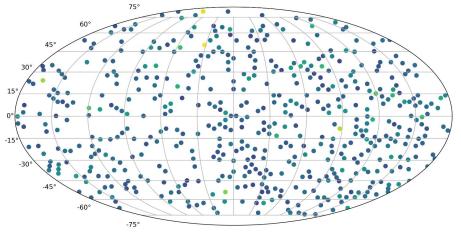
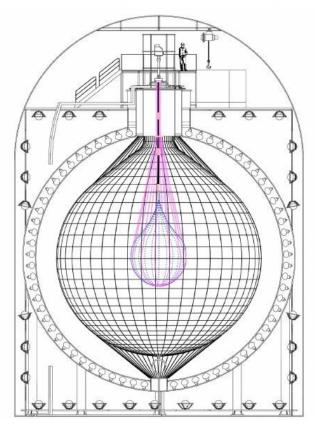
Modern Machine Learning Model Deployment on FPGA for KamLAND-Zen

Zepeng Li

KamLAND-Zen detector

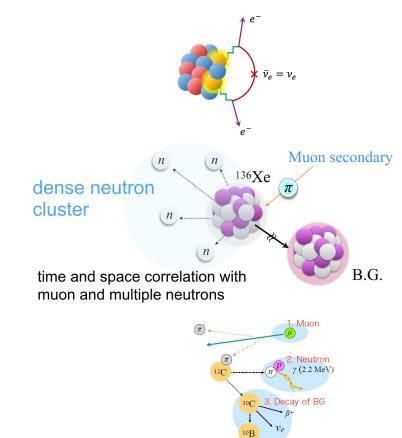
- Particles interact in the liquid scintillator and deposit energy. Energy is converted into light and detected by photo-multipliers.
- Energy resolution: 6.7%/sqrt(E (MeV))
- Vertex resolution: ~13.7 cm





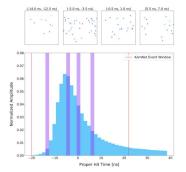
Machine learning based background rejection in KamLAND-Zen

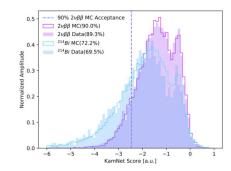
- Signal is 2.46 MeV electron events
- Primary backgrounds:
 - 2vbb decays
 - Long-lived cosmic muon spallation
- Minor backgrounds
 - Radioactive background
 - Solar neutrinos
 - Short-lived cosmic muon spallation

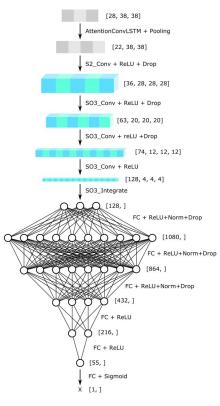


Machine learning based background rejection in KamLAND-Zen

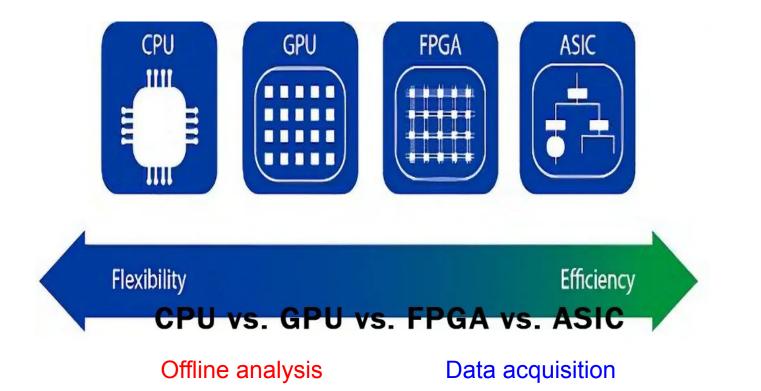
- A novel deep learning model to distinguish backgrounds and signals
- KamNettakes a time-series of 2-D hit maps and returns a single-valued KamNetScore
- Convolutional-LSTM (Long-Short Term Memory) Layer with attention module
 - Learns to identify and focus in on important sections of the event
- Spherical Convolution
 - Utilizes spherical symmetry to learn complex features



