

Exploring Al/ML tools for axion dark matter detection

ML4FE Workshop, University of Hawaii

May 2025

Christian Boutan

Physicist

PNNL is operated by Battelle for the U.S. Department of Energy

Dark Matter would explain a lot of things

- Galaxy Motion
- Rotation Curves
- Gravitational lensing
- Bullet Cluster
- Nucleosynthesis
- BAO + CMB
- Simulations

Dark Matter Candidates

Strong CP Problem

 Strong force Lagrangian contains a CP-violating term

$$\mathcal{L}_{\theta} \propto \bar{\theta} \, G \, \widetilde{G}$$

 Implies measurable neutron electric dipole moment (EDM) Neutron

Theory predicted to be ~ 10^{-18} e m.

 Experiments constrain the neutron EDM close to zero implying CP conservation

 $d_n = (0.0 \pm 1.1_{stat} \pm 0.2_{sys}) \times 10^{-26} e \cdot cm$

C. Abel et al. Phys. Rev. Lett. 124, 081803 — Published 28 February 2020

• Fine Tuning Problem

1977: Axions could restore order to the universe Pacific Northwest

The Peccei–Quinn solution to the Strong CP Problem creates the Axion as a biproduct of the theory

A new hope

A new, spontaneously broken axial symmetry... gives you the axion

- problem"
- Mass:

Depends on who you ask < (µeV or peV)

 The axion is the result of a particularly elegant solution to the "Strong CP

• Naturally light and stable

$m_{a} < 10^{-2} \, eV$

• A discovery would solve two major problems in physics simultaneously!

Detection Strategy

Detection Strategy

axions

Detect 1024 W Detect 1024 W Detect 1024 V Signal Nicrowave signal **B-field** Superconducting Solenoid (8 T)

This axion line shape has been exaggerated. A real signal would hide beneath the noise in a single digitization. An axion detection requires a very cold experiment and an ultra low noise receiver-chain.

aboratory

Pacific

Northwest

THE UNIVERSITY OF

WESTERN

USTRALIA

ILLINOIS INSTITUTE

OF TECHNOLOGY

Fermilab

Of

The University

Sheffield.

The ADMX Collaboration

UF FLORIDA

.os Alamos

NATIONAL LABORATORY

This work was supported by the U.S. Department of Energy through Grants No DE-SC0009800, No. DE-SC0009723, No. DE-SC0010296, No. DE-SC0010280, No. DE-SC0011665, No. DEFG02-97ER41029, No. DE-FG02-96ER40956, No. DEAC52-07NA27344, No. DE-C03-76SF00098 and No. DE-SC0017987. Fermilab is a U.S. Department of Energy, Office of Science, HEP User Facility. Fermilab is managed by Fermi Research Alliance, LLC (FRA), acting under Contract No. DE-AC02-07CH11359. Pacific Northwest National Laboratory is a multi-program national laboratory operated for the U.S. DOE by Battelle Memorial Institute under Contract No. DE-AC05-76RL01830. Additional support was provided by the Heising-Simons Foundation and by the Lawrence Livermore National Laboratory LDRD office.

Goal: Find Dark Matter axions, or exclude them at high confidence

ADMX Receiver

TONY LUONG, NATIONAL GEOGRAPHIC

Josephson Parametric Amplifier

Yanjie Qiu, Siddiqi Group, UC Berkeley

Cavity

Dilution Refrigerator

10^{2}	
	ORGAN
2017)	
as <mark>aki (201</mark> 4	5)

Frequency

The future looks complicated

B_e

Be,

Superconducting

cavities

Image: Flux Vortices in Mixed State

(HP)

0

Credit: APS, https://physics.aps.org/articles/v10/129

Copper

Thin-film Type-II end-caps

superconductor

>

squeezing

Many Cavities

Tricks for evading the standard quantum limit

126 (2021) 141302, http://dx.doi.org/10.1103/PhysRevLett.126.141302.

How is ML going to intersect this story?

Summary of what we know so far

- Trying to detect a tiny (< 10⁻²⁴ W) RF signal
- Outlook is bleak at higher frequencies (sensitivity drops fast)
- The community is split, working on one-off solutions in isolated

I claim that:

- Future experiments might be too complicated to operate
- Today's experiments could run faster with intelligent controls

I need to tell you about another challenge that the community doesn't seem to be anticipating...

Toy model experiment: ingredients

Amplifier

Toy model experiment: environment

Low Temp Environment

Toy model experiment: environment

Low Temp Environment

Toy model experiment: sensors

Low Temp Environment

Toy model experiment: controls

Input

Toy model experiment: black box when running

Let's play with the toy model

Experiment

Play with toy: connect with supporting electronics

Play with toy: make measurements and build model

Model

Operator

Experiment

Cavity

Play with toy: close up experiment and pump down

Model

Play with toy: cool experiment

Model

Play with toy: Ramp magnetic field

Model

What's wrong with my toy?

