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b11b10

b2qii: xb > 23

qiii: xa > 40b0

Decision tree structure

Destination bin Depth i Depth ii Depth iii Decision path Path #

b0 not(qi) not(qii) N/A not(qi) and not(qii) 0

b2 qi N/A N/A qi 1

b10 not(qi) qii not(qiii) not(qi) and qii and not(qiii) 2

b11 not(qi) qii qiii not(qi) and qii and qiii 3

Worked example
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2d plane: xa vs. xb
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40

Decision paths

Path 0

Path 1
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Path 3

qi: xa > 55

Figure 2: Deep decision tree with parallel decision path (PDP) structure. An example is shown in the leftmost
diagram for a decision tree using two variables (G0, G1) with a depth of 3. The equivalent representation in
the two-dimensional G0 vs. G1 space is given in the middle. The PDP perspective is given on the right. The
table at the bottom lists the logical comparisons per PDP.
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Figure 3: Average number of bins per tree h#18=i vs. maximum tree depth ⇡. The right vertical axis shows
the h#bini fraction with respect to the exponential scaling of 2⇡ to compare the points at ⇡ = 10.
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Nanosecond anomaly detection with
decision trees and real-time application to
exotic Higgs decays

S. T. Roche 1,2, Q. Bayer 2, B. T. Carlson 2,3, W. C. Ouligian2, P. Serhiayenka2,
J. Stelzer 2 & T. M. Hong 2

We present an interpretable implementation of the autoencoding algorithm,
used as an anomaly detector, built with a forest of deep decision trees on
FPGA, field programmable gate arrays. Scenarios at the Large Hadron Collider
at CERN are considered, for which the autoencoder is trained using known
physical processes of the StandardModel. The design is then deployed in real-
time trigger systems for anomaly detection of unknown physical processes,
such as the detection of rare exotic decays of theHiggs boson. The inference is
made with a latency value of 30 ns at percent-level resource usage using the
Xilinx Virtex UltraScale+ VU9P FPGA. Our method offers anomaly detection at
low latency values for edge AI users with resource constraints.

Unsupervised artificial intelligence (AI) algorithms enable signal-
agnostic searches beyond the Standard Model (BSM) physics at the
Large Hadron Collider (LHC) at CERN1. The LHC is the highest energy
proton and heavy ion collider that is designed to discover the Higgs
boson2,3 and study its properties4,5 aswell as to probe the unknown and
undiscovered BSM physics (see, e.g.,6–8). Due to the lack of signs of
BSM in the collected data despite the plethora of searches conducted
at the LHC, dedicated studies look for rare BSM events that are even
more difficult to parse among the mountain of ordinary Standard
Model processes9–13. An active area of AI research in high energy phy-
sics is in using autoencoders for anomaly detection, much of which
providesmethods to find rare andunanticipatedBSMphysics.Muchof
the existing literature, mostly using neural network-based approaches,
focuses on identifying BSM physics in already collected data14–70. Such
ideas have started to produce experimental results on the analysis of
data collected at the LHC71–74. A related but separate endeavor,which is
the subject of this paper, is enabling the identification of rare and
anomalous data on the real-time trigger path for more detailed
investigation offline.

The LHC offers an environment with an abundance of data at a 40
MHz collision rate, corresponding to the 25 ns time period between
successive collisions. The real-time trigger path of the ATLAS and CMS
experiments75,76, e.g., processes data using custom electronics using
field programmable gate arrays (FPGA) followed by software trigger

algorithms executedona computing farm.Thefirst-level FPGAportion
of the trigger system accepts between 100 kHz to 1 MHz of collisions,
discarding the remaining ≈ 99% of the collisions. Therefore, it is
essential to discovery that the FPGA-based trigger system is capable of
triggering potential BSM events. A previous study aimed at LHC data
has shown that an anomaly detector based on neural networks can be
implemented on FPGA with latency values between 80 to 1480 ns,
depending on the design77.

In this paper, we present an interpretable implementation of an
autoencoder using deep decision trees that make inferences in 30 ns.
As discussed previously78,79, decision tree designs depend only on
threshold comparisons resulting in fast and efficient FPGA imple-
mentation with minimal reliance on digital signal processors. We train
the autoencoder on known Standard Model (SM) processes to help
trigger the rare events that may include BSM.