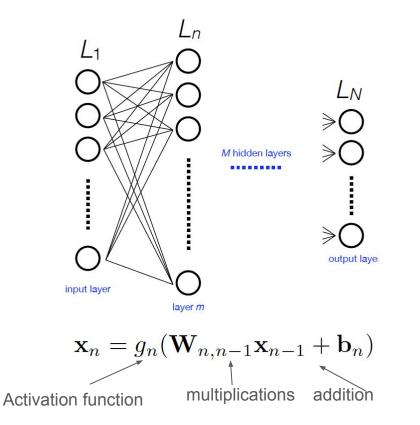




Different Integrated Circuits

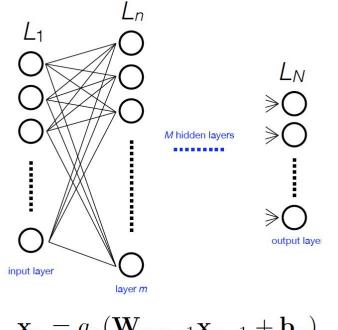


Machine learning deployment



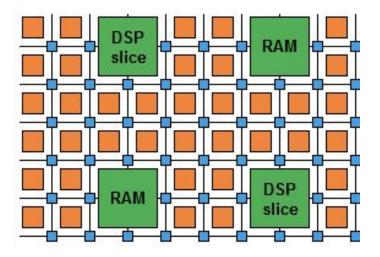
- Most of computations are matrix/vector multiplication.
- On CPU, it is performed by looping over elements.
- Matrix multiplication is broken into independent operations in parallel on GPU.
- Hardware programming is not needed on either CPU or GPU.

Machine learning deployment



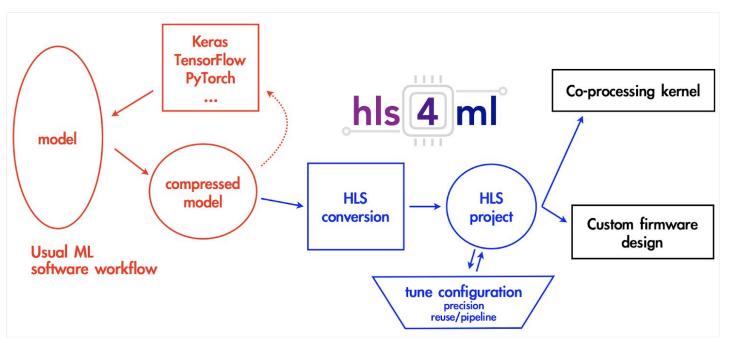
 $\mathbf{x}_n = g_n(\mathbf{W}_{n,n-1}\mathbf{x}_{n-1} + \mathbf{b}_n)$ Activation function multiplications addition

FPGA



BRAMs: precomputed activation functions DSP: multiplication Logic cells: addition

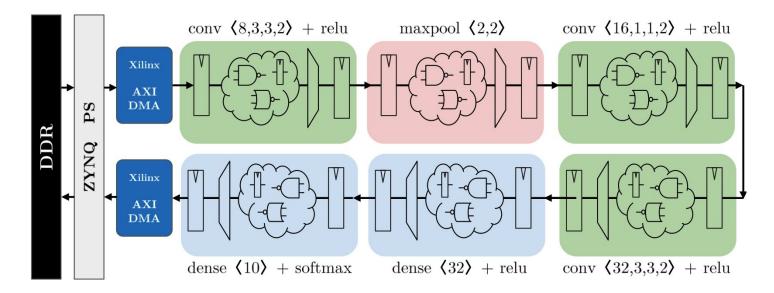
HSL4ML



Keras, tensorflow, pytorch, and ONNX

Vivado, HLS compiler

HLS4ML



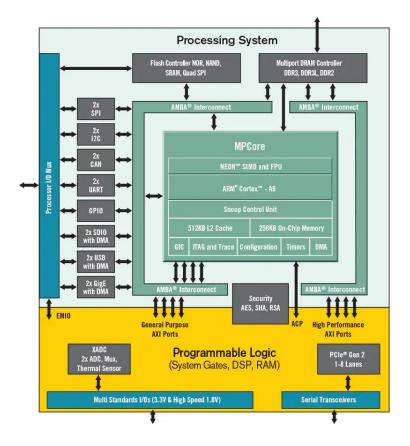
Layer-by-layer implementation of neural networks in HLS4ML. Multiplier could be reused inside a layer.

