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| A &

https://Icls.slac.stanford.edu



Detailed beam phase space customization required for
different experiments
Cathode and RF gun

RF accelerating cavities
Focusing magnets

E ¥ Linearizing cavity ~Chicane (beam compression) Undulator (e- beam to photons)
laser y
rofile y

S £ g g Hyy ,'_:‘ photon beam to 7

250MeV  43GeV  14GeV = experiment ke
w_ A , - stations o
¥ Y .

Injector Main Accelerator Sections

7960 {

Beam exists in 6-D position-momentum phase space

Incomplete information: measure 2-D projections or reconstruct based on e

perturbations of upstream controls (e.g. tomography) = 50
g S
Dozens-to-hundreds of controllable variables and hundreds-of-thousands to @ _53 g'i .
monitor ~100| 8 -
5,000 - , Q

Increasingly dynamic control needed during experiments g & . \
. A M ,

50 100 150 200 250 o '
Time (fs)

Nonlinear, high-dimensional optimization/control problem (9

A. Marineli, et al, Nat Commun. 6, 6369 (2015) A. Marinelli IPAC 18



wide spectrum of tuning needs

laser .
orofl L3-linac "
e T §.,——> Pphoton beam to

250 MeV 4.3 GeV 14 GeV undulator 7 experiment
stations

A Marinelli, et al, Nat Commun. 6, 6369 (2015)

A. Marinelli IPAC 18
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J- Qiarg et al PRAB (2017) E-Profile (arb.)
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| Achieve new Fine control to
Rapid Peam configurations + maintain
customization unprecedented beam stability within

parameters tolerances




Relative energy (MeV)

[mm-mrad]

En,x

computationally expensive simulations

Simulation

Measurement

\.l)I \4“,""'

Il

40 "0 220 0 20 40

-20 o 0 . 20
Longitudinal position (m) Longitudinal position(z:m)

“10 hours on thousands of
cores at the NERSC”

J. Qiang, et al, PRSTAB30,
054402, 2017

14 4
12 A
104 )
reality
8l
vs.
6 . .
simulation
2l
5
(I) 25‘»0 560 750 10‘00 12‘50 15b0 17‘50 20‘00

Sample Number

many small, compounding
sources of uncertainty

fluctuations/noise
(e.g. initial beam conditions)

hidden variables / sensitivities

From the 2017-2018 run.._

Booster Q-meterbased inj. eff. measure has a calibration error.
80 100 120 140 160 180
_ time (days)

drift over time

nonlinear effects /
instabilities



Distribution Shift is a Major Challenge in Particle Accelerators

Many sources of change over time:

* Deliberate changes in beam configuration (e.g. beam charge)

Energy (MeV)

* Unintended drift in initial conditions (including in unobservable
variables), diurnal temperature/humidity changes, etc

* Time-dependent action of feedback systems

175 Measured
Predicted (Ensemble Mean)

- W AWM A Tl -

< unseen region
20000 40000 60000
Sample Number (increasing time)

80000 100000

Example: beam size prediction and uncertainty estimates under drift from a neural network
Uncertainty estimate from neural network ensemble does not cover prediction error, but does give a quadlitative metric for uncertainty

Reliable uncertainty estimates and model adaptation methods are key for putting online models to use operationally

Need fast ways of obtaining characterization data from accelerator



human operators for day-to-day control tasks...

We rely heavily on

i
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We rely heavily on operators for day-to-day control tasks...

. Local Feedback +
Model Learning Rl = Optimization
(bhysics understanding + = ==
= (:terat:ve fi ne-tunmg)

empirical behavior) ' I—
fursinies | im [ Dlagnostlc AnaIyS|s

) g’ﬁ/ﬁ".é.{ =78
(e g.beam lmages time plots)

Heuristic Control Policies ! Anomaly Detect|on
(operator intuition) + Failure Prediction
A W \ \‘ \ I' 3

250

oy
many analogous techniques in optimization, machine learning, computer vision, etc




Tuning approaches leverage different amounts of data / previous knowledge
-> suitable under different circumstances

less

assumed knowledge of machine

E—— more

( ) (
Model-Free Model-guided Global Modeling +
Optimization Optimization Feed-forward Corrections
\/ J- Kirschner
Observe performance change after a
setting adjustment Update a model at each step
> esti directi | = provide initial guess (i.e. warm start)
h e'st.:mate lrc::qlon or apply = use model to help select the next = provide insight to operators
euristics toward improvement point - modekbased control
\. J \
gradient descent Bayesian optimization ML system models +
simplex reinforcement learning inverse models
ES

General strategy: start with sample-efficient methods that do well on new systems, then build

up to more data-intensive and heavily model-informed approaches.




Many successes with Bayesian

FEL pulse energy tuning at LCLS
Az-o

1.25 4

Measured emittance (mm-mrad)
o -
w o
o o

X-ray pulse energy (m)
o - =
w o wm

o
o

0 10 20 30 40 50
Step number

Duris et. al. PRL, 2020

Beam emittance tuning for LCLS-II
injector

Beam loss rate [mA/min]

norm_emit_x
norm_emit_y

hand-tuned y
hand-tuned x

Better than hand-tuning solution

sqrt_norm_emit_xy

20 30 40

Xopt iteration

0 10

Loss rate tuning at SPEAR3

Beam Size (um)
o)
Qo
o

Sextupole tuning at FACETII
2x efficiency of acceleration in plasma

HE
: = GP w/ physics basis-function
* == GPw/ data MLl
""" Simplex 80
=== RCDS
50 100 150 200 %
Step
Hanuka et. al. PRAB, 2021 ’ wow B, % & W
eration
Tuning on monochrometer signal
Objective and Summary Statistics vs Time 08 Ongctlve Descmtlon
0.6{ * Objective 10
* Median of ECenter Dist. w
¢ Mean = Std of ECenter Dist. 07 g
0.5 W
~06 &
F &
0.4 = 0
3 205 E
) b 5
203 204
g - i S
£ | RERTRa o E
£ " "
0.2 - go3
&
0.2
0.1
0.1
0.0 | |
0 20 0 60 80 " 10i10  10i20 10130 10140

