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boosted decision trees in FPGA for high energy physics
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ABsTRACT: We present a novel implementation of classification using the machine learning/artificial
intelligence method called boosted decision trees (BDT) on field programmable gate arrays (FPGA).
The firmware i ion of binary

requiring 100 training trees with a maximum
depth of 4 using four input variables gives a latency value of about 10 ns, independent of the clock
speed from 100 to 320 MHz in our setup. The low timing values are achieved by restructuring the
BDT layout and reconfiguring its parameters. The FPGA resource utilization is also kept low at
a range from 0.01% to 0.2% in our setup. A software package called FwXuacHTNA achieves this
implementation. Our intended user is an expert in custom electronics-based trigger systems in high
energy physics experiments or anyone that needs decisions at the lowest latency values for real-time
event classification. Two problems from high energy physics are considered, in the separation of
electrons vs. photons and in the selection of vector boson fusion-produced Higgs bosons vs. the
rejection of the multijet processes.

Keyworbps: Digital electronic circuits; Trigger algorithms; Trigger concepts and systems (hardware
and software); Data reduction methods
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AesTrRACT: We present a novel application of the machine learning / artificial intelligence method
called boosted decision trees to estimate physical quantities on field programmable gate arrays
(FPGA). The software package FWXMaCHINA features a new architecture called parallel decision
paths that allows for deep decision trees with arbitrary number of input variables. It also features a
new optimization scheme to use different numbers of bits for each input variable, which produces op-
timal physics results and ultraefficient FPGA resource utilization. Problems in high energy physics
of proton collisions at the Large Hadron Collider (LHC) are considered. Estimation of missing
transverse momentum (Ef"**) at the first level trigger system at the High Luminosity LHC (HL-LHC)
experiments, with a simplified detector modeled by Delphes, is used to benchmark and characterize
the firmware performance. The firmware implementation with a maximum depth of up to 10 using
eight input variables of 16-bit precision gives a latency value of O(10) ns, independent of the clock
speed, and O(0.1)% of the available FPGA resources without using digital signal processors.

Kevworps: Data reduction methods; Digital electronic circuits; Trigger algorithms; Trigger con-
cepts and systems (hardware and software)
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FPGA, field programmable gate arrays. Scenarios at the Large Hadron Collider
at CERN are considered, for which the autoencoder is trained using known
physical processes of the Standard Model. The design is then deployed in real-
time trigger systems for anomaly detection of unknown physical processes,

Trigger concepts and systems (hardware and
foware)

a maximum depth of ten using eight input variables of 16-bit precision is executed with a latency of less
than 10 ns using O(0.1%) resources on Xilin UltraScale+ VUSP — approximately ten times faster and five
times smaller compared to similar designs using high level synthesis (HLS) — without the use of digital signal
processors (DSP) while eliminating the use of block RAM (BRAM). We also demonstrate a potential application
in the estimation of muon momentum for ATLAS RPC at the High-Luminosity LHC (HL-LHC).

Carlson et al.

such as the detection of rare exotic decays of the Higgs boson. The inference is
made with a latency value of 30 ns at percent-level resource usage using the
Xilinx Virtex UltraScale+ VU9P FPGA. Our method offers anomaly detection at
low latency values for edge Al users with resource constraints.

Unsupervised artificial intelligence (Al) algorithms enable signal-
agnostic searches beyond the Standard Model (BSM) physics at the
Large Hadron Collider (LHC) at CERN'. The LHC is the highest energy
proton and heavy ion collider that is designed to discover the Higgs
boson™and study i ies
undiscovered BSM physics (see, e.g.). Due to the lack of signs of
BSM in the collected data despite the plethora of searches conducted
at the LHC, dedicated studies look for rare BSM events that are even
more difficult to parse among the mountain of ordinary Standard
Model processes” . An active area of Al research in high energy phy-
sics is in using autoencoders for anomaly detection, much of which
i ipated BSM ph h

"

of the trigger system accepts between 100 kHz to 1 MHZ of collisions,
discarding the remaining =99% of the collisions. Therefore, it is
essential to discovery that the FPGA-based trigger system is capable of
triggering potential BSM events. A previous study aimed at LHC data
has shown that an anomaly detector based on neural networks can be
implemented on FPGA with latency values between 80 to 1480 ns,
depending on the design”.