Modern ML models on FPGA

layer name	output size	18-layer	34-layer	50-layer	101-layer	152-layer		
conv1	112×112	7×7, 64, stride 2						
conv2_x	56×56	3×3 max pool, stride 2						
		$\left[\begin{array}{c} 3\times3,64\\ 3\times3,64 \end{array}\right]\times2$	$\left[\begin{array}{c} 3\times3,64\\ 3\times3,64 \end{array}\right]\times3$	$\begin{bmatrix} 1 \times 1, 64 \\ 3 \times 3, 64 \\ 1 \times 1, 256 \end{bmatrix} \times 3$	$\begin{bmatrix} 1 \times 1, 64 \\ 3 \times 3, 64 \\ 1 \times 1, 256 \end{bmatrix} \times 3$	$\begin{bmatrix} 1 \times 1, 64 \\ 3 \times 3, 64 \\ 1 \times 1, 256 \end{bmatrix} \times 3$		
conv3_x	28×28	$\begin{bmatrix} 3\times3, 128\\ 3\times3, 128 \end{bmatrix} \times 2$	$\begin{bmatrix} 3\times3, 128\\ 3\times3, 128 \end{bmatrix} \times 4$	$\begin{bmatrix} 1 \times 1, 128 \\ 3 \times 3, 128 \\ 1 \times 1, 512 \end{bmatrix} \times 4$	$\begin{bmatrix} 1 \times 1, 128 \\ 3 \times 3, 128 \\ 1 \times 1, 512 \end{bmatrix} \times 4$	$\begin{bmatrix} 1 \times 1, 128 \\ 3 \times 3, 128 \\ 1 \times 1, 512 \end{bmatrix} \times 8$		
conv4_x	14×14	$\begin{bmatrix} 3\times3,256\\3\times3,256\end{bmatrix}\times2$	$\begin{bmatrix} 3\times3,256\\3\times3,256\end{bmatrix}\times6$	$\begin{bmatrix} 1 \times 1, 256 \\ 3 \times 3, 256 \\ 1 \times 1, 1024 \end{bmatrix} \times 6$	$\begin{bmatrix} 1 \times 1, 256 \\ 3 \times 3, 256 \\ 1 \times 1, 1024 \end{bmatrix} \times 23$	$\begin{bmatrix} 1 \times 1, 256 \\ 3 \times 3, 256 \\ 1 \times 1, 1024 \end{bmatrix} \times 36$		
conv5_x	7×7	$\left[\begin{array}{c} 3\times3,512\\ 3\times3,512\end{array}\right]\times2$	$\begin{bmatrix} 3\times3,512\\3\times3,512\end{bmatrix}\times3$	$\begin{bmatrix} 1 \times 1, 512 \\ 3 \times 3, 512 \\ 1 \times 1, 2048 \end{bmatrix} \times 3$	$\begin{bmatrix} 1 \times 1, 512 \\ 3 \times 3, 512 \\ 1 \times 1, 2048 \end{bmatrix} \times 3$	$\begin{bmatrix} 1 \times 1, 512 \\ 3 \times 3, 512 \\ 1 \times 1, 2048 \end{bmatrix} \times 3$		
	1×1	average pool, 1000-d fc, softmax				2 		
FLOPs		1.8×10^{9}	3.6×10^{9}	3.8×10^{9}	7.6×10^{9}	11.3×10^{9}		

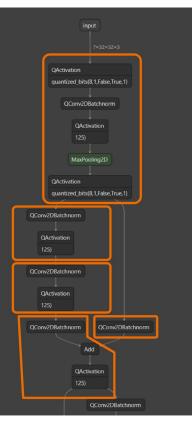
HLS4ML does not support modern neural networks.