Iteration

Algorithms being implemented|/distributed in Xopt: hle_s.L[thhub&Qmjxgp_t_o_rg[XQp_t

Comprehensive review of advanced BO for particle accelerators:

BLD:SYS0:500:ENERGY (eV)

o
o
o

o
¥
o

=]
-
v

o
-
o

o
1=}
o

o
1=}
=}

Optimization (+ algorithmic improvements)

Il -14.5% 1=41.8%

Longitudinal phase space
tuning on LCLS

target

Iteration

—

t


https://github.com/xopt-org/Xopt
https://github.com/xopt-org/Xopt
https://github.com/xopt-org/Xopt
https://doi.org/10.1103/PhysRevAccelBeams.27.084801

Incorporating Constraints

We want to ensure during measurements that the beam stays on screen
—> Define a smoothly varying penalty function to act as a constraint

Measure maximum distance from the
ROI center to bounding box corners

Define a circular ROI

Constraint: p <0

Other examples: Beam losses, dark current production, emittance, etc.

See R. Roussel et al, PRAB (2024) https:/ljournals.aps.org/prabl/abstract/10. | [ 03/PhysRevAccelBeams.27.08480 |

0.6

0.44

0.2 4

0.0

—-0.2

~0.4

objective

A

0.0 0.2 04 06 0.8 1.0
X

constraint

Gardner et. al. ICML 201 4


https://journals.aps.org/prab/abstract/10.1103/PhysRevAccelBeams.27.084801

Trust Region Bayesian Optimization

- " \ e
Trust region > A/
\l/
\ _10 i 7
: ll"’ 5 T T T T T
- ,-".' T | I e —————,
LI\ 01 S ’@v ="
N\ —a0 \
\
\ -10 A .
Best observed point 3

20 —— manual’ryn by hand’ e
—— simplex ~10
_ 187 —— upper-confidence-bound . . . ; :
‘8 = 16 - —— turbo #1 | 2.0 2.5 3.0 3.5 4.0
iy I el ovcioneexesin :
s B | — ko #3 U - o
& 5 (" SERE turbo rand. sext ESRF for lifetime optimization:
12 4 | Wl ifetime
optimization turbg largeirand. sext s * 50x faster than human operator
10+ procedure turbo large rand. sext #2
. . . _ turbo (input: turbo #2) | * Achieved best lifetime yet observed at
g a A = 8 3 A ¢
ESRF time [hour:minutes] * Now used in regular operation

Trust region BO enables efficient extension to very high dimensional problems with narrow ranges of stability


https://accelconf.web.cern.ch/icalepcs2023/papers/mo3ao01.pdf

Fast-Executing, Accurate System Models

Accelerator simulations that include nonlinear and
collective effects are powerful tools, but they can
be computationally expensive

Simulation Measurement

Relative cnergy (MeV)

Ratat-ve evergy (Ve
3 o &

Relative encrgy (MeV)

Aedatre o

40 0 %

Loagitodinal posationd pm)

10 hours on

thousands of
cores at NERSC!

ML models are able to provide fast approximations to simulations
(“surrogate models”)

Meural Nobwork

Linac sim in Bmad with collective beam effects

Scan of 6 settings in simulation

L1 Phase 40 20 -251

ar

deg

L2 Phase S 0 414 deg

L3 Phase <10 10 0 deg

L1Voltage 50 110 100 percent
percent
percent

=
§
4
Ty
£
4

T4 ah Mo

H [relalres

L2Voltage 50 110 100
L3 Voltago 50 110 100

o dretatre
< ms execution speed
6 .
10” times speedup

Edelen et al. NeurlPS 2019

Long history now of using ML modeling to enable accurate predictions of accelerator system responses with unprecedented speeds



https://ml4physicalsciences.github.io/2019/files/NeurIPS_ML4PS_2019_90.pdf
https://ml4physicalsciences.github.io/2019/files/NeurIPS_ML4PS_2019_90.pdf
https://ml4physicalsciences.github.io/2019/files/NeurIPS_ML4PS_2019_90.pdf

Fast-Executing, Accurate System Models

ML models are able to provide fast approximations to simulations
(“surrogate models”)

Bringing simulation
tools from HPC
systems to
online/local
compute

Meural Nobwork

Linac sim in Bmad with collective beam effects

M4 N oW H Fo I
s (relathoe) b frwiainne)

Scan of 6 settings in simulation
I o s
L1 Phase -40 -20 -251 deg [
L2 Phase S 0 414 deg
L3Phase -10 10 0 deg
LiVoltage 50 110 100 percent
percent

Simulaticn

He [elative]

L I L

. L2Voltage 50 110 100 ™ f [relatre
Control prototyping
3 A L3Voltage SO 110 100 percent
Experiment planning < ms execution speed
Online prediction 108 times speedup
Model-based control
Edelen et al. NeurlPS 2019

Long history now of using ML modeling to enable accurate predictions of accelerator system responses with unprecedented speeds



https://ml4physicalsciences.github.io/2019/files/NeurIPS_ML4PS_2019_90.pdf
https://ml4physicalsciences.github.io/2019/files/NeurIPS_ML4PS_2019_90.pdf
https://ml4physicalsciences.github.io/2019/files/NeurIPS_ML4PS_2019_90.pdf

Combining BO with Warm Starts from Online Physics Models

Used combination of online physics simulation and Bayesian optimization algorithms to aid LCLS-II injector commissioning