In this paper, we present an interpretable implementation of an
autoencoder ecision trees that make inferences in 30 ns.
As discussed previously™”, decision tree designs depend only on

the existing using neural

threshold resulting in fast and efficient FPGA imple-

focuses on identifying BSM physics in already collected data*". Such
ideas have started to produce experimental results on the analysis of

he LHC™ . A related but ,whichis
the subject of this paper, is enabling the identification of rare and
anomalous data on the real-time trigger path for more detailed
investigation offline.

“The LHC offers an environment with an abundance of data at a 40
MHz collsion rate, corresponding to the 25 ns time period between
successive collisions. The real-time trigger path of the ATLAS and CMS
experiments’*”, e.g, processes data using custom electronics using
field programmable gate arrays (FPGA) followed by software trigger

minimal reliance on digital signal processors. We train
the autoencoder on known Standard Model (SM) processes to help
trigger the rare events that may include BSM.

In scenarios for which a specific BSM model is targeted and its
dynamics are known, dedicated supervised training against the SM
sample, i.c., BSM-vs'SM classification, would likely outperform an
unsupervised approach of SM-only training. The physics scenarios
considered in this paper are examples to demonstrate that our auto-
encoder s able to trigger on BSM scenarios as anomalies without this.
prior knowledge of the BSM specifics. Nevertheless, we consider a
benchmark where our autoencoder outperforms the existing con:
ventional cut-based algorithms.

'School of Medicine, Saint Louis University, Saint Louis, MO, USA. “Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, PA, USA.
“Department of Physics and Engineering, Westmont College, Santa Barbara, CA, USA. | le-mail tmhong@pitt edu

Nature Communications | (2024)15:3527

1. Introduction

Deep architectures for machine learning (ML) methods continue to
empower high energy physics experiments, such as the ATLAS [1] and
CMS (2] experiments at the Large Hadron Collider (LHC) [3]. Various
simplified approaches for ML designs aimed for trigger systems using
feld programmable gate arrays (FPGA) exist in the literature. Many use
high level synthesis (HLS), in which C-like syntax is converted to an
register-transfer level (RTL) circuit using a translator provided by the
vendor. The HLS version of neural networks by hls4 ml [4] gave rise to
abody of work . such
as autoencoders and convolutional neural networks (5,61, on firmware.
Similarly, the HLS version of decision trees [7,8] by

(developed by us) also gave rise to an autoencoder [9]. There are also
non-HLS approaches using hardware description language (HDL) for
neural networks [10] and decision trees [11], as well as more dedicated
applications, e.g., [12,13]

In this paper, we present a more efficient implementation of deci-
sion trees with lower latency. We illustrate the physics potential using
the problem in our previous paper [14], the estimation of missing
transverse momentum (ER®) at the LHC. ET™ is an important sig-
nature of physics with minimal interaction with the detector materials,
including neutrinos and beyond the Standard Model (BSM) particles,

mater [15,16] ) [17-19]. The
High-Luminosity LHC (HL-LHC) [20] upgrades of the trigger systems
of ATLAS and CMS experiments [21,22] provide an opportunity to
implement AI/ML with deeper designs for a variety of applications.

hina
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“This paper is organized as follows. Section 2 describes the ML
training and firmware implementation on FPGA. Section 3 presents
the results, with comparisons to previous publications. Section 4 con-
cludes. Appendix A provides the technical details of the subscore adder.
Appendix B presents a study, following Ref. [23], of the estimation
of muon momentum at the HL-LHC using hits in the resistive plate
chamber (RPC) subdetector in the ATLAS level-0 trigger system.

2. Method

‘The ML training is described followed by the firmware design.
TMVA [24] is used to train a boosted decision tree (BDT) for regres-
sion with the “truth” generator-level £ as the target variable. The
setup follows our previous publication [8] and uses the data samples
described therein. These variables include four calculations of the event
Ei= using calorimeter deposits, hadronic jets, tracks from charged
particles, and four estimates of the total transverse energy deposited
in the detector.