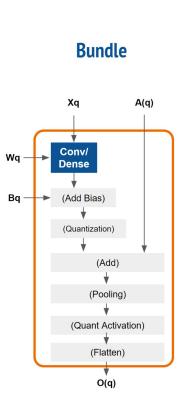
ZYNQ heterogeneous SoC

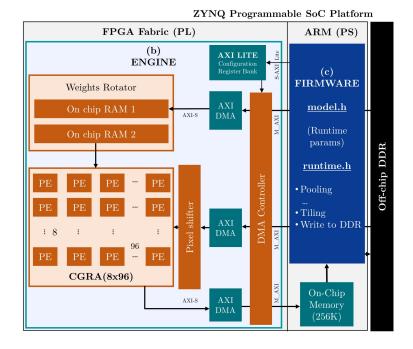


- System on Chip: Arm CPU + FPGA
- Advanced eXtensible Interface (AXI) provides for high bandwidth and low latency connections between elements.

Modern ML models on FPGA using CGRA4ML

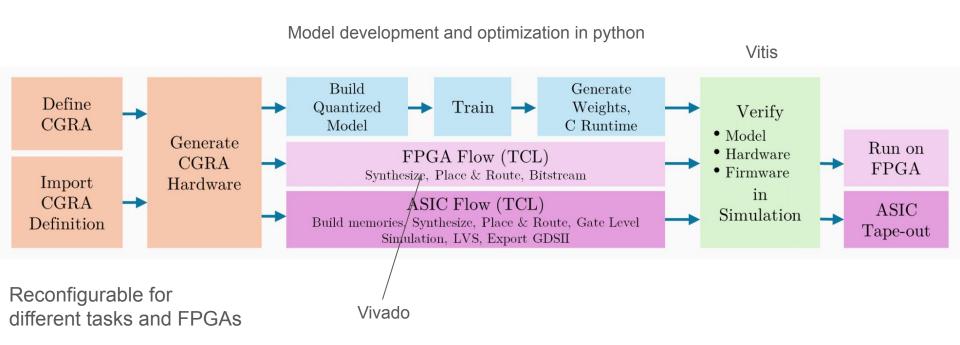






Parameterizable Coarse-Grained Reconfigurable Array PE: processing element

Modern ML models on FPGA using CGRA4ML



Results

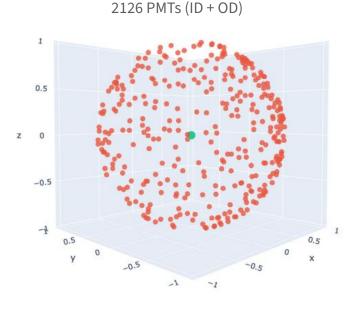
Model	ResNet-50	PointNet
Bits	4	4
PEs	(7,96)	(32,32)
Frequency (MHz)	250	250
FFs	101706	69277
LUTs	82200	100076
BRAMs	6	4.5
Static Power (W)	0.700	0.700
Dynamic Power (W)	3.847	3.840
Total Power (W)	4.547	4.540
GOPs/W	37.3	56.8

TABLE IIIImplementation of ResNet-50 and Pointnet on ZCU104 FPGA

Methods

PointNET event reconstruction

- Data can be thought of as a <u>point</u>
 <u>cloud</u>
 - Geometric semantics
 - Invariant to permutations (x, y, z encoded)
- Use the PointNET architecture (Qi et al 2017)



(Fu et al 2024)

