$

With HFAG 2006:

 $BR(B^0 \to K^+K^-) = (0.39 \pm 0.16 \text{ (stat.)} \pm 0.12 \text{ (syst.)}) \times 10^{-6}$

$$\begin{split} BR(B^0 \to K^+ K^-) &\in [0.1 - 0.7] \cdot 10^{-6} @ 90\% \ C.L. \\ BR(B^0_s \to \pi^+ \pi^-) &= (0.53 \pm 0.31 \ (stat.) \pm 0.40 \ (syst.)) \times 10^{-6} \\ BR(B^0_s \to \pi^+ \pi^-) &< 1.36 \cdot 10^{-6} @ 90\% \ C.L. \end{split}$$

BsKpi cuts: physical parameters (3)

$$N_{\rm raw}(\Lambda_b^0 \to pK^-) = 156 \pm 20 \; (stat.) \pm 11 \; (syst.)$$

$$N_{\rm raw}(\Lambda_b^0 \to p\pi^-) = 110 \pm 18 \; (stat.) \pm 16 \; (syst.)$$

$$\frac{BR(\Lambda_b^0 \to p\pi^-)}{BR(\Lambda_b^0 \to pK^-)} = 0.66 \pm 0.14 \ (stat.) \pm 0.08 \ (syst.)$$

Systematics: $A_{CP}(B^0 \rightarrow K^+\pi^-)$

source	shift wrt central fit
mass scale	0.0004
asymmetric momentum-p.d.f	0.0001
dE/dx	0.0064
input masses	0.0054
combinatorial background model	0.0027
momentum background model	0.0007
MC statistics	_
charge asymmetry	0.0014
$\Delta\Gamma_s/\Gamma_s$ Standard Model	-
lifetime	-
isolation efficiency	_
XFT-bias correction	-
TOTAL (sum in quadrature)	0.009

Systematics $B^0 \rightarrow \pi^+\pi^-$ and $B^0_s \rightarrow K^+K^-$

 $\frac{BR(B^0 \to \pi^+\pi^-)}{BR(B^0 \to K^+\pi^-)} \quad \frac{f_s \cdot BR(B^0_s \to K^+K^-)}{f_d \cdot BR(B^0 \to K^+\pi^-)}$

source	shift wrt central fit	shift wrt central fit
mass scale	0.0036	0.0034
asymmetric momentum-p.d.f	0.0006	0.0030
dE/dx	0.0129	0.0107
input masses	0.0050	0.0050
combinatorial background model	0.0020	0.0020
momentum background model	0.0010	0.0060
MC statistics	0.0011	0.0012
charge asymmetry	-	-
$\Delta\Gamma_s/\Gamma_s$ Standard Model	-	0.0060
lifetime	-	0.0060
isolation efficiency	-	0.0370
XFT-bias correction	0.0050	0.0080
TOTAL (sum in quadrature)	0.0165	0.0413

Isolation efficiency $\epsilon(B^0)/\epsilon(B^0_s)$ from the data using 180 pb⁻¹

$A_{CP}(B^0 \rightarrow K^+\pi^-)$ cuts: other fit parameters

Combinatorial background

parameter	value
f_{π^+} (combinatorial)	0.545 ± 0.017
f_{e^+} (combinatorial)	0.036 ± 0.005
f_p (combinatorial)	0.080 ± 0.025
f_{K^+} (combinatorial)	0.337 ± 0.031
f_{π^-} (combinatorial)	0.533 ± 0.018
f_{e^-} (combinatorial)	0.030 ± 0.005
$f_{ar p}$ (combinatorial)	0.132 ± 0.027
f_{K^-} (combinatorial)	0.304 ± 0.033

$B \rightarrow 3body \ background$

fraction of physics bckg (ARGUS norm.)	0.197 ± 0.016
ARGUS cut-off $[\text{GeV}/c^2]$	5.135 ± 0.001
ARGUS shape	8.467 ± 3.45
f_{π} (ARGUS)	0.728 ± 0.027
f_K (ARGUS)	0.272 ± 0.027
background fraction	0.481 ± 0.008
c_1 (background shape)	-1.221 ± 0.124

Significance Table

(Statistical + systematic)

raw yield ± stat. from fit on data

systematic error

			•	
mode	yield	TOY stat. $(f = 0)$	syst.	Sign.(TOY stat. $(f = 0)$ + syst.)
$B^0 \rightarrow K^+ K^-$	$61{\pm}25$	21	35	1.5σ
$B^0_s o \pi^+\pi^-$	$26{\pm}16$	11	14	1.5σ
$B^0_s ightarrow K^- \pi^+$	$230{\pm}34$	23	16	8.2σ
$\Lambda_h^0 o p\pi^-$	$110{\pm}18$	9	16	5.9σ
$egin{array}{c} \Lambda^0_b ightarrow p\pi^- \ \Lambda^0_b ightarrow pK^- \end{array}$	$156{\pm}20$	8	11	11.5σ

statistical uncertainty from pseudo experiments where the fractions of rare modes are fixed =0. statistical error from the pseudo-experiment + systematic error. (Sum in quadrature).

rospects for A_{CP}(B⁰_s→K⁺K⁻)

The large available sample allows expecting $\sigma(A_{CP}) \sim 0.2$ with runII sample

This allows searches for new physics. See below a recent work quoting the present measurement about SUSY search

this measurement