‘The firmware design is a VHDL adaptation of the Deep Decision
Tree Engine (DDTE) originally designed in HLS (]. In Python, the
fuXnachina program writes VHDL that reflects a given ML config-
uration from the training. In Fig. 1, each tree is represented by a HDL
Thes Excine (HTE) and the forest is managed by the HDL Tres Manacen.
‘The summing of the subscores is either clocked or combinational; see
Appendix A. We note that operations are triggered by the rising edge
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Implementation of decision tree on FPGA
e B. Carlson et al., J. Instrumentation 17 (2022) PO9039
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Destination bin Decision path
B not(q;) and not(q;;)
D qi
D10 not(q;) and q;; and not(q;;)
Data out Data out il

y.


http://doi.org/10.1088/1748-0221/17/09/P09039

Classification @ estimation Hong @

Pittsburgh

Example: Hard-scatter jet vs. Pileup jet @ Er regression

e S. Roche et al., Pheno May 19, 2025: https://indico.global/event/812/contributions/126530/ (paper in preparation)

Effect of increased pileup Stephen Roche HL-LHC , o L .
~ Jets (red is anti-kt jet, magenta is sliding window)

Markedly increases the number of jet candidates! ° Study done using I\/IadGraph+DeIphes (I’]Ot ATLAS)
Makes L1 triggering on jets more difficult

Method

Draw rings around L1 sliding window
e Feed two BDT (classify + estimate), multiply result

Single Event Display: pp - jj, <u>=50

Single Event Display: pp - jj, <u>=200
e e O e MY |

Physics result
20 GeV shift in 4th jet turn-on curve (for HH — 4b)

Goal 1: Goal 2: Machine learning
- - o : inputs: 3
|dentify which sliding ~ Accurately estimate -

. . . 3 . _ had EM § 1._ .......................................................... ‘ - cgrecsabpiudscncsannann
Wllndow Jetshgrﬁ from tEe Jr?tf] trﬁe E_Tin E;, E;Ned) E; M for e T +%’WWM+WT‘T+W-H-TWT
pileup vs which are t e. Igh pileup - Ring center > 0.1 s | A g TPt
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= _ 1 L OB
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Autoencoder intro TM Hong

-xample: handwritten numbers

e feach it 0, 1, 2, 3, 4 with a sample (doesn’'t know about 9!)
/84 variables (8-bit) 1 variable (20 bit) /84 variables (8-bit)

300x Compress>

Detalls

* |nput-output distance is relatively small = good compression

y.

* |nput-output distance is relatively large = bad compression



Tree autoencoder, ™M Hong (e
NN AE "Starcoder" tree AE

- Training is a black box, done offline * Training is sampling of 1d pdfs
- Latent space is complex - Latent space is simple / interpretable

Latent v 4 .
1

Representation o b L,‘...:%

°ct % @ ®
.‘i () o}n;‘[,—gv: ......

e

---------- 78 - op 0 @ oo .

Sl Latent data is
P the bin number
Encoder Decoder ] E
From CMS Machine Learning Group X

https://cms-ml.github.io/documentation/training/autoencoders.html

X X
Distance
Processor
x %o |
Deep Decision Tree Engine, Sum
Cross-outs anomaly detector version _
: DDTE-ad, A= 24 by
are mine
Reconstruction term Full regularization term
x X1
Encoder Decoder DDTE-ad,
) . Distance
— o d Fn.,Ao
Cross_outs fork=0.. K-1 trees
are mine :
— A X DDTE-ady_4 sl
A
Find bin Bin Find bin
Standlrd Devyition location index estimate

Image from_ . .. Input data Encoder Encoded data Decoder  Intermediate Metric
https://medium.com/@rushikesh.shende/autoencoders-variational- output

autoencoders-vae-and-f3-vae-ceba9998773d

Shown conceptually as
actual encode-decode
occur simultaneously.

y.



https://cms-ml.github.io/documentation/training/autoencoders.html
https://cds.cern.ch/record/2876546/files/DP2023_079.pdf

Training developed my us

Train by samp

e Encoding: Event
Decoding returns “reconstruction point”
e Decoding: Bin = median of the training data in bin

iINg 1d projections

— which bin it's in

- 2R




AE to anomaly detector T™™ Hong

How does this detect anomalies?
e Define: Distance between input — output = anomaly score

e Non-anomaly e Anomaly
e |nput is similar to training data * |nput is not similar to training data
e Will likely land in a small bin > close o Will likely land in a large bin =
to the reconstruction point far from the reconstruction point

Y

_____..________I.L_:




Decode”

e Encode: input var = bin #
e Decode: bin # = coord.