7

Readings from machine via EPICS
injector settings, laser profile from VCC image

emittance and beam sizes along z

LCLS-II live sim: run on HPC and display in control room
Updates every 3-8 mins, space charge included, uses LUME-IMPACT

v

Adjust settings / ranges with insight from predictions

LY

—» Hand over to ML-based optimization for fine tuning

Xopt LCLS-Il Emittance Optimization 2022-12-04

=
=]

N = norm_emit_x «»| Model learns /7 -
norm_emit_y \
0.8 | —%— sqrt_norm_emit_xy 2475 On-the-ﬂy \ / N
= (no prior 4f /! =
0.6 . \

o
>
S0L28 (uG*m)

o
N

Bayesian optimization

Measured emittance (mm-mrad)

o
o

(=}

2 4 6 8 10 12 14 16 18

Xopt iteration R T T
l s0118 Gcm)

Best emittance yet obtained during
LCLS-Il injector commissioning

06-Dec-2022 01:53:37
OTRS HTR 330 EMIT

0.43/1.00
0.57/1.00

Y&x
Y&y

despite extensive previous hand-tuning

Physicists’ intuition aided by detailed online physics model = simple example of how a “virtual accelerator” can aid tuning

HPC enables fundamentally new capabilities in what can be realistically simulated online




In Regular Use: Injector Surrogate Model at LCLS

* ML models trained on detailed physics simulations with nonlinear collective effects
* Accurate over a wide range of settings > calibrate to match machine measurements

* Provide initial parameters for downstream model

V Emittance
y > Screens/Wires

_ OTR2

Deflector

Simulation Neural Network y Profile

N _— 01 01 e
1|+ == prototyping 02 02 @
p ' YP .g/ ML model matches , a5 5
é., OPtlleGFIOﬂ simulation under E“ E o4 %:: Simulation and ML model trained
¥ ~. It 2 s s S . . . ..
.| " algorithms interpolation s s o10 on it are qualitatively similar to
3 / 005 . .
ol N/ 07 07 ool £ iemyien) measurements under interpolation
N 01 02 03 04 05 06 07 . . .
‘ N _ . CHINC 9, N = vim (setting combinations reasonable
s 14 oo 14 o NN . distance from training set)
g2 o 0y IMPACT-T * £ 121 e 0, IMPACT-T o
E10 + 0y meas. £ 10 +  Ox meas. *
% o8] T N -§ 081 09
T g g 0.6 § 0.6 5 08
g E 0.4 za 041 E o7 s *
o 02 o 0.2 E £
-0.01 nc?.?: 0.01 -0.005 U:m:l 0.005 0.0 0.0 z o6
0as | to.lse ol é7| ol.ssF. Idokfe )0-50 044 045 046 047 048 049 050 o
. . . ntegrated Solenoid Fiel -m Integrated Solenoid Field (kG-m) + Measurement
interactive model widget * N throm sem)
and visualization tools Automatic adaptation of models and identification of sources of P LS Eeeisiie

044 04s 046 047 048 049 0s

deviation between simulations and as-built machine SOLNINZO 121 BOES (kGem)

ML models trained on simulations and measurements have enabled fast prototyping of new optimization algorithms, facilitated rapid model

adaptation under new conditions, and can directly aid online tuning and operator decision making



. . isiti
Leveraging Online Models for Py N L
Faster Optimization o ’ ‘ Ssem | o]
_1 B
Combining existing models with BO }/
-> important for scaling up to higher dimension RF Gun a2
0 B
— Laser-Heater o
Prototyped on LCLS injector 7
variables: solenoid, 2 corrector quads, 6 matching quads Lo

Spectrometer

objective: minimize emittance and matching parameter A

N Screens/Wires
P — OTR2

N,

model prediction returns to prior

Deflector
= 0 \ = == Constant Prior
. regular Bayesian \ —— NN, r=-0.1, MAE=1.5mm
£ -5 optimization l| —— NN, r= 0.4, MAE=1.2mm
£ ~24 B —— NN, r= 0.7, MAE = 0.6 mm
2-10 £ \ = NN, r= 1.0, MAE=0.0mm
\
e E \
2 —151 —— surrogate (Ground Truth) v \
: —— Model2 prior mean from 91 RN
¥ -20 L = =~
0.460 0.465 0.470 0.475 0.480 0.485 models with different S
SOL1:solenoid field scale (kG*m) . e —
fidelity

Even prior mean models with substantial inaccuracies 50

provide a boost in optimization speed



https://arxiv.org/abs/2211.09028
https://arxiv.org/abs/2403.03225

online

Example: Compensate for Upstream Drift in Fast Setup E. Cropp et l, in prepardtion

.,
Solencid
Mirror
YAG1
YAG2
UNAC
Dipole 1
Steering 3
Skew Quad 1
Skew Quad 2
Skew Quad 3
YAGE
Quade
Quad 5
™ Steering &

Steering 1
Steering 2
P
g
£
Steering 5
DRZ Afterbox
[¥AG Afterbox.

laser spot

Can work even under distribution shift

,

/
/ Y N—] Troin 0125 Train
] ifting i i = Test (2nd
drifting inputs quads for flat P ols f # Test (2nd test) T o0 est (2nd test)
Vo beam transform T . ) =
... new quad settings f o E o075
4 Gun RF read backs . 0.10 1 distribution £
(phase and amplitude) Y // shift é 0.050
(%] % i I 3
s \ 0.05 O 0.025
1S , \ Yl
UEJ Virtual Cathode Image e & s e @ S | \.‘ Pareto / )
H Statistics (spot size, intensity) oy i ﬂ’Ont 0.00 / 0.000 0 o5 60 s
5 o, e 10 b D 30 Gun Voltage (MV)
§ Other Magnet Settings Oy ~ o k_“ aser Spot o, (pixels)
£ (solenoid, steering) , pixel intensity \\ y "