In scenarios for which a specific BSM model is targeted and its
dynamics are known, dedicated supervised training against the SM
sample, i.e., BSM-vs-SM classification, would likely outperform an
unsupervised approach of SM-only training. The physics scenarios
considered in this paper are examples to demonstrate that our auto-
encoder is able to trigger on BSM scenarios as anomalies without this
prior knowledge of the BSM specifics. Nevertheless, we consider a
benchmark where our autoencoder outperforms the existing con-
ventional cut-based algorithms.
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A�������: We present a novel application of the machine learning / artificial intelligence method
called boosted decision trees to estimate physical quantities on field programmable gate arrays
(FPGA). The software package fwXmachina features a new architecture called parallel decision
paths that allows for deep decision trees with arbitrary number of input variables. It also features a
new optimization scheme to use di�erent numbers of bits for each input variable, which produces op-
timal physics results and ultrae�cient FPGA resource utilization. Problems in high energy physics
of proton collisions at the Large Hadron Collider (LHC) are considered. Estimation of missing
transverse momentum (⇢miss

T ) at the first level trigger system at the High Luminosity LHC (HL-LHC)
experiments, with a simplified detector modeled by Delphes, is used to benchmark and characterize
the firmware performance. The firmware implementation with a maximum depth of up to 10 using
eight input variables of 16-bit precision gives a latency value of O(10) ns, independent of the clock
speed, and O(0.1)% of the available FPGA resources without using digital signal processors.
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Abstract

We present a generic parallel implementation of the decision tree-based machine learning (ML)
method in hardware description language (HDL) on field programmable gate arrays (FPGA).
A regression problem in high energy physics at the Large Hadron Collider is considered: the
estimation of the magnitude of missing transverse momentum using boosted decision trees
(BDT). A forest of twenty decision trees each with a maximum depth of 10 using eight input
variables of 16-bit precision is executed with a latency of about 10 ns using O(0.1%) resources
on Xilinx UltraScale+ VU9P—approximately ten times faster and five times smaller compared
to similar designs using high level synthesis (HLS)—without the use of digital signal processors
(DSP) while eliminating the use of block RAM (BRAM). We also demonstrate a potential
application in the estimation of muon momentum for ATLAS RPC at HL-LHC.
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Nanosecond anomaly detection with
decision trees and real-time application to
exotic Higgs decays

S. T. Roche 1,2, Q. Bayer 2, B. T. Carlson 2,3, W. C. Ouligian2, P. Serhiayenka2,
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We present an interpretable implementation of the autoencoding algorithm,
used as an anomaly detector, built with a forest of deep decision trees on
FPGA, field programmable gate arrays. Scenarios at the Large Hadron Collider
at CERN are considered, for which the autoencoder is trained using known
physical processes of the StandardModel. The design is then deployed in real-
time trigger systems for anomaly detection of unknown physical processes,
such as the detection of rare exotic decays of theHiggs boson. The inference is
made with a latency value of 30 ns at percent-level resource usage using the
Xilinx Virtex UltraScale+ VU9P FPGA. Our method offers anomaly detection at
low latency values for edge AI users with resource constraints.

Unsupervised artificial intelligence (AI) algorithms enable signal-
agnostic searches beyond the Standard Model (BSM) physics at the
Large Hadron Collider (LHC) at CERN1. The LHC is the highest energy
proton and heavy ion collider that is designed to discover the Higgs
boson2,3 and study its properties4,5 aswell as to probe the unknown and
undiscovered BSM physics (see, e.g.,6–8). Due to the lack of signs of
BSM in the collected data despite the plethora of searches conducted
at the LHC, dedicated studies look for rare BSM events that are even
more difficult to parse among the mountain of ordinary Standard
Model processes9–13. An active area of AI research in high energy phy-
sics is in using autoencoders for anomaly detection, much of which
providesmethods to find rare andunanticipatedBSMphysics.Muchof
the existing literature, mostly using neural network-based approaches,
focuses on identifying BSM physics in already collected data14–70. Such
ideas have started to produce experimental results on the analysis of
data collected at the LHC71–74. A related but separate endeavor,which is
the subject of this paper, is enabling the identification of rare and
anomalous data on the real-time trigger path for more detailed
investigation offline.