X
: BT T P
Incoming ——ffe
v o
. 1
Encode: Decode bin 3:
NO need ’[O enCOde return bin 3 return (5,4)

e Starcode: input var = coord.

\. Encode is Decode:
return (5,4)

4



Block diagram TM Hong

Distance
Processor
X Xo
2 Deep Decision Tree Engine, Surm Data out
anomaly detector version
A=2, A
DDTE-ad, Kk
X X
DDTE-ad;
AL Distance
Fn., AO -
fork =0 .. K-1 trees Ay
Ay 4
X
X DDTE-ady sl A
A
A
Input data Encoder Encoded data Decoder Intermediate Metric
output

Shown conceptually as

actual encode-decode
occur simultaneously.




Starcoder vs. hisdml

Works wel
e Physics (plots)
e FPGA (table)

Comparison
o His4ml NN-AE

Events (unit norm.)
o
N

O
—

x10 "

Distribution

SM

Dataset:
Govorkova et al.,
Sci. Data 9
no. 118 (2022)

Method:

fwX AE V=56

No. of trees T=30

Max depth D=4

O.I.

20

[Nature Mach. Intell. 4 (2022) 154-161]

e Physics: comparable AUC

e FPGA results

30 40 50 60

Anomaly score A

SM acceptance (FPR)

TM Hong

ROC curve

DS: Govorkova et al.
Method: fwX AE V=56

0 02

04 06 08 1
Signal efficiency (TPR)

hisdml starcoder

Key take-away:

This result uses HLS trees. Using
VHDL trees projected to be smaller

by 2-5x (preliminary).

» Clock speed 200 MHz 200 MHz
Latency 80 ns 30 ns ‘
Interval 5ns 5 Nns
FF 0.5% 0.6%
LUT 3% 9%
DSP 1% 0.8%
BRAM 0.3% 0 A



https://doi.org/10.1038/s42256-022-00441-3

VAE model distillation Hong
Convert NN model with DT

e ATLAS work presented by R. Gupta today at Pheno 2025, https://indico.global/event/812/contributions/12657 1

Now at ATLAS

Train VAE for 3 muons

Data: enhanced bias 2024 data (ATL-DAQ-PUB-2016-002)

Preselection: 2MU3VF M eth Od
At most 3 leading muons (leading in p.) per event.
Train on unlabeled dimuon events

(P1» N, ¢ of muon pairs) (details in backup).

e Consider all combinations (e.g. 3 muon pairs)

e Chop-off the decoder
Regress the latent space variables

£,
”t'o” Latent space € R® + R®
€

for one event. ﬂ;
Regressed variables in the model: mass, AR, A¢ ;
VAE architecture: 6ol PT nand o
e Encoder: 4 layers T
e Latent space: 8D Gaussian (4 + 0 — 16 values)