L / X,y centroids \ Oy
Flat Beam Quads (3) 4 / NN start point L X :
J initial solution
T—= Multi-Objective Genetic Algorithm

* Round-to-flat beam transforms are challenging to optimize
—> 2019 study explored ability of a learned model to help

from neural
network model

fine-tuning

* Trained neural network model to predict fits to beam
image, based on archived data

hand tune

* Tested online multi-objective optimization over model (3
quad settings) given present readings of other inputs

* Used as warm start for other optimizers

Hand-tuning in seconds vs. tens of minutes

* Trained DDPG Reinforcement Learning agent and tested on Boost in convergence speed for other algorithms
machine under different conditions than training



online

Example: Compensate for Upstream Drift in Fast Setup

Can work even under distribution shift

" 5 1% i
Q -3 - ~ - m3aga  w . nwEE
2 5 ¢ 3 o oE BL
f & g E § £ 32 £ G & :3‘ B80% g & £ .
% f ”- 22 i Train ik =
- 5 Test (2nd test) = Test (2nd test)
p g 0.100
/" L o . —,-é,
7 0 T distribution g 0075
! re: . il 5 =
{ drifting inputs uads for flat shi 2 0.050
i < Al c
i b T 5 3
— eam transform . . )
* “.._ new quad settings ; 002
Gun RF read b?.cks " 0 d 0.000 — - -
(phase and amplitude) 10 15 20 25 30 50 55 60 65
“v % Laser Spot o, (pixels) Gun Voltage (MV)
4 kY
= ] \
“EJ Virtual Cathode Image Beam Statistics on Screen: | ) \ Pareto
o Statistics (spot size, intensity) 0y i front =
= (o] Initial
3 o
8 Other Magnet Settings o ~a o \__ —
£ (solenoid, steering) pixel intensity \\ y RS
L , X,y centroids \ Oy
Flat Beam Quads (3) li

- s
T—= Multi-Objective Genetic Algorithm

Round-to-flat beam (RTFB) transforms are challenging to optimize; sensitive to
lgstream drift (e.g. in laser, rf systems)
want to be able to set up RTFB quickly despite drift

2019 study explored ability of a learned model and tuning algorithms to help

NN model used as warm start for BO, extremum seeking, hand-tuning

RL agent converged faster/more smoothly than BO

* Trained DDPG Reinforcement Learning agent on NN model and tested on
machine under different conditions

= Broadly similar problem (at different scale) for LCLS/FACETFII switching between setups



Reinforcement Learning

RL can help address a different set of needs than BO:
*  Use global machine information, more historical data

e Treat as a dynamical system (many time-dependent
processes/feedbacks + drift)

*  Address demands for fast dynamic control from users

Suitability of accelerator tuning problems for RL:

* Continuous state/action spaces (similar to robotics)

* Have physics models/simulators for many problems

Objective Desciption
Outer
® ECenter .
Center

Nom.Es o
.
06 2003%E, Lo

energy

n .

XPP:MON:IPM:02:CHO (a.u.

X-y Iaser tlme %0"oi10 10120 10130 10140

BLD:SYS0:500:ENERGY (eV)

Variety of high dimensional signals for states, objectives

Many variables, multi-modal signals (images, scalars, time series)

Nagabandi, et al., 2019

target beam
parameters or images

Control
Policy

present machine
settings

new machine

settings Spectra
gun LI Gas detector
l A : XTCAV
VCC L1S L2-linac L3-linac \

BClosomev BC243Gev  14Gev  undulator

TXI RIX

0.6298

FEL Jitter: 22.2 %

® HXR  SXR PV
Points to Ave: 240
FFT Low Pass: 30
Rejection Lim: 0.1
Plot Filter Filter Zeros
v Plot data Stop

Draw Rate 798.6108

120 Hz FEL pulse intensity

Nonlinear instability = sensitive to dynamic processes
(e.g. trajectory feedback, cooling, LLRF control)
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..Lgtf;gon Lab

Reinforcement Learning

FEL is sensitive to focusing, trajectory;

Cathode and RF gun

perturbing beam/feedbacks too much RF aoceldcoing caiiies
ocusing magnets
results in beam losses n L i Linearizing cavity Chicane (beam compression) Undulator (e- beam to photons)
laser X
Using data-driven surrogates and o B A ; B3 photon beam to 7
£ .
. . . . - experiment
differentiable sims to train agents " = \ SRR SNy RNy .
Y Y
. Inject
lteratively add more data, targets and e Wl Aasoibeator Soctiens
variables: : : :
~28 focusing magnets for FEL pulse intensity
*  Photon pulse intensity (many more variables to include: steering, rf cavities, undulator, drive laser)
*  Beam phase space images, spectra
*  Focusing magnets, RF cavities, undulator 4 Predicted (NN surrogate)
= Measured ? =
E s g /
z . g /
§ 2 ik §
£ I =
2 1l g
z | J. | Z. )
| 30 35 40 45 50 3.5 6.0 6.5

0
Quad LI21:21 |

Samples (increasing time, several hours of tuning)



Efficient

Characterization with «a(x) = o(x) l—lpl(gl(x) h;) ¥(x, xp)

Bayesian Exploration

adaptive sampling

Equal lengthscales

Initial samples Exploration samples =

Enables sample-efficient
characterization of high-dimensional

spaces, while respecting both input and
output constraints

Short lengthscale
—_—

0 (X)/Omax

learning
constraints

(@)

>

2.00 ®) 2.00

R. Roussel et. al.

Nat. Comm. 2021
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Validity probability

Region not ok



Bayesian Exploration for Efficient Characterization

N\  Setting changes on 0 variables (solenoid, bucking coil, corrector quads and matching quads)

Automatic Exploration . v v
(constrained to useful values |« £ oy i -
9 3 3 - D )
of emittance and match) $ s ) N match,
J § 3 il . : 8 § 3" and
S i 3 I 3 § - NEpmpmp— beam
T images
v . %&:‘J:‘:ﬁ}ﬁ ‘:021&0%%1 S&{)\g g

FACET-II Injector

Models of Injector

[ Comprehensive ML ]

transverse phase space

* Used Bayesian Exploration for efficient high-dimensional characterization (10
variables) of emittance and match at 700pC: 2 hrs for 10 variables compared
to 5 hrs for 4 variables with N-D parameter scan (~8x faster)

« Data was used to train neural network model of injector response predicting x- RS
y beam images. GP ML model from exploration predicts emittance and match.