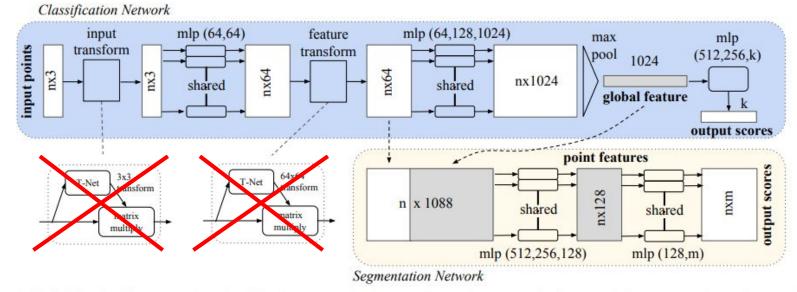
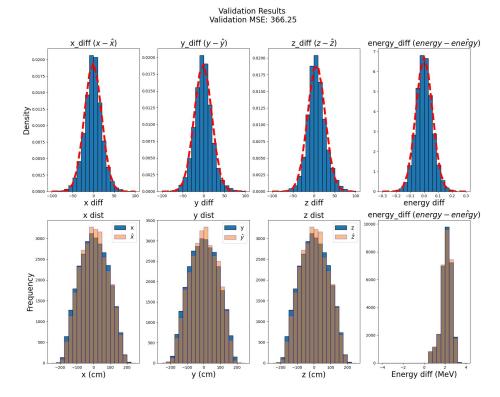


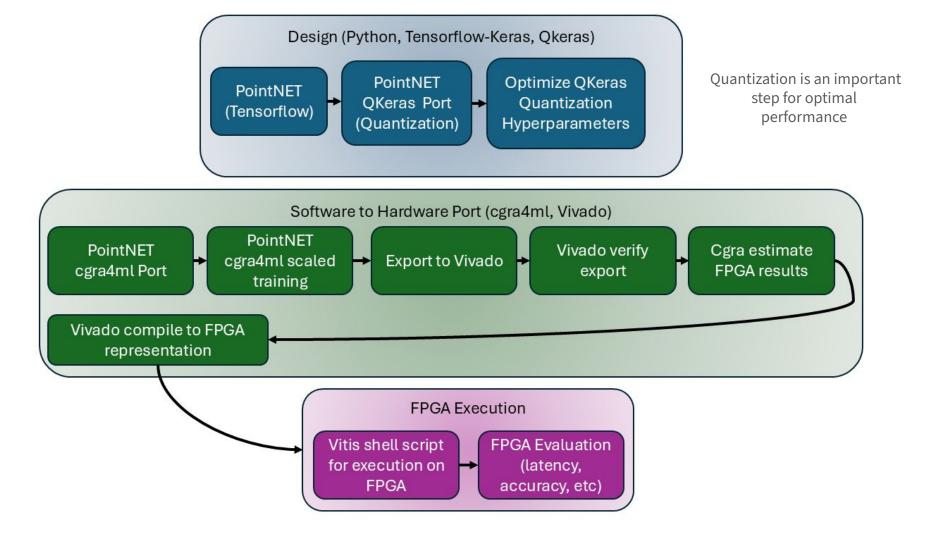
Figure 2. **PointNet Architecture.** The classification network takes n points as input, applies input and feature transformations, and then aggregates point features by max pooling. The output is classification scores for k classes. The segmentation network is an extension to the classification net. It concatenates global and local features and outputs per point scores. "mlp" stands for multi-layer perceptron, numbers in bracket are layer sizes. Batchnorm is used for all layers with ReLU. Dropout layers are used for the last mlp in classification net.

(Qi et al 2017)

Model is (sequential): 3 CNNs Global Max Pool 3 Fully Connected

Design Stage Reconstruction Results

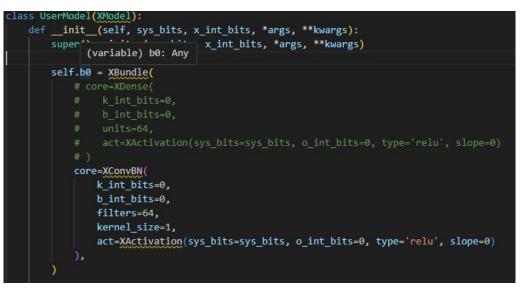




Quantization

Why Quantization?

