
Projectile Motion
Morgyn Stryker 5/4/2011

This project will evaluate the motion,

through air near the earth’s surface, of a

solid bomb projectile from a mortar using

gun powder as the ballistic source .

The mass of black powder needed can be

calculated from the initial velocity required

to hit the target at the set elevation angle

and calculated target angle. The mass is

determined based on the chemical energy

needed to achieve the initial velocity.

Must make many assumptions in approach.

d𝑈 = 𝐶𝑣𝑑𝑇

W = pdV

Equation 1

Equation 2

1. http://www.napoleon-series.org/military/organization/c_mortars.html

2. http://mysite.du.edu/~jcalvert/phys/bang.htm#Blac

Gunpowder, or black powder, is composed of potassium nitrate, charcoal, and sulfur in an 84:8:8

ratio [2]. The ideal reaction for this combustion is:

10KNO3 + 8C + 3S → 2K2CO3 + 3K2SO4 + 6CO2 + 5N2

An estimation of the heat released is 685 kcal/kg, the volume expansion factor is 5100, and the

density is about 1.04 g/cc [2].

Figure 1: Typical mortar used, 10 inch barrel [1].

http://www.napoleon-series.org/military/organization/c_mortars.html
http://www.napoleon-series.org/military/organization/c_mortars.html
http://www.napoleon-series.org/military/organization/c_mortars.html
http://www.napoleon-series.org/military/organization/c_mortars.html
http://www.napoleon-series.org/military/organization/c_mortars.html
http://mysite.du.edu/~jcalvert/phys/bang.htm
http://mysite.du.edu/~jcalvert/phys/bang.htm

Method

Input Parameters

Guess the angle
and initial

velocity/mass
needed

Run simulation
until within

desired precision
level

Output
velocity/mass of

black powder
needed and

corresponding
velocity

Generate visual
representation of
movement from

mortar

Basic code taken from previous assignment:

double ODE::RHS_f(double t, double f[], double rhsf[]){

 // Projectile Motion Equations

 …

 rhsf[0] = f[1]; // x position, due east

 rhsf[1] = -b*(f[0] + windx)*V; // Vx

 rhsf[2] = f[3]; // y position, due north

 rhsf[3] = -b*(f[2] + windy)*V; // Vy

 rhsf[4] = f[5]; // z position, height

 rhsf[5] = -b*(f[4])*V - Gravity; // Vz

}

…

for(int i = 0; i < array; i++){

 P1.RK2(t, dt, f_t, N); // Implements method

 t += dt;

 if (f_t[4] < targetZ) break;

 …

 }

…

 cout << "\n Try: \n Initial Velocity: " << InitialVelocity <<
endl;

 cout << " Initial Angle to Target: " << InitialTheta*180/M_PI
<< endl;

Simulation/Results

 How does one ensure proper simulation?

 Do the assumptions make a large

difference?

 Final point determination?

 Efficiency of simulation approach?

 Is an initial guess the best approach?