* Example of integrated cycle between characterization, modeling, and 7 )

optimization = now want to extend to larger system sections and new setups T

Predicted Measured

o
‘-
6 @ 00 10 W 2
P
m.
o % 10 150 20 20

https/ Iwww.nature.com/artides/s41467-021-25757-3

Use of Bayesian exploration to generate training data was sample-efficient, reduced burden of data cleaning, and resulted in a well-

balanced distribution for the training data set over the input space. ML models were immediately useful for optimization.



Goal: Full Integration of AI/ML Optimization, Data-Driven Modeling,and Physics Simulations

Working on a facility-agnostic ecosystem for online simulation, ML modeling, and Al/ML driven characterization/optimization

Will enable system-wide application to aid operations, and help drive Al/ML development (e.g. higher dimensionality, robustness,
combining algorithms efficiently)

¥ Model Prediction Displays Model Output Predictions (e.g. beam images, scalars) HPC cluster
oy il ég (e.g. SDF at SLAC,
i ) 4
U 5 £ - m NERSC at LBNL)
% N3 c3 Online Modeling
(=
° Measured Input Data Data High-fidelity Physics
(accelerator settings, NIRRT Simulations
E input diagnostics) S Cluster Compute
o = (CPU,GPU)
2 Adaptive ML Models
of 3
v}
™
= Measured Output Data Data
= (scalars, images processing T
g describing the beam) Online Optimization 2
2 and Characterization Tools 5
Y 28
" O Archives =
- Cs X Active Learning + (Measurements, == &
¢ Efficient Exploration Predictions, and RS
& |3
85 3 Models) fo
5 5t Model and ML-Based g
2 d § 2 Changes in Accelerator Settings Optimization E
ﬁ Online Control GUI | N :

Making good progress toward this vision with open-source, modular software tools
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Will work closely with UH and Prof.
Siqi Li to adapt to UH machine and

: o TP explore new algorithmic
hutpsil/github.comixopt-org/Xopt ESRF approaches!
https://github.com/xopt-org/Badger T Eiropesn Senvaion

G.“ Brookhaven

National Laboratory

Common software tools (Xopt, Badger) enables rapid transfer between facilities and algorithmic progress

Also working to link accelerator and photon beamline tuning (e.g. BlueSky integration)


https://accelconf.web.cern.ch/ipac2023/pdf/THPL164.pdf
https://github.com/xopt-org/Xopt
https://github.com/xopt-org/Xopt
https://github.com/xopt-org/Xopt
https://github.com/xopt-org/Badger
https://github.com/xopt-org/Badger
https://github.com/xopt-org/Badger

Thanks for your attention!
Any questions?

THALY = UDA

™
1

]

Thanks to the core team at SLAC
working on various AIML technologies
and infrastructure!

Thanks to many other collaborators not
shown!



Backups



Existing Capabilities and Software

Many capabilities can be readily adapted to new cases
ML-based tuning (Xopt)

Trust region

i

o Learned output constraints :

. . L Region ok Region not ok Best observed point
o) Information-based sampling (characterization) .
0 Trust region optimization Robust algorithms for commonly-encountered issues
e} Multi-objective optimization

. . n gun L1X
o Beam alignment through optics components i) T i XTCAV

4 inac inac \

© Hysteresis-aware tuning s BClosomev B243Gev  14GeV  undulator |
o Physics/ML system models to speed up ML-based tuning T | )

(Priors, expected correlations, etc)

nline Modeling Service

emittance and beam sizes along z

Graphical User Interface (Badger)

o Modular backend OTROHO4

[¢) Easy to select variables, objectives, constraints and =
algorithm @t— Open-source software for Al/ML tuning

[¢) Algorithm progress and model visualization )

- =
Xoptt

Surrogate model for BO

local, maps settings + context variables to objective function

Physlcs:isystem model priors Gaussian Process
Physics-informed kernel

lume-model

setting changes

Digital twin infrastructure

Accelerator

o) Adaptive ML model wrapping and deployment (lume-

model)
e} Physics and ML model deployment workflow using
Kubemetes and Prefect (includes S3DF deployment)
S3DF integration with control system

read-backs
to form objective

Adaptively calibrated system model
global, maps settings + context variables to beam outputs

data to update
system model

o Simple /O from batch jobs

o) Kubemetes for long-running jobs \ ’
Physics simulation Digital twin infrastructure (local and S3DF)
Integration of adaptive system models with ML-based control htps:/fgi M/X0PEOL]

httbs:/Mmww lume sdence/


https://github.com/xopt-org/
https://github.com/xopt-org/
https://github.com/xopt-org/

Further Automation

Chaining together automation of

sub-tasks and measurements

RF /laser timing scans, beamline

alignment, smart sampling for

measurements

—— Posterior mean
g 2./ Posterior confidence region

ICT1_nC
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Virtual objective
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Screen .90

/ 185

@ Training data
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Function Samples
¥ Sample Optima

100

150 200 250
K1SetPhase
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Automated determination of gun phase with BAX