Model

Operator

If we could peak inside

Model

Operator

Experiment

Simple cryogenic experiments vs complicated room-temperature ensembles

Example of a complicated room temperature thing

VS

re ensembles Our toy Experiment

Here's what I want to know...

Can AI/ML help us run today's experiments?

Digital Twin Intelligent Controls Control **High Field Environment** Cavity Amplifier Characterization Circulator Analysis

Experiment

Can Al/ML help us run tomorrow's experiments?

Digital Twins

Experiment

Can AI/ML streamline the cadence of data-taking?

Summary of questions

Can I use ML to...

- Help me characterize my mystery experiment (slide 35)?
- Scan faster by going through data-taking laundry list faster (slide 39)?
- Glean more information from fewer measurements?
- Tune-up devices faster?

Early findings

Data Scientist: AI/ML strategy, measurement automation

T. Braine

Postdoc: ML for RF characterization

J. Godinez

SULI student: ML for cavity tuning

C. DeSmet

3 possible examples of ML axion detection

Low Temp Environment

Example 1: cavity tuning

Low Temp Environment

ML for Cavity Tuning

ADMX-Sidecar

JC

Mode Crossings

Supervised learning exercise

The cavity has a spectral fingerprint that is rich with unused information

- Can we use a single wide-band fingerprint to learn multiple things?
 - Rod position
 - TM010 center frequency
 - **Q**
 - Antenna coupling
 - Rod tilt
- Can we use out-of-band information to predict in-band information?

Setup and inputs to Neural Network (NN)

Cavity Setup

-20

-30

-50

-20

뛰 _30

£ ₽ -40

-50

S21 over all tuning rod positions

Labels to NN: 1) Tuning rod position, 2) Antenna position

Preliminary Results

- Started with a dual brand 1D CNN model, S21 magnitude, S21 Phase
- Experimentation found better results with triple branch 1D CNN model S21 magnitude, S21 phase broken into complex representation (IQ)
- Further hyper parameter tuning found that a sinc activation function performed better than standard relu or sin
- Model performed well without over fitting
- Future work to include removing dependence on motor position and instead predict TM010 mode

3. Move Rod Motor (tune f_0 slightly)

New Data point for **NN Training!**

Example 2: circulators as sensors

Low Temp Environment

Circulators are sensitive to environmental changes

A Multiport Approach to Thermal Noise and Scattering Parameter Simulation of Cryogenic Experiments

Maurio B. Grando, Christian R. Boutan, Jihee Yang

https://doi.org/10.48550/arXiv.2209.04008

Using a circulator as a magnetic field sensor

Using a circulator as a temperature sensor

Identifying environmentally induced calibration changes in cryogenic RF axion detector systems using Deep Neural Networks

- Andrew Engel,^{1, 2, 3} Thomas Braine,¹ and Christian Boutan¹ ¹⁾Pacific Northwest National Laboratory, Richland, WA, USA ²⁾Department of Physics, Ohio State University, Columbus, OH, USA ³⁾Center for Cosmology and AstroParticle Physics (CCAPP)
- , Ohio State University, Columbus, OH, USA

Temperature sensors as Labels to NN:

- 50 k plate •
- 4 k plate
- Still plate
- MXC plate

Example 3: auto-tuning quantum amplifiers

Low Temp Environment

Quantum noise limited amplifiers are finicky

- Quantum noise limited amplifiers come in a few varieties and are critical for precision physics experiments and quantum computing
- Very sensitive to environmental changes
- Often behave differently every cooldown
- Notoriously difficult to tune up
- Inputs:
 - Bias current
 - Pump power
 - Pump frequency

ADMX's primary source of dead time

39% Data taking 11% Others 27% JPA SNRi measurements

Within data-taking loop, AMDX spends > 40% performing JPA related measurements

Conventional approach

Many hardware configurations

Multiple types of measurements

RL for the Auto-tuning of nonlinear superconducting devices

- Let's have an RL agent decide what
 - measurements to make
 - order to make them in
- Reward agent on high gain, low noise, stability etc
- May find unexpected operating modalities

Multiple types of measurements

Preliminary: RL agent training on offline data

Low temperature data taken recently

Conclusions

- The axion is exciting! A discovery could simultaneously solve two major problems in physics.
- There are challenges on the horizon and detector complexity will likely make operations impossible
- We aim to offset this anticipated increase in detector complexity by leveraging a variety of AI/ML methods to
 - Identify hidden features in the data for in-situ characterization
 - Learn more from fewer measurements
 - Speed up tune-up procedures
- Stay tuned!

Thank you!

