
  

TOP Trigger Status

Xin Gao and Luca Macchiarulo
Tuesday January 17th,2012,

University of Hawaii
Belle II TRG/DAQ Workshop 



  

Schedule
● Overall TOP trigger structure

● Front-End Triggering (FET) 

– Algorithm 

– Design

– Implementation

– Test

● Combining Board 

– Proposal for implementation
● Global TOP trigger – back-end trigger (BET)

– Proposal for implementation
● Conclusions



  

Top trigger structure - current



  

FET Algorithm

● Estimation of the interaction point and time based on the received photon pattern is not 
straightforward:

● A small separation between the horizontal borders of the counters folds the 
Cherenkov cone into degenerate patterns.

● The estimation must be done in a couple of μs.
● Taking advantage of the information contained in the PDF (probability density function) 

of the time and space data.

120°

90°
40°

e- e+

Time information from
 the photon detector

Report event time and 
position.

Compare with the candidate PDFs.
Find out the PDF that best matches 

the received time patterns.



  

FET Firmware Design

● Note: the firmware was originally designed for 
the original specs requiring 8 fiber optic links 
dedicated per each sector

● The most recent implementation uses only 4 
links for the trigger information at an higher 
data rate

● Consequence on existing design
– Reduce the sorting network to a 4-input design

– Is 2x data rate sustainable? 
● Probably ok for original trigger – only timing
● Trickier for more info – see below  



  

Firmware Design – “old” 8-fiber 
input



  

Firmware Design – new 4-fiber input

? Enough BW ?



  

Implementation and Test Results

● Implementation:

– Virtex 4 FPGA (XC4VFX40-10FFG672I).

– Timing constraint met

– Resource usage (LUT limited)
● Slice: 14255 (67%)
● RAMB16s: 110 (76%)

● Verification 

– Simulation (5000 MC test vectors): identical to C model

– Code Coverage (added test vectors to cover VHDL 
constructs)

– Test on Board (at speed including Aurora interfaces)



  

Note on “verification”

● From the point of view of the design/algorithm, the FET is 
completely verified with an at-speed board-level simulation.

– So, we should not have surprises with the implementation 
(save possibly for radiation-related SEUs)

● However, this assumes that the PDFs used are a sufficiently 
close representation of the events

– Depends on # and accuracy of GEANT simulations

● Ideally, real beamtest data should be used to refine 

– We can try to incorporate the data taken at Fermilab

● Good property of the design: flexibility - “correct” PDFs can be 
easily changed almost on-the fly (requires reprogramming the 
device).



  

Combiner Boards

● Need to merge the information of 8 Front End 
Trigger Boards

● No further elaboration of the signal
– Only if necessary some data compression

● Relatively simple operation: can use an 
identical sorting network as FET (with 8  
inputs):

– Each FET output is a serial input with triggering 
and timing information

– Add the tag of origin, order the timing 
information and retransmit to higher level



  

Combiner Board

From
8 FETs

8-way
Sorter

To
BET



  

Back-End Trigger (BET)
● The final trigger again combines (timing) 

information from all the staves
● Can potentially achieve better timing resolution 

by combining different estimates for event time
● Possible algorithms (in order of complexity):

– Simplest: pass every L1 trigger received, with 
masking 

– Average estimate in a given window

– Use of confidence value generated by PDFs to 
weigh estimates

– Use of geometrical information - estimates of hit 
positions 



  

BET- every trigger

● To avoid flooding the Global Trigger with TOP 
triggers belonging to the same event:

– After a FET trigger arrives, transmit it to global 
trigger

– Mask off all subsequent triggers within a given 
timestamp

● VERY easy to implement
● Loses information from other hits
● First hit estimate not necessarily more reliable 



  

BET – hit combination strategies

● Every BET option that combines hit needs to 
decide when hits belong to the same event

● Whenever a trigger from FET occurs, starts a 
counter to see if other single stave trigger 
occurs in a given maximum time (critical – do 
not want to add too much latency)

● Estimate a best time based on hits (see below 
for options)

● At the end of the window, output the estimated 
time



  

BET – time average estimate
If more than 1 trigger occurs, compute the time 
as the arithmetic average of the times 

– (t1+t2)/2, (t1+t2+t3)/3, (t1+t2+t3+t4)/4...