Beam ' ‘

T1
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H

Automated beam alignment
- 20-30 minutes by hand

- 5 minutes with BAX
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x
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AWA:Bira3Ctrl:Ch04

—— Steering Current (A) = 0.25
—— Steering Current (A) = 0.07

Poor
steering value

Ideal steering value

-0.75 -0.50 -0.25 0.00 0.25 0.50 0.75
Quadrupole Current (A)

Smart sampling

for emittance measurements
with Bayesian Exploration

Beam bounding box penalty

R. Roussel, D. Kennedy



Deployment: Xopt and Badger

t Xopt: houses optimization algorithms

xopt:
max_evaluations: 6488 # create Xopt object.
X = Xopt(YAML)

generator:

namei ir_sga . o # take 10 steps and view data
population_size: &

population_file: test.csv for — 1in r‘ange(le):
output_path: . X.step()

evaluator: X.data
function: xopt.resources.test_functions.tnk.evaluate THNK
function_kwargs:

raise probability: .1 Many optimization algorithms
voce: - Genetic algorithms (NSGA-
e Il etc.) - Badger GUI interface
x2: [@, 3.14159] - Nelder-Mead Simplex
e e - Bayesian Optimization User interface, I/O with machine
cl: [GREATER_THAL, 0] - Bayesian Exploration
e e o - Trust-region BO
constants: {at dumy_constanty - Learned output constrained
_ BO httpsi//github.com/xopt-org/Xopt
Python interface - Interpolating BO heepsy/github.com/xopt-org/Badger

—> Has been used for online optimization at numerous facilities (LCLS/LCLS2, FACET-II, ESRF, AWA, NSLS-II, FLASHForward)

—> Working to make interoperable with other software (e.g. Gymnasium)


https://github.com/xopt-org/Xopt
https://github.com/xopt-org/Xopt
https://github.com/xopt-org/Xopt
https://github.com/xopt-org/Badger
https://github.com/xopt-org/Badger
https://github.com/xopt-org/Badger

Badger v0,9.1 (on tast-rhel7] -
Badger v0.11

History Run | BadgerOpt-2022-12-10-034039.yam|
History Run  BadgerOpt-2023-08-27-223758.yaml

Run Monitor Routine Editor

Evaluation History Plot Type X Axis | Iteration s (Var)  Ra ive .
Run Monitor Routine Editor

Evaluation History Plot Type X Axis  Iteration Y Axis (Var) Raw

/
V/ LCLS FEL pulse energy

current routine: HXR.LI26.601-901.Gain=4

0.04 to 0.14 mJ in SXR = 15% better than hand—tuningf

41hr =2 best lifetime observed ever (in record speed of |5 minutes) e i
injection efficiency improved by 5%

current routine: turbo-indipsext-8s-warm

Can specify constraints on settings and outputs (e.g. avoid dark current, beam losses, etc)
Trust-region method allows conservative high-dimensional tuning (e.g. used >100 sextupoles at ESRF)

Working on integrating global model priors = not learning from scratch each time
Working to make compatible with RL problems + gymnasium




Uncertainty Quantification / Robust Modeling

Essential for decision making under uncertainty (e.g. safe opt., intelligent sampling, virtual diagnostics)

5
unseen
~4
B regions
>3
j)]
— A
c g x < x84
w2 X XXX *— «  *x=xL. Gupta
w & x x ]
Qo x I | 97.5% Quantile
E 1 oo % T « 2.5% Quantile
X >°‘-‘ * » « X a * X " %x Measurements Available for Training
N x % X Measurements Removed from Training
° e XTX * Median
o 2000 4000 6000 8000 10000
Sample Number (Time Ordered)
10 BNN Predictions I n_dIStrIb Utlon Simulation Blur Neural Network
. . T Son 055 00s1 quontle <20 emsembte. o1 %
- ASTRA Simulation 02 0z
; - L. . 03 03
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-1.0 . = 02
Time [fs] O
: . ' . : 03
0 2000 4000 6000 8000 10000 12000 14000 16000 Eod E 04
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Time [fs] 06
Scalar parameters for the 07
LCLS-Il injector longitudinal phase space @ e o o5 ot o

(quantile regression + ensemble)
O. Convery, et al,, PRAB, 2021

(Bayesian neural network)
A. Mishra et. al., PRAB, 202 |

Current approaches

*  Ensembles

*  Gaussian Processes
*  Bayesian NNs

*  Quantile Regression

E 04

Neural network with quantile
regression predicting FEL pulse
energy at LCLS

Standard Deviation

I P N
o1 02 03X 04 05 06 o7
06 04 02 x(m)
x (m)
) Profi
Standard Deviation 1 e
01 12 f‘
02 10 \
03 ios \
i os L
i \
[
05 ¢
02
06 ~
00 e ——

or 025 030 035 040 045 050 055 060
x (m)
05 04

x{m)

03

LCLS injector transverse phase space (ensemble)



Broad Research Program at SLAC in AI/ML for Accelerators

(1) Developing new approaches for accelerator optimization/characterization and faster higher-fidelity system modeling, (2) developing
portable software tools to support end-to-end Al/ML workflows, (3) helping integrating these into regular use
Online prediction with physics sims

Efficient, safe optimization algorithms
and fast/accurate ML system models

Anomaly detection

- - - Foam - PyOM lon dev- ST=)
ground trth =1 4 i 3
’ wi [ I eomean
o [N \
§ 120 | )
2 |/
% 100 : \‘} \\ A “ -
g i/ |
& \/ \ N
= i W \"v'/ ‘4 A N / \\
@ '\'J NAA/ 3
Region ok Region not ok T T =3 % 5 Z 3 |
) - » I
Output constraints learned on-the-fly | ]
Adhere to constraints and balance multiple targets