The LHC offers an environment with an abundance of data at a 40
MHz collision rate, corresponding to the 25 ns time period between
successive collisions. The real-time trigger path of the ATLAS and CMS
experiments75,76, e.g., processes data using custom electronics using
field programmable gate arrays (FPGA) followed by software trigger

algorithms executedona computing farm.Thefirst-level FPGAportion
of the trigger system accepts between 100 kHz to 1 MHz of collisions,
discarding the remaining ≈ 99% of the collisions. Therefore, it is
essential to discovery that the FPGA-based trigger system is capable of
triggering potential BSM events. A previous study aimed at LHC data
has shown that an anomaly detector based on neural networks can be
implemented on FPGA with latency values between 80 to 1480 ns,
depending on the design77.

In this paper, we present an interpretable implementation of an
autoencoder using deep decision trees that make inferences in 30 ns.
As discussed previously78,79, decision tree designs depend only on
threshold comparisons resulting in fast and efficient FPGA imple-
mentation with minimal reliance on digital signal processors. We train
the autoencoder on known Standard Model (SM) processes to help
trigger the rare events that may include BSM.

In scenarios for which a specific BSM model is targeted and its
dynamics are known, dedicated supervised training against the SM
sample, i.e., BSM-vs-SM classification, would likely outperform an
unsupervised approach of SM-only training. The physics scenarios
considered in this paper are examples to demonstrate that our auto-
encoder is able to trigger on BSM scenarios as anomalies without this
prior knowledge of the BSM specifics. Nevertheless, we consider a
benchmark where our autoencoder outperforms the existing con-
ventional cut-based algorithms.
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called boosted decision trees to estimate physical quantities on field programmable gate arrays
(FPGA). The software package fwXmachina features a new architecture called parallel decision
paths that allows for deep decision trees with arbitrary number of input variables. It also features a
new optimization scheme to use di�erent numbers of bits for each input variable, which produces op-
timal physics results and ultrae�cient FPGA resource utilization. Problems in high energy physics
of proton collisions at the Large Hadron Collider (LHC) are considered. Estimation of missing
transverse momentum (⇢miss

T ) at the first level trigger system at the High Luminosity LHC (HL-LHC)
experiments, with a simplified detector modeled by Delphes, is used to benchmark and characterize
the firmware performance. The firmware implementation with a maximum depth of up to 10 using
eight input variables of 16-bit precision gives a latency value of O(10) ns, independent of the clock
speed, and O(0.1)% of the available FPGA resources without using digital signal processors.
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depth of 4 using four input variables gives a latency value of about 10 ns, independent of the clock
speed from 100 to 320 MHz in our setup. The low timing values are achieved by restructuring the
BDT layout and reconfiguring its parameters. The FPGA resource utilization is also kept low at
a range from 0.01% to 0.2% in our setup. A software package called fwXmachina achieves this
implementation. Our intended user is an expert in custom electronics-based trigger systems in high
energy physics experiments or anyone that needs decisions at the lowest latency values for real-time
event classification. Two problems from high energy physics are considered, in the separation of
electrons vs. photons and in the selection of vector boson fusion-produced Higgs bosons vs. the
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Nanosecond hardware regression trees in FPGA at the LHC
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A B S T R A C T

We present a generic parallel implementation of the decision tree-based machine learning (ML) method in
hardware description language (HDL) on field programmable gate arrays (FPGA). A regression problem in
high energy physics at the Large Hadron Collider (LHC) is considered: the estimation of the magnitude of
missing transverse momentum using boosted decision trees (BDT). A forest of twenty decision trees each with
a maximum depth of ten using eight input variables of 16-bit precision is executed with a latency of less
than 10 ns using O(0.1%) resources on Xilinx UltraScale+ VU9P — approximately ten times faster and five
times smaller compared to similar designs using high level synthesis (HLS) — without the use of digital signal
processors (DSP) while eliminating the use of block RAM (BRAM). We also demonstrate a potential application
in the estimation of muon momentum for ATLAS RPC at the High-Luminosity LHC (HL-LHC).