– Hard part – division by 3,5,7,11,13: implement 
all separate divisions as fixed number 
multiplications

● All triggers in the window (from different staves) 
are used in the estimate

● Reliable and less reliable estimates are not 
distinguished

● No change in FET – minimum overhead



  

BET – weighted time average
● If more than 1 trigger occurs, compute the time 

as 
– (w1*t1+w2*t2)/(w1+w2), (w1*t1+w2*t2+w3*t3)/

(w1+w2+w3), ...

– In this case a real division is necessary – slight 
cost  in latency

● Weights (confidence levels) are the maximum 
value from PDF estimation - already calculated 
in FET!

● Requires extra output (confidence level) from 
FET  



  

BET – Geometric information 
● If other triggers occur, use the estimated hit 

positions on the stave and asses the probability 
for the given configuration on the basis of 
expected events

– Problem with unexpected event suppression?

● Calculation of hit position implicitly calculated in 
FET already 

● Requires other extra outputs (confidence level 
+ hit position) from FET 

● More precise if stave further divided – some 
issues with FET FPGA size.



  

Conclusions 
● Status of TOP trigger

– Structure: 16 FETs → 2 Combiners → 1 BET

– FETs: 
● designed and verified 
● changes required for input fiber reductions
● Minimal (easy) changes for BET improvement

– Combiners:
● Main components (Aurora, sorter) designed and 

verified 
● Assembly needed 

– BETs:
● Some components (AURORA cores, sorter, PDF 

checker) designed
● Algorithm and complete design required



  

Thanks!



  

Backup slides



  

FET Algorithm (cont.)

Use both Time and Space information
Time quantization: 1ns

Background noise: 10 MHz

Use both Time and Space information
Time quantization: 2ns

Background noise: 10 MHz

Only Time information is used
Time quantization: 1ns

Background noise: 10 MHz

Only Time information is used
Time quantization: 1ns

Background noise: 40 MHz



  

Firmware Design (cont.)

Sorted timing info
Correlate 

with 
200 LUTs

MAX
event time 
and position

● LUTs: 200 x 64 x 20 bits
● To save resource usage, only 100 correlators 

are used to perform the 200 correlation 
operations.

● The frequency of the trigger block is twice the 
frequency of the sorter to avoid throughput 
bottleneck

● Trigger Logic



  

Implementation Results
● Virtex 4 FPGA (XC4VFX40-10FFG672I).

● Resource usage
– Slice: 14255 (67%).

– Slice FFs: 21112 (56%).

– 4 input LUTs: 16923 (45%).

– RAMB16s: 110 (76%).

No. of RAMB16s

No. of 4-input LUTs

No. of Slice FFs

No. of Slices

0 10 20 30 40 50 60 70 80 90 100

FIFO
Aurora
Trigger
Sorter

All timing constraints were 
met!



  

Verification based on Simulation

● Self Checking Testbench

5000
Test Patterns

From Monte-Carlo
Simulation

Firmware Source 
Code

Software Simulator

Check if 
match

● Result
– Perfect Match!

– The firmware has realized the design intention.



  

Code Coverage

● Check if all the code has been exercised in the test.

● Include statement coverage, branch coverage, condition 
coverage, FSM coverage, etc.

● Compile and simulate the design in modelsim.

● Report is generated for each design file.

●  For the stimulus generated by Monte-Carlo simulation
– Generally, 75~100%.

– Some corner cases are not covered, e.g., fifo full condition.

– Some fake stimulus are generated to achieve 100% 
coverage for statements, branches, conditions and FSMs.



  

Test on Board

USB

PC

FIFO

FIFO

FIFO

FIFO

Firmware 
under test

USB
Control

Control & status
 regs

Aurora Interfaces

Optical 
cables

1.Load the test 
patterns into the 
FPGA through the 
USB interface.
2.Start Test.
3.Read trigger data 
out from the USB 
interface.
4.Compare the 
obtained results to 
those from the 
software simulator

The firmware works as 
expected!



  

Test Results

● Verification based on Simulation
● Code Coverage
● Test on Board


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27