Challenging problems: e.g. sextupole tuning

Adaptation of models and identification of sources of Combining physics and ML for better performance ML-enhanced diagnostics
deviati b imulati d buil hi Rapid analysis/virtual diagnostics
eviation between simulations and as-built machine Hysteresis-aware optimization Differentiable simulations + ML for 6D

! Shot-to-shot predictions at beam rate
e 14 ) phase space reconstruction
—— Gy NN . . — Ox II\I‘VINPACTT N BO onsys. with  Hybrid BO on s Measured Predicted
—12 o o, IMPACT-T € ° O B 101 4 hyst . ) y (mm) Px (mrad) Py (mrad) 3 =
3 x e ysteresis sys. with = "
Eo + oy meas. + Eqo + Oxmeas. ! E h;,steresis ‘ |
£ 1
é 08{ ~ 10°4 \
+ = -10
Eoe )
g = —— )
2 04 = 1014
o

B=0.1

T v T T T
045 046 047 048 049 050 044 045 046 047 048 049  0.50 0 50 100 150 200 x (mm) x (mm) y (mm)
Integrated Solenoid Field (kG-m) Integrated Solenoid Field (kG-m) Iteration

Energy [MeV]
n | l i I

Many solutions put into reusable open-source software (e.g. Xopt/Badger) demoed at many facilities TiFvis [}s]
C.Emma, etal. — PRAB21, 112802 (2018)

AI/ML enables fundamentally new capabilities across a broad range of applications = highly promising from initial demos.


https://github.com/ChristopherMayes/Xopt

riment Surrogate

Digital Twin Infrastructure =

3 B3 ?mUclow

Ecosystem of modular tools (can use independently)
v f )
: s3 « EPICS CAPV,
LUME — simulation interfaces/wrappers in Python | v o l
e | D Q EPICS
lume-model — wraps ML models, facilitates calibration s g Posgress I g
ML?FO\'V T ? T EPICS CAPVA
lume-services — online model deployment and orchestration u % H -
distgen — flexible creation of beam distributions i _’6 @ e m\
tiser MLFlow Prefect Stack (W::picedvaogén RESTA
| Other Clients
Integration with MLFlow for MLOps E [ ‘
L https://www.lume.science/ ) @< @ Kubernetes Pod

* Live physics simulations and ML models now linked between Deployment ;e:m;;;,c @) rovarmees sos
SLAC’s HPC system (S3DF) and control system \. Y J
- run with Kubernetes and Prefect :

. : : EPICS EPICS
Working with NERSC to swap between S3DF/NERSC mO Secure EPICS /O MO
resources E om om

gun L1X T l

e Beginning work on MLOps aspects that will be used in continual usl e e .

learning research BClsomev B“243Gev  14Gev  undulator

Substantial progress on deploying ML and Physics-based models and integrating with HPC in a portable way


https://www.lume.science/

Modular, Open-Source
Software Development

Community development of re-usable,
reliable, flexible software tools for
Al/ML workflows has been essential to
maximize return on investment and ensure
transferability between systems

Modularity has been key: separating
different parts of the workflow + using
shared standards

Xopt.step()

Pass sample(s) to be evaluated

Generator Evaluator
VOCS o oA - Evaluates
objective function

Defines variables, points

objectives and
constraints

Retrieve result(s), handle errors, add data to generatar, store results etc

vocCs: algorithm: ) )
name: TNK test name: bayesian_exploration
< options:

variables: Be
x1: [0, 3.14159] n_initial_samples: 5
x2: [0, 3.14159] n_steps: 25
objectives: {yl: MINIMIZE} generator_optu')nsz
constraints: bafch_?lze. 1
c1: [GREATER_THAN, 0] #sigma: [[0.01, @.0],
use_gpu: False

Different software for different tasks:
Optimization algorithm driver (e.g. Xopt)
Visual control room interface (e.g. Badger)
Simulation drivers (e.g. LUME)

Standards model descriptions, data formats,
and software interfaces (e.g. openPMD)

Online model deployment (LUME-services)

More details at https://www.lume.science/

c2: ['LESS_THAN', 0.5]

standard
data

Optimizer

—

Data Set

g . A
Simulation ﬁ‘ivl B format

Impact

ASTRA ) gen_1.json X

GPT

Bmad v root:

G . » variables: . f {

enesis generation: 1 ;
SRW » voCcs:

» error: [] 1241 items
» inputs: [] 1241 items
» outputs: [] 1241 items

Online Impact-T simulation and

live display; trivial to get running

on FACET-II using same software
tools as the LCLS injector

Modular open-source software has been essential for our work.



https://www.lume.science/

SLAC Pursuing AIML for Accelerators Very Broadly

Human-computer interaction Language modeling / multi-modal data
(e.g. electronic logbook)

. Data reduction/rejection (kHz/\MHz data streams)
Event triggering

Auton.1at.ed f:ontrol = : X ML-enhanced
+ optimization diagnostics
(provide insight at faster rate,
at higher resolution,
non-invasively)

IS

w
=
%

N

Fin:l Focus &
Experimental Area
~— standard optimizer

GP optimization

X-ray pulse energy (m))
~

=
o%)—.