e Decoder reconstructs inputs + predicts auxiliary

|:> Anomaly Score
e Anomaly score = average value over 8o variables in latent

Physics result
Unique B physics signal at L1

Hidden Layer € R® Hidden Layer € R®

Hidden Layer € RS Hidden Layer € R'®

Hidden Layer € RS

(Average

vars (mw, AR, |Ad|)
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space. _ ATLAS Preliminary = Enhanced Bias ]
) ) - Vs=13.6 TeV Data 2024 (no cut) -
train a BDT regression to learn the NN score {l= T oeE —— Enhanced Bias —
. . , B Data 2024 (AD > 0.0302 =
e Same 6 variables as inputs for the BDT (2 muons P n, o) i M?;Tgs(’_) ,,,‘w,,;f,%iﬁ’gx .
o . . : . 8l (no cut) =]
BDTs trained with TMVA: 200 trees, Depth of 20 0.8 MO Bs s Jfy+6 521 42K
B (AD > 0.0302) 7
T 55"""""""_"_"" """" S PR o 3 108 g ST 0.6/ Preselection: L1_2MU3 ]
T 4.5:—AFTL/:§ 6F’;el\llmmary = E 5 of PosicORsce-09 4 ?_TLAS Preliminary - B Signal retained: 9% .
= - Vs=136Te = - § s=13.6 TeV = E ined: 69 _
s 4" Enhanced Bias - E E f H\ Erharicod Blas : 0.4 Background retained: 6%
® g5F Data2024 - 5 25 | Data 2024 - - -
g 35_ T _E - 102 < 25_ / 1{ j 0.2 :L .
8 = 2 = - ; E E H
& 25 = F L rwm=o2s ] B sy
) E 3 1.5 h — 0 [ P T e
52 - E E \ E 0 8 9 10
m 1.5E good linearity: = 10 1— 1 — .
~E ®  BDT learns E - 1 . L1 Dimuon Mass [GeV]
== auto-encoder score 0.5 \L\ -
0'55 o3 Correlation coefficient: 0.926 _%:- L A PRI B M
| 2 L WL TUUPR. I S T A, vt SO 1 6 04 02 0 02 04 06 08 1
0 05 1 15 2 25 3 35 4 45 5 (BDT - VAE) / VAE score

Anomaly Detection score [x10?] - o . ‘ NB. ThiS iS ATLAS reSUIt Ilm qu0ting



https://indico.global/event/812/contributions/126571

Compression Hong (g

Pittsburgh

Jet images in multiple calorimeter layers
e Study by R. Gupta, paper in preparation

Comparison (original vs reconstructed) =} Gupta 12
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Python-based code

&) pittHongGroup / fwX - GitLab X =+ v

Availability

C O https://gitlab.com/PittHong 50% T Yy & =

L ]
] ] y GitLab  Pricing  Explore Signin | Get free trial
¢ gitlab.com/PittHongGroup/fwX e
A4 A S T
Project _
I_X fwX X. fWX e Yr Star | 0 :
arallel cuts aper 1 f viage > e tomat
¥ master v fwX History Find file Project information
E Plan >
<> AA ‘dev-rajat’ into ' ' (eee
. /> Code > Ples Mergg branch 'dev-rajat' into 'master’ 58c21dco | 3 o 29 Commits
| <>” Tae Min Hong authored 1 day ago
S a re d b e a I | re u e St @ Deploy > Zy > prenenes
I I I @ Operate > ) & 1Tag
Name Last commit Last update
G Monitor > & 1Release
Eadoc first commit 3 years ago
J Analyze >
[¥) README
3 examples removed small error 1day ago
[ CHANGELOG
B3 fwXmachina udpate 1week ago
Created
Eaimages update stuff 3 years ago reatedon
May 11, 2021
a u O e n C O e r p a p e r < .gitignore first commit 3 years ago
[ CHANGELOG update stuff 3 years ago

hardware tree paper 4 ant e

1+ README.md Update README.md 3 years ago

2 fwX.py udpate 1 week ago
2 setup.py debug setup 5 months ago
[® README.md

Machina
ﬁ

« Doxygen is available at https://fwx.pitt.edu/

W
Machina ! Ultrafast
Optimization

. A N [ VTN
Input TMVA [ Roc, User™, Custom
data ' Latency, S || XinxHLS )

2 || soktieam (\ ) |[v} /| Nadosute|  \Fimwaro)

_ { ~— . < ~—

#Dependencies

Navigate to https://www.xilinx.com/support/download.html

Click the icon of the person in the top right and create an account
Navigate back to the URL above

Select the desired version on the left. Make sure to select a version

»wnNpR

that supports your FPGA part number (most versions support all
devices)
. Scroll down a little and click on the name of the installation method.

o

For example, Windows users will click the *.exe one

. Once that is downloaded, open up the install wizard and progress
through the installation. Make sure to select "Vivado" and "Vivado
Design Edition"

. Once it is done installing, open Vivado HLS to verify it is working

o

~



http://gitlab.com/PittHongGroup/fwX

Git structure

Same structure for all methods
e gitlab.com/PittHongGroup/fwX

parallel cuts (paper 1) - tutorial today

e Available by request
parallel paths (paper 2)
autoencoder  (paper 3)

hardware tree  (paper 4)

