Introduction to eFPGAs and Their Application to High Energy Physics

Larry Ruckman, Julia Gonski, Ryan Herbst

ML4FE Workshop 2025 University of Hawaii May 19 ~ May 21

2

What is an embedded FPGA (FPGA)?

- An IP core integrated programmable logic into an ASIC or SoC
- Provides FPGA-like flexibility within ASIC or SoC designs
 - Enables post-manufacturing updates and feature changes

- Can be used for hardware acceleration, security, AI/ML, or protocol adaptation
 - Speeds up critical functions or adapts to evolving standards

Rise of the eFPGA Open Source Frameworks

- Mature FPGA architectures are now **20+ years old**
 - Includes Spartan-3 and Virtex-II FPGAs from AMD/Xilinx
- Key patents on FPGA logic and architecture have **expired**
- Emergence of open-source eFPGA toolchains
 - Tools like **FABulous** and **OpenFPGA**
- Lower barrier to entry for startups and academia
 - Flexible, royalty-free alternatives to commercial eFPGA IP

What does a custom eFPGA architecture look like?

How to Program Open Source eFPGAs?

https://fabulous.readthedocs.io/

What can go into the custom primitive?

When does an eFPGA make sense?

Why eFPGAs for HEP?

Future energy frontier colliders (EIC, FCC, muC) will face key front-end detector challenges:

- High granularity \rightarrow Drives high data rates
- Tight spatial constraints → Requires low material usage and low power consumption
- High radiation exposure \rightarrow Demands custom, robust electronics design

Key bottleneck:

Transmitting raw data off-detector is inefficient.

 \rightarrow Solution: process data closer to the detector (at the front-end)

Role of eFPGAs with HEP:

- Enable intelligent, real-time filtering and feature extraction
- Operate at the source, before data transmission
- Essential for managing:
 - Large data volumes (from high granularity)
 - High pileup
 - Signal efficiency in complex environments

eFPGA Prototypes Efforts

- SLAC has successfully taped out two eFPGAs leveraging the open-source **FABulous** framework
 - 130nm & 28nm CMOS designs: Ο
 - 8 x 8 tiles
 - Small logical capacity (~500 LUTs)

- "Reconfigurable Pulse-Shape **Discrimination Algorithm** Implementations using eFPGAs"
 - Talk by Carl Grace (LBNL) Ο

Physics Test Case: Smart Pixel Readout

- Leverage Fermilab "smart pixel" dataset
- Train a ML model to identify high-pT tracks from pileup
- Compress and deploy the model to run on eFPGAs

Proof of Concept:

- Achieved:
 - eFPGA running a Boosted Decision Tree (BDT) classifier
 - Matched quantized software results with 100% classification accuracy
- Challenges:
 - Background rejection still limited (~few %)
 - Current implementation is small (310 of 448 LUT4AB cells)
 - $\circ \quad \textbf{Next step: Scale up logic capacity} \rightarrow requires \ \textbf{more} \\ \textbf{eFPGA tiles}$
- "Application to colliders: Smart Pixels"
 - Talk by Lindsey Gray (Fermilab)

"Smart pixels with data reduction at source"

28nm eFPGA Power Measurements

Assuming 50 MHz eFPGA clock and current design:

- EDA tool Power Estimate of eFPGA only:
 3.7 mW
- 1.8W/cm2
 - \circ = 3.7mW/0.002025cm²
- E.g. FCC-ee electronics will need extremely low power density
 - <u>Vertex O(20 mW/cm²)</u>
 - <u>Tracker O(200 mW/cm²)</u>
- Need to aggressively explore power optimization strategies in a proper front end ASIC design
 - Not just "drag and drop" open source code with EDA tool auto-router

Possible HEP Configuration: Front End

Mukim, P., CHARMS250, LIDINE 2024, CERN Indico, Aug. 2024

• Not advocating this for current DUNE or ITK designs

DUNE

• Familiar HEP front ends to help illustrate the possibilities

Possible HEP Configuration: Intermediate Stage

- Not advocating this for current ITK design
- But a intermediate architecture that people are familiar with

Future Work

Proposal Submitted:

Hardware-Aware AI for HEP (NOFO#: LAB 24-3305) "Enhancing Collider and Cryogenic Experiments with AI-Based Smart Detectors Using Reconfigurable Digital Logic and Analog Computing"

Collaborators:

• SLAC, LBNL, FNAL, University of Hawaii

Project Goals:

- Advance **eFPGA technology** for high-energy physics (HEP)
- Integrate analog compute with eFPGAs
- Develop physics-informed co-design approaches
- Perform extensive testing in extreme conditions
 - Focus on radiation and cryogenic environments
- Support open-source tools and community outreach

Summary and What's next?

- eFPGA have the potential to be a **very powerful tool** in future HEP experiments
- Initial eFPGA prototyping show promise but **require scaling and potentially power optimizations** for practical HEP applications
 - Investigation ongoing into application to Future Circular Collider/Higgs factory detectors: dual readout calorimeters, drift chamber trackers, ...
- Lots of opportunities for the HEP community
 - Optimize eFPGA for area and power efficiency (key for FCC and front-end systems)
 - Collaborate with Yosys to enhance behavioral RTL inference for new custom primitives
 - Expand knowledge and community outreach

• Work supported by the U.S. Department of Energy, under contract number DE-AC02-76SF00515.

Back Up

18

Custom 8 x 8 Tiles eFPGA Configuration

- $Area = 0.002025 \text{ cm}^2$
- LUT4AB Tile:
 - A logic cell comprising a Look-Up Table (LUT) with Ο 4 inputs and a Flip-Flop (FF)
- (DSP_top & DSP_bot) Tile Pair:
 - P_top & DSP_bot) Tile Pair: 45 Digital signal processor (DSP) primitive, providing 8x8 multipliers with 20-bit accumulators Ο
- **Total Resources:**
 - DSP: 4 Ο
 - LUT4AB: 448 Ο

	LUTFF: 194
_	

info:	Device utilisation:	11000		
info:	FABULOUS_LC:	310/	448	69%
info:	InPass4_frame_config:	32/	32	100%
info:	OutPass4_frame_config:	48/	48	100
info:	MULADD:	0/	4	0%
info:	Global_Clock:	1/	1	100%
info:	FABULOUS_MUX2:	0/	224	0%
info:	FABULOUS_MUX4:	0/	112	0%
info:	FABULOUS_MUX8:	0/	56	0%
info:	Config_access:	Θ/	16	0%