%40
——— GP w/ correlations. %-20 ‘
o 10 20 30 40 50 . ) \
Step number algorithm transfer between systems S .
]
gun L1X v fw
l XTCAV 4030 20 -10 0 10 20 30 40
L1S L2-linac L3-linac \

2lum]

BClosomev B243Gev  14Gev  undulator Anomaly detection

) failure prediction
\ (plan maintenance;
alert to changes in machine;
Extract unknown alert to interesting science)

relationships + correlations
(feed into future control / design)

Digital twins + online modeling + need uncertainty quantification for all
(fast sims, differentiable sims, model calibration, model adaptation) + can incorporate physics information in all




Phase Space Reconstruction with Differentiable Tracking Simulations

Differentiable pipeline for reconstructing 6D phase space

Reconstruct 4D phase space
distribution using neural network parameterization

distribution + approx. energy

1 1 (b)
Neural Network Proposed Initial Differentiable Beam Dynamics Simulation lated Screen Images SP rea.d from S ImPI e beaml Ine
Parameterized Transform Particle Distribution d . . d I 0 -‘g
N m jagnostic an measurements  :
Samples E
X ~ N(0,1) C 5
amera
- Quadrupole El ©
Reconstructed
Initial Distribution Gradient calculation 10? _ P P -
‘/ Optimization Step /-7 )
g 7 e
. 10° — o (mm) —g (mm)  — o (mm)
_-_\?,: LOSS FUnCtIOn Screen px (mrad) — gy, (mrad) — p: (mrad)
0 500 1000 1500 2000 2500

Phase Space Projections

iteration

Confidence estimates

‘_%.é. 25 (d) k=-34m=2 k=-25m=2 k=-15m=2 k=-049m=2 k=049m2 k=15m=2 k=25m2
TE £
i s £ Experiment
(&) >
5 -
E £
- =
-25
_ 25{® 5 {m 5 1(m) — B =7 \ Ik : |
£ O — [ S =3 p— N I ~ I ~— — — -
E o~  |E{ e EY 1= N | | - - — -
> A > j \\ > /-\ > Pl / /‘\ -7 \ . / / .\' . e i
—25 1 \\ % Q. \ . 1 ] N\ 3 o 7 -1 0o 7 -1 o 7 -1 0o 7 -1 0o 37 -1 0 71 -1 0 17

ML combined with differentiable simulations opens up a new paradigm for constructing detailed phase space

diagnostics in a way that is computationally-efficient and sample-efficient



Multi-Objective Bayesian Optimization Bousset et PRAR 2021
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Experimental demo with the LCLS injector

Multi-objective Bayesian optimization enables efficient, direct examination of experimental tradeoffs


https://journals.aps.org/prab/abstract/10.1103/PhysRevAccelBeams.24.062801
https://journals.aps.org/prab/abstract/10.1103/PhysRevAccelBeams.24.062801

Addressing Magnetic Hysteresis with Differentiable Physics Models

Learn both hysteresis
properties and beam
response simultaneously
using two step modeling

Applied magnetic field
Ho, = {Ho, Hi...., Hy}

S

+ Hysteresis model

Magnetization
¢ = M(Ho,t)

Gaussian process
model

Beam measurement
Y, = f(2) +¢

R. Roussel, et. al. Phys. Rev. Lett. 128, 20480 |

Beam Charge (nC)
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=== Model
1.0
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. .
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Modeling accuracy increases

Optimization
performance increases
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Hysteresis-aware BO efficiently solves long-standing issues with accelerator optics tuning




J. Duris et al, PRL, 2020

Physics-Aware Bayesian Optimization: Correlated Kernel A Hanuko, ot ol PRAB, 202

—> Design Gaussian Process kernel from expected correlations between inputs (e.g. quadrupole magnets)

g

1.0 6 1.0 g 8 | Uncorrelated Kernel
0.8 g Correlated Kernel
0.8 4 0.8 - . I gun L1X
' XTCAV
0.6 2 0.6 e 2 l' %, LSk . 12dinac - L3-linac \
S0 g = 0.4
, 04 § ’ 04 : §so Y BClsomev B243Gev  14Gev  undulator
0.2 » 02 ; R - A
- o “x
0.0 -t ;
00 0.0 ; - FEL tuning @LCLS
il ol = 0
6-4-20 2 4 6 -6-4-20 2 4 6 et D2 ee 2 o8 e 8 10
2, 2 z, Dimensionality
(a) Ground truth (b) Isotropic kernel (c) Correlated kernel

—> Take the Hessian of model at expected optimum to get the correlations

=
[
=
wu

vertical emittance
tuning @SPEAR3

Beam loss rate [mA/min]
—
o

Beam loss rate [mA/min]
=
o

0.5 . 0.5 1 = GP w/ physics basis-function
> . == GP w/ data ML-Il
S rens No measured data needed ahead of
= 0.0 : : . . ) ]
- e - = 0 50 100 150 200 time,just a physics model of system
Quadrupole current [A] Step

Including correlation between inputs enables increased sample-efficiency and results in faster optimization

- kernel-from-Hessian enables easy computation of correlations even in high dimension



Optimization with Virtual Objectives

* Many objectives require layered scans or optimization problems
* Instead learn model from scratch online and do scan on model
* Bayesian Algorithm Execution (BAX) = 20x speedup in tuning

S-Band RF

RF Gun Matching :
Gun Solenoid A;zl;;:‘:or Quadrupoles Wire
N\
—1 t{ Loa }{ Lob ]:]ﬁ Q5
N
wrm 20m
(not drawn to scale)
(a) (b)
b B
Select virtual | —a Sample beam
Update GP model — injector config: size scans from
[SOL1, CQ1, 5Q1] posterior
d
d Iterate until optimal
. injector config (with lowest
Ql::xr]).’)enx:iit;ne emittance) is found
e Measurement
(C) CURN L Model i P
= e
2 Compute a3\ o
about optimal g ol Lol -
injector config: Qi Seeet 69
[SOL1, €Q1, SQ1, Q5]

Optimization of emittance on model posterior
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20x faster tuning than standard BO,
equivalent or better solution than
hand-tuning

a~
S
S
Relative Beam Size
Prediction Error (%

™
)
=1
S

A

{X\/ /40

60 80 100

Number of Beam Size Function Queries

BAX enables a paradigm shift in how optimization problems with complicated scans or other indirect measurements are handled


10.1088/2632-2153/ad169f
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