TOP Electronics Status & Beam Test Experience

Kurtis Nishimura January 16, 2012 University of Hawaii Belle II TRG/DAQ Workshop

Electronics Elements

Beam Test Electronics Elements

Remote Programming

 JTAG programmer connects to FTSW, FTSW distributes to one or more front-end modules via CAT-6 cable:

- Generally quite successful. A few issues:
 - Programming sometimes worked at 6 MHz...
 - ...but often had to be run at 1.5 or 0.75 MHz.
 - Sometimes failed completely. Reseating cables seemed to help, but there was never an obvious cause.

Timing/Trigger Distribution

- Clock strategy:
 - Derive 21 MHz clock from FTSW-distributed 127 MHz.
 - 21.2 MHz clock must be phase aligned across all modules.
- Serial data stream from FTSW is used to divide and synchronize clocks across all modules*. Some caveats:
 - Timing constraints are very tight.
 - Could only get this firmware to act stably by manually specifying the location of the PLL:

```
#The location of the FTSW receiver PLL seems to only work in specific locations.
#The one below is verified working... others may also work but have not been
#systematically tried.
```

INST map_clocking_and_ftsw_interface/map_FTSW_interface/map_belle2clk/map_pll/map_pll LOC = PLL_ADV_X0Y0;

- If this timing link is ever lost (cable unplugged, high noise, etc.), it never recovers. Could be Spartan-6 limitation?
- When timing link is down serial trigger stream decoder finds triggers constantly.
- CAT-6 cable was found to be much more reliable than CAT-7.

*Thanks to Nakao-san for this code!

Timing/Trigger Distribution

• Timing results from bench test between two SCRODs in August 2011:

Measured phase and jitter of 21.2 MHz clock from two SCRODs (on oscilloscope)

Beam Test Timing - Standard Laser Runs

Standard Laser Runs - FTSW Timing

- Events are random with respect to FTSW trigger...
 - ...but laser fires at a fixed time relative to the global trigger.

Standard Laser Runs - FTSW Timing

- Events are random with respect to FTSW trigger...
 - ...but laser fires at a fixed time relative to the global trigger.

Standard Laser Run - Distributions

Time extracted by software fixed threshold discrimination (-40 ADC counts).

Beam Test Timing – "Special" Laser Runs

Measured FTSW Timing - "Special" Laser Runs

• Typical TDC distribution of trigger phase:

 \rightarrow Absolute global time resolution will never be better than this! Is this due to intrinsic jitter in timing distribution, or jitter in the measurement? $_{_{12}}$

Other issues: Waveform Processing

Example SL10 waveform froms beam data:

Black – primary hit Red – cross talk on an adjacent channel

- Simplified waveform processing plan:
 - Each DSP core feature-extracts hits from a single SCROD.
 - Hits are processed independently. Pedestal subtraction, timing calibration are applied. Then Calculated charges/times are sent on to final system.
- More realistic plan:
 - Pedestal subtraction, timing calibration applied.
 - DSP cores need to be aware of potential cross-talk hits from other anodes in the MCP-PMT. Feature extraction proceeds based on all available waveforms from a given PMT.

Plans for Jitter and Waveform Studies

- When equipment returns from Fermilab (in transit now):
 - Replicate test beam setup as closely as possible.
 - Run with pulser as input to front-end:
 - Take an auxiliary calibration sample for further timing calibrations and controlled timing studies.
 - Run with laser:
 - Determine main sources of jitter in timing phase measurement.
 - Is it in the timing distribution itself or in the phase measurement?
 - Waveform analysis campaign:
 - Identify different types of PMT-hits, cross-talk, and pathologies.
 - Develop methods for identifying each in the data stream.
 - Determine best possible timing resolution in laser runs.
 - Reprocess raw beam test data with improved calibrations and methods.

→ Waveform studies will feed into future work on DSPs.

TOP Summary

- TOP beam test at Fermilab:
 - First system-level test of many components & features.

- Lots of data, millions of photon candidates.
- Analysis will be ongoing for some time... but we already some valuable feedback:
 - Remote programming can be tricky. Slower programming speed can help.
 - Timing distribution issues: tight timing requirements in firmware, no recovery when timing "lock" is lost (Spartan-6 issue?).
 - Distributed timing jitter: still under investigation... much worse than originally thought? If so, why?
 - DSP waveform processing scheme for final configuration may need to be considerably more complicated.
- Great progress over the past year, but lots of work left to do before we're ready for "prime-time."