Empowering Al Implementation on Edge SLAC Neural Network Library (SNL) for FPGA

May 19, 2025 Abhilasha Dave^{*}, Julia Gonski, Ryan Herbst, J.J Russell, Ryan Coffee, Larry Ruckman ^{*}adave@slac.stanford.edu ML4FE Workshop

Goal of SLAC Neural Network Library (SNL)

- SNL is well-suited for FPGA based HW environment requiring realtime, high-speed machine learning data processing.
- Examples include:
 - The 2D Beam Emission Spectroscopy (BES) system at DIII-D
 - Current and next-generation High Energy Particle (HEP) colliders

• Key Points

- Provides specialized set of libraries for deploying ML inference to FPGA
- Using High-Level-Synthesis (HSL): C++ programming of FPGA
- Supports Keras like API for layer definition
- **Dynamic reloading** of **weights** and **biases** to avoid resynthesis
- Supports 10s of thousands of parameters or more depending on latency requirements for the inference model
- Total end to end latency of couple of usec to couple of millisecond.
- Streaming interface between layers.
- Allow for pipeline of the data flow for a balance of latency vs frame rate
- Library approach allows for user/application specific enhancements

Buildable Neural Network for Inference Run using SNL & Future Support

SNL continuously evolving library

Al Generated image

Supported Libraries:

NN Layers:Conv2D, Conv1D, MaxPooling2D, Average Pooling 2D, Average Pooling 1D, Dense Activators: Relu, LeakyRelu, PRelu SoftMax, Linear Data Types: Fixed point, Integer, Floating Point

SLAC Technology Innovation Directorate

Edge Hardware Challenge

Usually, this Machine Learning models are oversized, and the biggest challenge is how to fit them on to FPGA/resource constrained HW?

Edge Hardware Challenge

Few Strategies to Address the Challenge

Analyzing the model capacity & overfitting along with assessing the efficiency of parameter usage

*https://images.app.goo.gl/CJwExCAN8enBA3nh7

*Al Generated Image

Pruning technique to cutdown neuron and their weight connections.

Applying a quantization techniques to reduce

outputs, weights, biases

lightweight ML model

the size of input,

Resulting into

*Al Generated Image

Algorithmic research aimed at developing lightweight, efficient ML models optimized for resource-constrained hardware, enabling faster inference with minimal accuracy loss.

STUDENT-TEACHER ML MODELS

*Al Generated Image

Knowledge Distillation: Transfer knowledge from a large 'teacher' model to a smaller 'student' model for faster, efficient inference

•

SNL Demonstration 1: SpeckleNN (LCLS – II)

•Total Parameters:~5.6Million
•Data Volume Compression: 98%
•Classification Accuracy: 94%

•Total Parameters:~56K

Data Volume Compression: 98.8%
Classification Accuracy: ~91%

https://arxiv.org/pdf/2502.19734

SLAC Technology Innovation Directorate Accepted for publication in Frontiers in High Performance Computing; currently in production

~99% Model size reduction

SpeckleNN Performance Analysis on Different HW

• SLAC is creating a user facility to allow users to:

- Develop and test their models using real edge hardware on real experiment data!
- This provides a space to review and test models, making them lean and small, enabling deployment in Edge hardware.

(groqf]	.ow) adave@	rdsrv420:~/s	peckleNN_Exa	ample\$ python	<pre>speckleNN.py</pre>
/home/a	adave/.loca	l/lib/python	3.10/site-pa	ackages/sklear	n/utils/in:
3.0 is	required f	or this vers	ion of SciPy	y (detected ve	ersion 1.21.6
from	scipy.spar	se import is:	sparse		

Building "speckleNN"
Exporting PyTorch to ONNX
✓ Optimizing ONNX file
Checking for Op support
Converting to FP16
/ Compiling model
<pre>/ Accompling model</pre>
✓ Assembling model
Woohoo! Saved to ~/.cache/groqflow/spec kleNN
Calculated Time: 0.0007321834564208984
Your build's estimated performance is:
0.0000266 seconds
37655.9 inferences per second
Performance estimation completed
(aroaflow) adaye@rdery(20:~(cneckleNN Example)
(grout tow) adavegrust v420.~/speck tenn _cxamptes
•

Inference Run Framework	Latency/image (us)	Power (W)
SNL-based FPGA SpackleNN	45.05 (5ns clock period)	9.4
GPU A100	400	73
Preliminary Groq System Time	e 732.18	~57

Challenge

What is the fair comparison of performance between different HW systems? 7

SNL Demonstration 2: ATLAS LAr Calorimeter (LHC)

Problem: certain kinds of beyond the Standard Model physics can be detected only through cell-level analysis of calorimeter showers

• Dataset developed by Columbia University ATLAS group studying the decay of light axion-like particles into overlapping LAr showers with "substructure"

Trasformer model is implemented by Columbia University ATLAS group

- Replaces self-attention with two **independent MLPs**:
 - Token-mixing MLP (across sequence length)
 - **Channel-mixing** MLP (across features)
- Alternates between **transposing token and channel dimensions** to allow information mixing.