1. Introduction

Deep architectures for machine learning (ML) methods continue to
empower high energy physics experiments, such as the ATLAS [1] and
CMS [2] experiments at the Large Hadron Collider (LHC) [3]. Various
simplified approaches for ML designs aimed for trigger systems using
field programmable gate arrays (FPGA) exist in the literature. Many use
high level synthesis (HLS), in which C-like syntax is converted to an
register-transfer level (RTL) circuit using a translator provided by the
vendor. The HLS version of neural networks by hls4 ml [4] gave rise to
a body of work in the implementation of artificial intelligence (AI), such
as autoencoders and convolutional neural networks [5,6], on firmware.
Similarly, the HLS version of decision trees [7,8] by fwXmachina
(developed by us) also gave rise to an autoencoder [9]. There are also
non-HLS approaches using hardware description language (HDL) for
neural networks [10] and decision trees [11], as well as more dedicated
applications, e.g., [12,13].

In this paper, we present a more efficient implementation of deci-
sion trees with lower latency. We illustrate the physics potential using
the problem in our previous paper [14], the estimation of missing
transverse momentum (Emiss

T ) at the LHC. E
miss
T is an important sig-

nature of physics with minimal interaction with the detector materials,
including neutrinos and beyond the Standard Model (BSM) particles,
including dark matter [15,16] and supersymmetry (SUSY) [17–19]. The
High-Luminosity LHC (HL-LHC) [20] upgrades of the trigger systems
of ATLAS and CMS experiments [21,22] provide an opportunity to
implement AI/ML with deeper designs for a variety of applications.

< Corresponding author.
E-mail address: tmhong@pitt.edu (T.M. Hong).

This paper is organized as follows. Section 2 describes the ML
training and firmware implementation on FPGA. Section 3 presents
the results, with comparisons to previous publications. Section 4 con-
cludes. Appendix A provides the technical details of the subscore adder.
Appendix B presents a study, following Ref. [23], of the estimation
of muon momentum at the HL-LHC using hits in the resistive plate
chamber (RPC) subdetector in the ATLAS level-0 trigger system.

2. Method

The ML training is described followed by the firmware design.
TMVA [24] is used to train a boosted decision tree (BDT) for regres-
sion with the ‘‘truth’’ generator-level Emiss

T as the target variable. The
setup follows our previous publication [8] and uses the data samples
described therein. These variables include four calculations of the event
E

miss
T using calorimeter deposits, hadronic jets, tracks from charged

particles, and four estimates of the total transverse energy deposited
in the detector.

The firmware design is a VHDL adaptation of the Deep Decision
Tree Engine (DDTE) originally designed in HLS [8]. In Python, the
fwXmachina program writes VHDL that reflects a given ML config-
uration from the training. In Fig. 1, each tree is represented by a HDL
Tree Engine (HTE) and the forest is managed by the HDL Tree Manager.
The summing of the subscores is either clocked or combinational; see
Appendix A. We note that operations are triggered by the rising edge
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b11b10

b2qii: xb > 23

qiii: xa > 40b0

Decision tree structure

Destination bin Depth i Depth ii Depth iii Decision path Path #

b0 not(qi) not(qii) N/A not(qi) and not(qii) 0

b2 qi N/A N/A qi 1

b10 not(qi) qii not(qiii) not(qi) and qii and not(qiii) 2

b11 not(qi) qii qiii not(qi) and qii and qiii 3

Worked example
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Figure 2: Deep decision tree with parallel decision path (PDP) structure. An example is shown in the leftmost
diagram for a decision tree using two variables (G0, G1) with a depth of 3. The equivalent representation in
the two-dimensional G0 vs. G1 space is given in the middle. The PDP perspective is given on the right. The
table at the bottom lists the logical comparisons per PDP.
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Figure 3: Average number of bins per tree h#18=i vs. maximum tree depth ⇡. The right vertical axis shows
the h#bini fraction with respect to the exponential scaling of 2⇡ to compare the points at ⇡ = 10.
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Markedly increases the number of jet candidates!

