

Search for decoherence of *BB* quantum entanglement at Belle II

Update: Unbinned decoherence fitter using individual decay times

Lucas Stoetzer

Last time: Bias in unbinned decoherence fit

Lucas Stoetzer

- Fit Line $a = 1.000 \pm 0.002$, $b = -0.000 \pm 0.000$
- Fitted λ = Simulated λ
- Fit Line $a = 0.990 \pm 0.002$, $b = 0.000 \pm 0.000$
- Fit Line $a = 0.993 \pm 0.002$, $b = -0.000 \pm 0.000$
- Fit Line $a = 1.018 \pm 0.002$, $b = -0.001 \pm 0.000$
- Fit Line $a = 1.022 \pm 0.004$, $b = -0.002 \pm 0.000$
- Fit Line $a = 0.952 \pm 0.005$, $b = 0.010 \pm 0.000$
- Fit Line $a = 1.253 \pm 0.020$, $b = 0.037 \pm 0.001$
- Fit Line $a = 0.999 \pm 0.001$, $b = -0.000 \pm 0.000$
- wqr6 = 0.0157
- wqr5 = 0.0865
- wqr4 = 0.1545
- wqr3 = 0.2283
- wqr2 = 0.319
- wqr1 = 0.4089
- wqr0 = 0.479
- Error Weighted Mean

- Observe large "bias" for the two worst wrong tag bins
- Observe small "bias" for the middle wrong tag bins
- What causes this???
- Additional point: Why do my fit points not fluctuate more according to their error bars? \Rightarrow Expect 1σ spread

The Problem: Random generation of pseudo experiments

- Generate toy MC for 19 different λ values
- For each λ generate 100 pseudo experiments of random t_1 and t_2 pairs Problem: I used the same 100 random seeds over and over again Each experiment number is correlated

	Exp1	Exp2	Exp3	Exp100
Lam=0.0	1	2	3	 100
Lam=0.001	1	2	3	 100
Lam=0.1	1	2	3	 100

 \blacksquare Solution: Use unique random seeds for each experiment for each λ value

	Exp1	Exp2	Exp3	Exp100
Lam=0.0	1	2	3	 100
Lam=0.001	101	102	103	 200
Lam=0.1	1901	1902	1903	 2000

Fixing the pseudo experiment generation

Lucas Stoetzer

07/16/2025 - TDCPV Meeting

Significance of "bias" in good wrong tag bins

Lucas Stoetzer

Fixed Sensitivity

Lucas Stoetzer

Make simulation of Wrong tagging realistic

- So far: For example in best wrong tag bin we have 16.2% of the data (72k*0.162 = 11664) with a wrong tag ration of 1.57%
 - → Of these 11664 I flipped the sign (SF to OF or vice versa) of exactly 1.57% events $(11664*0.0157 \approx 183)$, randomly
- The Problem: This is not correct as can be seen on coin tosses, each toss has a prob of $50\,\%$ but after 50 tosses we do not necessarily get 25 Heads-25 Tails
- a prob of 50 % but after 50 tosses we do not necessarily get 25 Heads-25 Tails • Solution: Treat each event like a coin toss! Each event in the best wrong tag bin has a 1.57 % chance to flip its sign!

New wrong tag simulation

Lucas Stoetzer

07/16/2025 - TDCPV Meeting

Significance of "bias" in good wrong tag bins

Lucas Stoetzer

Sensitivity for new wrong tag simulation

Lucas Stoetzer

07/16/2025 - TDCPV Meeting

Repeat fit but let wrong tag fraction float

Lucas Stoetzer

07/16/2025 - TDCPV Meeting

Sensitivity for letting wrong tag fraction float

Lucas Stoetzer

07/16/2025 - TDCPV Meeting

Let every thing float and only fix w_{qr0}

Lucas Stoetzer

Sensitivity

Lucas Stoetzer

07/16/2025 - TDCPV Meeting

Summary

- fixed the "bias" problem
- Bias is of the order of $\leq 1\%$ Therefore, no evidence for significant bias
- percent chance to flip sign

 \Rightarrow Reach 5σ for $\lambda > 0.003$ ps⁻¹

Creating individual random numbers for the pseudo experiment generation

Incorporated more realistic wrong tag simulation, where every event has a

• Observe good sensitivity for letting λ and wrong tag fraction float (except w_{qr0})