O ® &) fwxmachina - master - PittHong' X +

< > C O B nttps://gitlab.com/PittHonc

v Why GitLab  Pricing  Explore
(1M} Q Search or go to... PittHongGroup / X fwX
Project
. ¥ master v fwX / fwXmachina
I X fwX
88 Manage ;gg,: fix deprecated method np.product and np.NINF (gone ywith 2.0)
& Plan > \'%?'f Joerg Stelzer authored 4 hours ago
</> Code
Nam Last com
® Deploy
@ Operate
Gz Monitor > 3 Xconfig fix deprecated method np.product and np.N
i Analyze % B3 Xfirmware update stuff

B style update stuff

config file

bitstream

testbench

Hong @
Pittsburgh

e Xconfig
creates model configuration

tutorial - part 1

¢ \/lvado
synthesize & testbench

tutorial - part 3



http://gitlab.com/PittHongGroup/fwX

http://d-scholarship.pitt.edu/45784/

Autoencoder Firmware Testbench Tutorial

Please download Vivado 2019.2 at the following link, if you do not currently have it:
https://www.xilinx.com/support/download/index.html/content/xilinx/en/downloadNav/vivado-design-

tools/archive.html

Before Beginning

Before beginning, please make sure that you have (and know the location of) the autoencoder IP
folder, and the VHDL testbench files:

nName vate moariea Iype Size
autoencoder8var_ip 7 File folder
tb_vhd_files 2/8 File folder

Creating New Project in Vivado

Open Vivado 2019.2 and select “create new Project.” On the following pop-up, select “next,” and
you will be prompted to name the project. Name the project as you wish and choose a location to store
it. Keep clicking next until you reach a page that prompts you to select the part/ board. For this tutorial,
we will be using the Virtex UltraScale+ VCU118 board. After you have selected your part or board,
keeping clicking “next” until you have reached the end of the setup page.

4 New Project x
Default Part
Choose a default Xilinx part or board for your project, s
Parts Boards
Reset Al Flters Update Board Repositories
Vendor: Al v Name: = All v Board Rev:  Latest v
Search: | O-veul18 v | (1 match)
Display Name Preview  Vendor File Version ~ Part
Virtex UltraScale+ VCU118 Evaluation Platform ‘ W linccom 23 xevugp-figa2104-2L-e
< >
| Te—— -

FW testbench w/ IP available

Hong

Pittsburgh

Screenshots in the document

cebult_sysck1_300 [

Default View v
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Fem 0 To o
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¢« C O 8 &2 https://www.fwx.pittedu 50% Ty Y N
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|
University of : 2
ore Iin1o Hong
Pittsburgh
FWX
Machina
T —
tart pag e Welcome!
o fwXmachina example: Anomaly
Information regarding the fwX project will be available on this page. This project is developed by members of the Hong Group in the Department of detection, Mendeley Data, doi: ° Python: Aval!ablfz upon request
Physics and Astronomy and collaborators. 10.17632/y698s5kscs.1 o IP testbench: Xilinx inputs for nanosecond anomaly
X (2023-04-11). This sample is detection with decision trees, http://d-
used in v1 of the paper draft scholarship.pitt.edu/id/eprint/44431 (2023-04-23). This
. WX | e l I Anomaly detection with end-to- [arXiv:2304.03836v1] testbench is used in v1 of the paper draft
[ n What is fwX 3 | end decision tree-based o fwXmachina example: Anomaly [arXiv:2304.03836v1]
] autoencoder in HLS detection for two photons and o IP testbench: Xilinx inputs for nanosecond anomaly
« Its full name is "firmware ex machina," a play of the phrase in Latin / Greek deus ex machina / 8¢ £k pnaviic. Since it's a mouthful to say, we two jets, Mendeley Data, doi: detection with decision trees for two photons and two
refer to it as fwX. 10.17632/44t976dyrj.1 jets, http://d-scholarship.pitt.edu/id/eprint/45784
« Itis a software package to design nanosecond implementation of machine learning / artificial intelligence algorithms on FPGA for use in high (2024-02-05). This sarnple s (2024-02-01). This testbench is used in the final version
. used in the final version of the of the paper.
energy physics.
paper.
4 | Application in ATLAS Upgrade o- o-