Makes L1 triggering on jets more difficult

Effect of increased pileup

Example: Hard-scatter jet vs. Pileup jet ⨁ ET regression

• S. Roche et al., Pheno May 19, 2025: https://indico.global/event/812/contributions/126530/ (paper in preparation)

HL-LHC

• Jets (red is anti-kt jet, magenta is sliding window)

• Study done using MadGraph+Delphes (not ATLAS)


Method

• Draw rings around L1 sliding window

• Feed two BDT (classify + estimate), multiply result


Physics result

• 20 GeV shift in 4th jet turn-on curve (for HH → 4b)

Stephen Roche

9

Goal 1:

Identify which sliding 
window jets are from 
pileup vs which are 
from hard scatter

Using ML to improve performance
Goal 2:

Accurately estimate 
the jet’s true E_T in 
the high pileup 
environment

Machine learning 
inputs:

- ET, ET 
had, ET 

EM for

- Ring center  0.1

- Ring center  0.4

- 0.1  0.2

- 0.2  0.4

- 0.4  0.6

- Ring Center Eta

Machine learning 
model:

30 trees, maximum 
depth 8

Stephen Roche

22

At <>=200, this procedure improves a sample L1 4j trigger over 
simple ET sum

Jet trigger

NB. This is a pheno paper, not an ATLAS result

https://indico.global/event/812/contributions/126530/


FPGA results

demux

One Hot Decision Path (OHDP)

and
x0

x1

xV-1

>
αlow

<
αhigh

x0

x0

>
βlow

<
βhigh

x1

x1

>
γlow

<
γhigh

xV-1

xV-1

...

Not
explicitly used,
may be used

indirectly

LUT / BRAM

ODPx

for v = 0 .. V-1 input variables

One Hot Decision Path
OHDP0

x

...

x

x

Deep Decision Tree Engine (DDTE)

OHDP1

OHDPB-1

x̂

for b = 0 .. B-1 terminal bins

x

O0

O1

OB-1

 in0

 in1

 inB-1

...

out

LUT
active input array
 → output array

Part of the
encoding design

bus tap

Part of the
decoding design

Data 
out

Data 
in

• Parallel paths implementation in VHDL, Serhiayenka et al., NIM A 1072 (2025) 170209
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DDTE-ad1

Distance
Processor

Sum

Δ = Σk Δk

x x̂0

x̂1

x̂K-1

x

x

Encoder DecoderEncoded data

Shown conceptually as
actual encode-decode
occur simultaneously.

Intermediate
output

Input data

ΔK-1

Δ1

Distance
Fn., Δ0

x

DDTE-adK-1

Metric

Find bin
location

Find bin
estimate

Bin
index

Deep Decision Tree Engine,
anomaly detector version

DDTE-ad0

x

...

for k = 0 .. K-1 trees Stephen Roche

27

Designed for L1 implementation

- Requires firmware, strict timing and latency requirements

- Use fwX package to implement regression & classification 
BDTs on FPGA 

- Results for regression below (classification uses same inputs 
and forest configuration)

Firmware implementation

Feature Value

Latency 2 clock ticks (50 ns) 

Interval 1 clock tick  (25 ns)

Flip-flops (FF) 10399 (0.44%)

Look-up tables (LUT) 13274 (1.1%)

Digital signal processors (DSPs) 0

Block-RAM (BRAM) 9 (0.36%)

Ultra-RAM (URAM) 0

Using Xilinx Ultrascale+ VU9P (vcu118) 
at 200 MHz



Details

• Input-output distance is relatively small = good compression 

• Input-output distance is relatively large = bad compression 

              TM HongAutoencoder intro

7

784 variables (8-bit) 784 variables (8-bit)

300x compression

1 variable (20 bit)

Example: handwritten numbers

• Teach it 0, 1, 2, 3, 4 with a sample (doesn’t know about 9!)



              TM HongTree autoencoder,

8

From CMS Machine Learning Group
https://cms-ml.github.io/documentation/training/autoencoders.html 

NN AE "Starcoder" tree AE 
• Training is a black box, done offline
• Latent space is complex

• Training is sampling of 1d pdfs
• Latent space is simple / interpretable

• FPGA version simplified for anomaly at CMS • FPGA version can optionally skip latent sp.
From CMS Public Note, DP-2023/079
https://cds.cern.ch/record/2876546/files/DP2023_079.pdf

Anomaly Detection Neural Network 

4

The AXOL1TL anomaly detection uses a Variational Autoencoder (VAE). A dense feed-forward neural 
network reads in (pT, η, ϕ) hardware inputs of 19 L1 objects. The encoder network computes a latent 
space vector of Gaussian probability distributions, N(!8, "8). The decoder network reconstructs the 
original input from the latent space. 
 
