Physics Problem Generator

Keita Todoroki

Phys305 Spring 2011

Purpose:

Generate physics problems for self-teaching purpose.

Basic functions:

- Produce physics problems randomly or systematically as you like.
- Each problem has changing values and answers every time you run the program.
- -The program outputs the generated problems in a dat.file so that it can be printed out as a paper sheet to work on.

Another application:

The program can be used by teachers who want to avoid their students to cheat during exams/quizzes.

Coding Blocks

Input: Choose either systematic or random version

Input: Enter how many problems you want to work on.

Output: Generate problems

Generate answers at the end

Basic Coding: random functions, if statements and for loops

Visualization

Problem[31]
A Feynman diagram shows the interaction of two electrons through the exchange of a
(a)omegaton (b)pion (c)virtual photon (d)anti-neutrino
Ans.: (c)
Problem[27]
The ground-state energy of a harmonic oscillator is 8.5eV. If the oscillator undergoes a transition from its $n=4$ to $n=1$ level by emitting a photon, what is the wavelength of the photon?
(a)25.3299 [nm] (b)23.3299 [nm] (c)26.3299 [nm] (d)24.3299 [nm]
Ans.: (d)
Problem[21]
Fermions are particles with integer spin. T/F
Ans.: False

Figure 1: A screen shot from the generated notepad file.

Input: The random version, 37 problems