- Need to compress model
- Need to understand optimal hardware parameters
- Training QKeras establishes
 baseline for comparing
 hardware and software
 compression



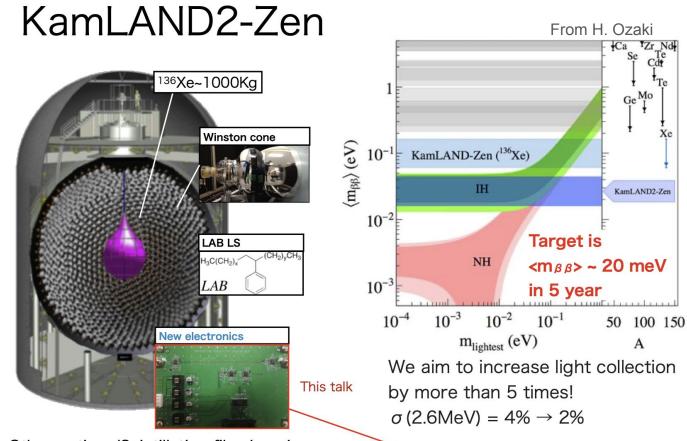
cgra port of PointNET

Software to Hardware: Key Tools

- cgra4ml (UCSD Computer Science)
 - Converts Tensorflow model to Vivado-friendly format
 - Open-source and available on <u>Github</u>
- Vivado (AMD)
 - Model export verification and simulation
 - Synthesizes FPGA representation
- Vitis (AMD)
 - C-wrapper for FPGA model execution



Results

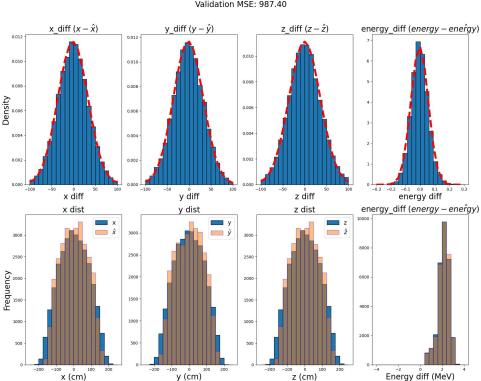


25

Other options(Scintillation film, Imaging detector, pressurized xenon ..) in development

We are developing new electronics with wide dynamic range!

PointNET cgra Port Accuracy Results



Validation Results Validation MSE: 987.40

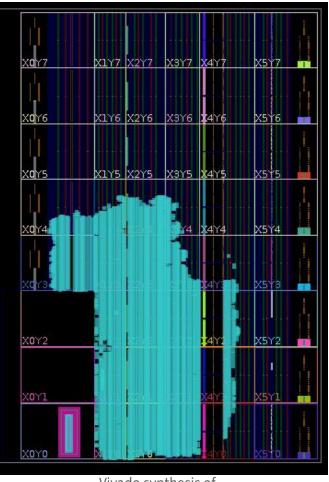
Reconstruction Results Summarized

Experimen t	Avg. Validation MSE	X Error (cm)	Y Error (cm)	Z Error (cm)	E Error (MeV)
Traditional KLZ (Li Thesis)	N/A	17	17	17	0.14
QKeras	366.25	20	21	21	0.06
Cgra4ml	987.40	34	34	36	0.06

RFSoC4x2

- ZYNQ Ultrascale+ FPGA in lab
- AMD Kit

Image courtesy of AMD



https://ml4physicalsciences.github.io/2024/file s/NeurIPS_ML4PS_2024_153.pdf

Version	Latency (ms/batch) @ 20 runs
Trained	6980.9
Untrained	6996

~436.3 ms inference per event

Vivado synthesis of model

Work to reduce the latency

- A simpler model without losing much accuracy.
- Use PMT cluster as a single point instead of a single PMT as input.
- Optimize quantization

- CGRA4ML provide a framework for modern ML model deployment on FPGA.
- PointNET is an effective way of reconstructing detector physics in KLZ
- We can deploy PointNET onto an FPGA to make single-event inference on the order of 100s of ms