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What is Fast Machine Learning?

e Origin
o Fast Machine Learning started not long after the HLS4ML paper

o We were exploring a way to bring together the community around FastML
m Clear interests were emerging from others at the LHC

e Fast ML was put together more concretely by end of 2019
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Mission

Cultivate resources in support of the multi-disciplinary Fast ML for Science community of
domain science, machine learning (ML), and engineering researchers for the
advancement of accelerated and autonomous scientific experimentation

e Organization and administration of regular meetings, events, and conferences to
encourage the cross-pollination of ideas within the community and foster an
inclusive environment for promoting new, multi-disciplinary collaborations

e Development and support of open-source software packages, firmware tools,
hardware platforms, and benchmarks that increase productivity and accessibility to
novel research techniques

e Community engagement and collection of feedback to ensure that activities are
aligned with the needs and goals of community members
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White paper
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Communication within FastML at different tiers

e Organize regular meetings, events, and conferences to encourage the
cross-pollination of ideas within the community

o https://indico.cern.ch/cateqory/11842/

hls4ml Meeting (Type A) One Of these Every Fnday 135 events g
Co-processor Meeting (Type B) @SamM Oam/1 1 am/1 7h
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I Workshops and Conferences I Once a year
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Occasionally

Training Events and Tutorials
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What are the goals of fast machine learning

Promote interdisciplinary collaborations
physicists, computer scientists, electrical and computer engineers, software engineers
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HLS4ML(Embedded Systems) Subgroup
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Conveners: Benjamin Ramhorst (ETH-Z), Jan-Frederik Schulte (Purdue)

Two types of meetings:
o Type | : Survey the community for new ideas related to FPGA/ASIC programming

Here we often talk about community tools (not just HLS4ML)

Sometimes we hear about new scientific applications

o Type Il : Current status and planning of the HLS4ML software
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Coprocessor Subgroup

e Conveners: Yongbin Feng (TTU), Yuantang Chou (UW), Ethan Marx (MIT(

e This meeting aims to cover our work with large scale compute clusters
o How do we run Machine Learning Fast, but focusing on conventional tools and large scale
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FastML General Meeting

e Conveners: Phil, Nhan Thea
e Goal here is to present FastML(adjacent) studies that can have high impact

o  We want to highlight developments in the field that are relevant
o  Often this includes highlighting new technology and other scientific domains
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FastML benchmarking

e |arge variety of different domains and benchmarks
o Actively working to connect this with greater ML benchmarking efforts
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FastML benchmarking

Connecting FastML to the benchmarking community

o Looking towards a website that can allow us to organize benchmarking
o These elements are critical towards building robust Science drivers

MLPerf Tiny Benchmark
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Abstract

Advancements in ultra-low-power tiny machine learning (TinyML) systems
promise to unlock an entirely new class of smart applications. However, con-
tinued progress is limited by the lack of a widely pted and easily reproducibl
benchmark for these systems. To meet this need, we present MLPerf Tiny, the
first industry-standard benchmark suite for ultra-low-power tiny machine learning
systems. The benchmark suite is the collaborative effort of more than 50 orga-
nizations from industry and academia and reflects the needs of the community.
MLPerf Tiny measures the accuracy, latency, and energy of machine learning
inference to properly evaluate the tradeoffs between systems. Additionally, MLPerf
Tiny implements a modular design that enables benchmark submitters to show the
benefits of their product, regardless of where it falls on the ML deployment stack,
in a fair and reproducible manner. The suite features four benchmarks: keyword
spotting, visual wake words, image classi ion, and anomaly d i
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ABSTRACT government, and research.
Applications of machine learning (ML) are growing by the day for many unique and challenging scientific
applications. However, a crucial challenge facing these applications is their need for ultra low-latency and

on-detector ML capabilities. Given the slowdown in Moore’s law and Dennard scaling, coupled with the rapid
advances in scientific instrumentation that i resulting in growing data rates, there is a need for ultra-fast ML at the

extreme edge. Fast ML at the edge is essential for reducing and filtering scientific data in real-time to accelerate Join the Working Group
science experimentation and enable more profound insights. To accelerate real-time scientific edge ML hardware

and software solutions, we need well- 4 with enough tobs il

applicable and accessible. These benchmarks can guide the design of future edge ML hardware for scientific

applications capable of meeting the nanosecond and microsecond level latency requirements. To this end, we
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FastML Tutorials and Workshops

e We are regularly organizing tutorials and adjacent workshops

o Recently hosted a workshop at ICCAD in 2023
o Looking to organize a NeurlPS Wrokshop this year (fingers crossed)

= T

hils 4 ml Part1: Getting started
from tensorflow.keras.utils import to_categorical
from sklearn.datasets import fetch_openml

. Q_ Search x|+ K from sklearn.model_selegtiop import train_test_split
FaSt ML for suence @ ‘ L;ggrik;ﬁ;;;.zgez;ocessmg import LabelEncoder, StandardScaler
his4ml-tutorial: Tutorial notebooks
Home Submission Program Registration Committee for hisaml Dontalanlal Salias
| Part 1: Getting started
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Development Training
L ] (] (]
Fast Machine Learning for Science
Workshop
e 14

Date: November 2,2023




FastML Engaging the public
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FastML Engaging Industry

e Active collaborations with many different members of industry

o  Working with members of AMD, Nvidia, Siemens, Microsoft (preivously), Intel, Graphcore,...
o Much of our work has direct benefits with industry

e \We see industry as a key player in helping scientific goals of FastML

Scaling Inference in High Energy
Particle Physics at Fermilab Using
NVIDIA Triton Inference Server

amens simplifies development of Al accelerators for




FastML connections with the LHC

e Next Generation Trigger Project has elevated FastML at the LHC

o https://nextgentriggers.web.cern.ch/

e (Goal: establish working, cross-collaboration environment around triggering
o Aligned workpackages and integration throughout all tiers of the LHC

k2 Nex TG en About Us Activities News Resources

) )

7 :Next Generation Tr
| "

‘ Innovative‘cbmpyting technologies fordata acqui
- ] for t\hT High-Luminosity Large Hadron Collider
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FastML connections with Other Domains

e Many domains are emerging that benefit from FastML
o Astro, Plasma Physics, Neuroscience, Quantum Computing, Nuclear Physics , Health...

e We are constantly seeing interest to expand to many different dom=aine

7
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FastML Sustainability Goals

e We are working to highlight the importance of FastML to the US

La&z\gc Optimizing for efficiency
systenzl from big models to tiny models
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Conclusion and looking forward

e Towards a more sustainable and transparent community
o We would like to continue growing the community
o  Your input is essential to keeping the community vibrant and dynamic

e Discussions in the last 1.5 years about how to evolve the community
o Atits heart, we are open-source and open science driven
m  We want to continue to support the open source environment
m Looking for away to sustain FastML for a long period of time
e Possibility of support of projects and resources
o Acomplicated process but we have learned a lot about other open-source models through
this exploration —
m https://fastmachinelearning.org/pose/ — work in progress

e More Generally we are excited to hear from all of you

o Keep in touch with the community throughout the year
o  Subscribe to the e-group his-fml@cern.ch, join Slack, and attending meetings

20
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Hope to see you there!
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