"MLP-Mixer: An all-MLP Architecture for Vision", <u>2105.01601</u>

COLUMBIA UNIVERSITY

- No Q/K/V matrices or pairwise comparisons
- Does not require full-token
 memory access
 - for mixing each MLP processes independently across dimensions.
- No softmax or dot-product for attention, avoiding quadratic complexity.
- Achieves competitive representational power with linear compute/memory cost

> But transformers are computationally expensive... any edge application is challenging

SLAC Technology Innovation Directorate

Comparison of Transformer and MLP-Mixer

· · · · · · · · · · · · · · · · · · ·			<u>(</u>					
	MLP-Mixer	\mathbf{Y}	Transformer (Columbia)					
Accuracy on Latest Dataset	0.85 AUC		0.91 AUC	S.				
FLOPs (Floating-Point Operations) Metrics to evaluate the computational cost of models	4,100,400	. .	10,492,200					
Training Time on GPU	~3 to 7min		~1.5hrs					
Aspects								
Speed	Faster inference/tro	aining	Slower					
Efficiency	Lower power use, g edge/real-time	ood for	More costly on devices					
Accuracy	Might be lower (depends on task)		Might be higher (more capacity)					
Deployment	Easier to deploy on limited hardware		Requires more resources					
SLAC Technology Innovation Directorate	*These are very prelimir	harv results i	unpublished work (2025)	9				

MLP Mixer Architecture for Calorimeter ML

Running the MLP Mixer Architecture on Different Hardware

Future work:

•

- SNL based FPGA implementation of MLP-Mixer
- Also run the transformer model inference run on this HW

Challenge: What is the fair comparison of performance between different HW systems?

SNL Demonstration 3: ELM Prediction and Regime Classification in the 2D BES System at DIII-D

- SNL based FPGA implementation of ML inference for the 2D Beam Emission Spectroscopy (BES) system at DIII-D.
- BES system measures localized pedestal dynamics during edge-localized mode (ELM) events.
- Monitors edge turbulence dynamics across various confinement regimes (L-mode, H-mode, QH-mode, and wide pedestal QH-mode).
- Key takeaway: A single SNL based FPGA synthesized model can support multiple applications by dynamically uploading task-specific weights and biases between experiments.

*LCLS SRD AMO: Ryan Coffee

Model Quantization

• Simulated Quantization in Qkeras

Keras

QKeras

- SNL will follow similar to Qkeras quantization implimentation
- Google: https://arxiv.org/pdf/1712.05877
- Qkeras&HLS4ML: https://arxiv.org/pdf/2006.10159v1

Qkeras Wraps the actual Keras operation

Layers Implemented in QKeras

- QDense
- QConv1D
- QConv2D
- QDepthwiseConv2D
- QSeparableConv1D (depthwise + pointwise convolution, without quantizing after the depthwise step)
- QSeparableConv2D (depthwise + pointwise convolution, without quantizing after the depthwise step)
- QMobileNetSeparableConv2D (extended from MobileNet SeparableConv2D quantizes the activation values after the depthwise step)

OConv2DTranspose

https://github.com/google/qkeras/tree/ master

How the Quantizers Works?

- There are two different types of quantizers available in Qkeras
 - Auto Scale
 - Power of Two Quantizer

Auto Scale Quantizer

- Scaling is decided by:
 - Take the maximum val from the input vals and divided that number by the number of bins you want
 - $s = \frac{\max(w \text{ or } b)}{\max(w \text{ or } b)}$
 - n-1
- Quantizer:
 - Divide the input by the scale, round to nearest integer and multiply that integer number by the scale
 - $q(I) = \operatorname{int}\left(\frac{w \text{ or } b}{s}\right) * s$
- This is a problem for activation for weights okay

Power of Two Scale (PoT)

- Scaling is decided by:
 - Take the number of bits
 - $S = \frac{1}{2^{\text{bits}}}$
- Quantizer:
 - Now you can do the sift operation for division and multiplication which is cheaper for HW
 - Q(I) = Int(I >> log2(s)) << log2(s)
- This is good for activation and in general HW implementation

Challenge with Neural Network Pruning (Not Supported in SNL)

•Some AI-to-FPGA frameworks take the weights and biases and pruning portions of the network structure to save resources

- **Re-synthesis** is required for each new training set
- **Risk of the FPGA implementation failing** due to increase resources usage, timing failures or massive change in internal interconnect structure