Some figures
Talks / Posters

« Nature Communications paper

# | Date Type: Title Venue / Link Speaker
. O e # | Figure Caption
| I I l 1| 2021-05-24 Talk: Comparisons to hls4ml's boosted decision tree | Phenomenology Symposium, Pheno 2021, T.M. Hong

lllustrative example of %coder as two visual representations of results indico
the same decision tree. Deep decision tree (left) rendered as
e s dat " Dot T G OTE) = e araotDocon P (705" the decision tree grid (center) and implemented by the parallel 2 | 2021-06-06 Poster: Nanosecond machine learning with BDT for | Virtual HEP conference on Run4@LHC, B.T. Carlson
. " decision paths (right). Two-depth deep decision tree (DDT) is high energy physics Offshell 2021, indico
127 the encoder (step 1) shown as a conventional binary split
| | I S O a e r S J— ® (2] diagram; th_e latent spacev is the bin r_wgmber (step 2); the latent 3 2021-07-13 Tfalk: Nanosecond machine learning with BDT for Diwsifnn of Particles and Fields (DPF) in the B.T Carlson
S1 iyt space data is decoded using the decision tree grid (DTG) (step high energy physics American Physical Society (APS), indico
& iS4 3); and the simultaneous encoding and decoding with xcoder
" - inar: Invisi I
=l ¥ — (star-coder) architecture (right) represented by parallel decision 4 | 2021-09-28 Seminar: Invisible Higgs decays & trigger challenges University of Geneva, Switzerland .M. Hong
Y =@ Phr 5208 paths (PDP) of Ref. [79]. The DTG is the visualization as a grid of atthe LHC

. - % o R e partitions in V-dimensional space. In this example, the input x =
I I I S O a S (55, 70) yields the output “x = (27, 25) without needing to 18th Int'l Conf. on Accelerator and Large
5 | 2021-10-18 | Talk: Presentation of fwX BDT S.T. Roche

explicitly produce the latent layer. Experimental Physics Control Systems,
ICALEPCS 2021, indico

Demonstration of decision tree-based autoencoder and a

demonstration of data transmission / anomaly detection using Seminar: Machine learning in real-time triggers at Department of Physics, University of
. the MNIST dataset, which is a set of images of handwritten 6 | 2021-10-22 | the LHC: A discussion on Machine learning, Boosted P y ’ T.M. Hong
. i . Tennessee, Knoxville

numbers converted to 28 x 28 pixels, or 784-length input vector decision trees, Real-time trigger, and ML on FPGA
V=784, with N = 8 bits per pixel. The ML training is done on 15k

e = OwsutrrO images of handwritten 0 to 4, but not 5 to 9, on one tree T=1 IEEE Nuclear Science Symposium and

"";m .l at a maximum depth of D = 20. The output is a 784-length 7 | 2021-10-20 | Poster: Presentation of fwX BDT Medical Imaging Conference, 2021 IEEE NSS S.T.Racz
S2 4 \ - # J ‘1 vector with 8 bits per pixel. The data compression- MIC, link

A decompression factor, the ratio of input-output bits to the

.
w  Known v e crantouput  Fob ‘ i . P = . . p . ; g .
| I I I ks tO te St b e r ] ( : ' ] e S e Known gt e p——— " latent space dimensions, V- N/(T - D) = 784 - 8/(1 - 20), is about 8 | 20211208 Talk: Comparisons of fwX's BDT to hls4ml's neural PIKIMO 11, indico M. Hong
300. The figure shows two input-output pairs as examples. The network results

output of 4 resembles 4 while the output of 6 is garbled. The

former yields a smaller input-output distance relative to the 9 | 2023-05-12 Talk: Decision trge autoencoder anomaly detection | Phenomenology Symposium, Pheno 2023, ST. Roche
latter case. The input data shown here are not part of the on FPGA at L1 triggers indico
training sample. K i

10 | 2023-09-25 Talk: fwXmachina part 1: Classification with boosted | Fast Machine Learning for Science Workshop .M. Hong

decision trees on FPGA for L1 trigger 2023, indico
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Slides

Run Simulation

indico.cern.ch/event/1405026/contributions/6103378/

Videos on synthesizing & test bench

¥4 Generate Bitstre:

indico.cern.ch/event/1405026/contributions/6103386/
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