 
  Loss = (1 − !) " − "̂

2
+ !

1
2 (#2 + $2 − 1  − log$2)

Reconstruction term Full regularization term

Equation: VAE loss function. The reconstruction term is computed from the difference between the 
input (x) and output (x̂) of the VAE. The second, full regularization term, is the Kullback–Leibler 
divergence (KL-divergence) between the latent space distribution and a standard normal distribution 
with mean μ and standard deviation ". The parameter β can be tuned to balance the reconstruction 
performance with more efficient latent space encoding. At inference time, the loss is approximated 
by the mean-squared term Σ!i

2 of the KL-divergence for latency considerations. This approximation 
has no impact on performance.

Image from
https://medium.com/@rushikesh.shende/autoencoders-variational-
autoencoders-vae-and-β-vae-ceba9998773d

Latent data is 
the bin number

Cross-outs 
are mine

Cross-outs 
are mine
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Encoder DecoderEncoded data
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actual encode-decode
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output
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Metric
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Find bin
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Bin
index

Deep Decision Tree Engine,
anomaly detector version

DDTE-ad0

x

...

for k = 0 .. K-1 trees

What?!

https://cms-ml.github.io/documentation/training/autoencoders.html
https://cds.cern.ch/record/2876546/files/DP2023_079.pdf


              TM HongTraining developed my us
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X

Y

Train by sampling 1d projections

• Encoding: Event → which bin it’s in


Decoding returns “reconstruction point”

• Decoding: Bin → median of the training data in bin



              TM HongAE to anomaly detector
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How does this detect anomalies?

• Define: Distance between input – output = anomaly score


X

Y

• Non-anomaly

• Input is similar to training data

• Will likely land in a small bin  close 

to the reconstruction point

• Anomaly

• Input is not similar to training data

• Will likely land in a large bin     

far from the reconstruction point



              TM HongRealized we can skip latent space
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Bin x y

1 ... ...

2 ... ...

3 5 4

...

Incoming 
♥︎

Encode: 
return bin 3

Decode bin 3: 
return (5,4)

Encode is Decode: 
return (5,4)

(5,4)

3

No need to encode

• Starcode: input var → coord.

Decode?

• Encode: input var → bin #

• Decode: bin # → coord.
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Block diagram
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Data out

 
Data in



hls4ml starcoder
Clock speed 200 MHz 200 MHz

Latency 80 ns 30 ns
Interval 5 ns 5 ns

FF 0.5% 0.6%
LUT 3% 9%
DSP 1% 0.8%

BRAM 0.3% 0

              TM HongStarcoder vs. hls4ml
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Works well

• Physics (plots)

• FPGA (table)


Comparison

• Hls4ml NN-AE


[Nature Mach. Intell. 4 (2022) 154–161]

• Physics: comparable AUC

• FPGA results

Distribution ROC curve

Key take-away:

This result uses HLS trees. Using 
VHDL trees projected to be smaller 

by 2-5x (preliminary).

https://doi.org/10.1038/s42256-022-00441-3


VAE model distillation
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R. Gupta 8Training: Variational Autoencoder

Input variables:
6 in total. PT, η and φ
of two Level 1 Muons

● Data: enhanced bias 2024 data (ATL-DAQ-PUB-2016-002)
● Preselection: 2MU3VF
● At most 3 leading muons (leading in pT) per event.
● Train on unlabeled dimuon events 

(pT, η, ϕ of muon pairs) (details in backup).
● Consider all combinations (e.g. 3 muon pairs) 

for one event.
● Regressed variables in the model: mass, ΔR, Δϕ
● VAE architecture:

● Encoder: 4 layers 
● Latent space: 8D Gaussian (μ + σ → 16 values)
● Decoder reconstructs inputs + predicts auxiliary 
       vars (mμμ, ΔR, |Δϕ|)

● Anomaly score = average value over 8σ variables in latent 
space.

R. Gupta 9Regression: Decision Tree
● train a BDT regression to learn the NN score
● Same 6 variables as inputs for the BDT (2 muons’ PT, η, φ)
● BDTs trained with TMVA: 200 trees, Depth of 20.

good linearity: 
BDT learns 
auto-encoder score

Source: https://twiki.cern.ch/twiki/bin/view/AtlasPublic/MuonTriggerPublicResults#NoMAD_Nanosecond_Anomaly_detecti

Convert NN model with DT

• ATLAS work presented by R. Gupta today at Pheno 2025, https://indico.global/event/812/contributions/126571

Now at ATLAS

• Train VAE for 3 muons


Method

• Chop-off the decoder

• Regress the latent space variables


Physics result

• Unique B physics signal at L1

R. Gupta 11Performance: Rate & Acceptance
● working point threshold is chosen at > 0.0302

○ Configurable threshold tuned to a benchmark L1 rate 
(~2 kHz)

○ Trigger rate is tunable by adjusting the threshold

○ AD trigger retains meaningful signal: Despite 
being anomaly-based and mass-agnostic, the 
selected events still contain the full structure of the 
signal mass peak.

○ Threshold applied on latent μ-based anomaly score 
(no mass used in training).

○ Signal peak survives without using mass in 
training

○ Substantial background rejection: Only ~6% of 
data events pass the AD score cut.

○ Non-trivial signal retention: ~ 9% of Bs → J/ψ + ϕ 
signal events survive the same selection.

Model trained unsupervised, deployed in real-time: This 
confirms that an L1-compatible anomaly trigger can operate 
independently of mass windows and still capture physically 
interesting events

Source: https://twiki.cern.ch/twiki/bin/view/AtlasPublic/MuonTriggerPublicResults#NoMAD_Nanosecond_Anomaly_detecti

NB. This is ATLAS result I'm quoting

https://indico.global/event/812/contributions/126571


Compression
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R. Gupta 12Comparison (original vs reconstructed)

Latent dim = 64
Compression ~ 8x

Jet images in multiple calorimeter layers

• Study by R. Gupta, paper in preparation



Python-based code
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Availability

• gitlab.com/PittHongGroup/fwX


parallel cuts 	 (paper 1)


• Shared by email request

parallel paths 	 (paper 2)

autoencoder 	 (paper 3)

hardware tree	 (paper 4)


• Collaborators welcome

http://gitlab.com/PittHongGroup/fwX


Git structure
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• Xconfig

creates model configuration

tutorial - part 1

• Xfirmware

writes HLS or VHDL

tutorial - part 2 

• Vivado

synthesize & testbench

tutorial - part 3 

data

config file

HLS or 
VHDL

bitstream

testbench

Same structure for all methods

• gitlab.com/PittHongGroup/fwX


parallel cuts 	 (paper 1) - tutorial today


• Available by request

parallel paths 	 (paper 2)

autoencoder 	 (paper 3)

hardware tree	 (paper 4)

http://gitlab.com/PittHongGroup/fwX


FW testbench w/ IP available
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http://d-scholarship.pitt.edu/45784/ 

Autoencoder Firmware Testbench Tutorial 
 

Please download Vivado 2019.2 at the following link, if you do not currently have it: 
h>ps://www.xilinx.com/support/download/index.html/content/xilinx/en/downloadNav/vivado-design-

tools/archive.html 

 

Before Beginning 

 Before beginning, please make sure that you have (and know the locaHon of) the autoencoder IP 
folder, and the VHDL testbench files:  

Crea,ng New Project in Vivado 

 Open Vivado 2019.2 and select “create new Project.” On the following pop-up, select “next,” and 
you will be prompted to name the project. Name the project as you wish and choose a locaHon to store 
it. Keep clicking next unHl you reach a page that prompts you to select the part/ board. For this tutorial, 
we will be using the Virtex UltraScale+ VCU118 board. A[er you have selected your part or board, 
keeping clicking “next” unHl you have reached the end of the setup page.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Screenshots in the document

http://d-scholarship.pitt.edu/45784/


Start page

• fwx.pitt.edu


• Content

Links to papers

Links to talks

Links to datasets

Links to testbenches


Tutorial

• SMARTHEP Edge ML School 9/24/24


Slides

indico.cern.ch/event/1405026/contributions/6103378/


Videos on synthesizing & test bench

indico.cern.ch/event/1405026/contributions/6103386/

More info
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http://fwx.pitt.edu
https://indico.cern.ch/event/1405026/contributions/6103378/
https://indico.cern.ch/event/1405026/contributions/6103386/

