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Introduction
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• ML is becoming more and more popular across science


• Better algorithms → improved sensitivity to new physics and measurements 


• If we want to really make the most of these improvements, have to bring ML to our detectors 
(front ends, triggers, 
readout, data 
acquisition, …)

https://iopscience.iop.org/article/10.1088/2632-2153/abbf9a


LHC Data Processing / Readout
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• Level-1 Trigger - O(μs) latency


• High Level Trigger - O(100 ms) latency


• Offline → 1 s latencies

If we don’t identify 
interesting events in trigger 

we lose them forever!



Outline
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This 

Talk

Caveat: I work on ATLAS/LHC, so this is an openly LHC-biased talk. But my goal is to make the lessons accessible!



Particle Identification
• LHC triggers must differentiate 

different collections of particles / 
detector signals from 
overwhelming backgrounds


• Background: light quarks, 
gluons, noise, combinatorics


• Signals: τ lepton, bottom quark, 
electron, …


• ML is very well suited to these 
tasks
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• Tau leptons decay to hadrons ~65% of time (τh)


• Difficult to distinguish from hadronic jets


• Need to combine information from multiple different subdetectors


• Critical for many signals, eg. HH→bbττ


• BDT developed for identification of hadronic taus from energy in specific 
regions of calorimeters (+ total energy)


• Translated to firmware with conifer ( )
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ATLAS L1Calo Trigger Public Results

https://twiki.cern.ch/twiki/bin/view/AtlasPublic/L1CaloTriggerPublicResults#ATLAS_Level_1_calorimeter_eFEX_t


Hadronic τ NN
• NN algorithm using 10 particles around a seed 

capable of accepting more τ leptons than 
traditional cut-based method


• Network is 3 layer dense model, uses 
information about particle pT, η, φ, and type


• Outputs decision in 38 ns (9 clocks @ 240 
MHz)

7CMS TDR-021
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• NN algorithm using 10 particles around a seed 
capable of accepting more τ leptons than 
traditional cut-based method


• Network is 3 layer dense model, uses 
information about particle pT, η, φ, and type


• Outputs decision in 38 ns (9 clocks @ 240 
MHz)

Hadronic τ NN (v2)
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τ

Further improvement!

CMS DP-2024/018 CMS TDR-021

NN 

Cut-based 

Calorimeter-only

https://cds.cern.ch/record/2895660


Electron BDT
• Electrons are also complex signatures


• Signals span multiple sub detectors 
(tracker & calorimeter)


• Undergo bremsstrahlung (e → e + γ)


• Electron ID is well-suited to ML


• Handles correlations between different 
inputs


• 5-10% improvement in plateau efficiency 

• Important for many different physics 
signatures

9CMS DP-2023/047



LArTPC Neutrinos
• DUNE will bring LHC-scale data rates to neutrino physics


• Fast identification of particles (particularly in dense environments) 
potentially important for maximizing experimental capabilities (eg. fast 
superova neutrino detection)


• Requirements:


• Reject noise (NB) with >99.99% efficiency


• Classify low-energy supernova neutrino (LE) with 90% efficiency


• Process incoming 
image within 32 μs


• 2DCNN [A. Malige, FastML 
2024] capable of meeting 
performance benchmarks, 
latencies between 3-5 μs


• QKeras employed for 
QAT, tested on Alveo 
U250 & U55C

102201.05638

https://indico.cern.ch/event/1387540/contributions/6153603/attachments/2948311/5181811/AMalige_FastML_2024.pdf
https://indico.cern.ch/event/1387540/contributions/6153603/attachments/2948311/5181811/AMalige_FastML_2024.pdf
https://arxiv.org/pdf/2201.05638


Particle Identification Lessons
• No one size fits all solution


• True across applications


• Finding “best” solutions requires 
complete picture of task


• Eg. Calorimeter-based taus different 
from particle-based taus, different 
from electrons, b-jets (see backup or 
Javier’s talk) …


• Codesign critical for optimizing 
performance

11
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LAr Peak Finding
• ATLAS LAr calorimeter needs to measure  

time and energy of pulses


• Overlapping pulses difficult for simple,  
fast algorithms to handle (150 ns = 6 BXs)


• CNN and LSTM architectures both able to significantly  
improve performance


• Well-suited for data structure, able to account for non-linear 
correlations

132111.08590, ATLAS LAr Public Results

https://arxiv.org/pdf/2111.08590
https://twiki.cern.ch/twiki/bin/view/AtlasPublic/LArCaloPublicResultsUpgrade


LAr Peak Finding
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2111.08590, ATLAS LAr Public Results

• ATLAS LAr calorimeter needs to measure  
time and energy of pulses


• Overlapping pulses difficult for simple,  
fast algorithms to handle (150 ns = 6 BXs)


• CNN and LSTM architectures both able to significantly  
improve performance


• Well-suited for data structure, able to account for non-linear 
correlations

ML

https://arxiv.org/pdf/2111.08590
https://twiki.cern.ch/twiki/bin/view/AtlasPublic/LArCaloPublicResultsUpgrade


Data Compression
• What if there’s simply too much data to get off the detector in 

the first place?!


• CMS High Granularity Calorimeter will have 6.5 million 
readout channels, 50 layers → need some compression


• AEs are lossy compression algorithms (only transmit latent 
space)


• Model must be run in high radiation environment (ECON-T 
ASIC, logic triplicated) [2105.01683]
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https://arxiv.org/pdf/2105.01683


Streaming Readout
• Nuclear physics 

experiments beginning to 
achieve hundreds of Gb/
s data rates (sPHENIX @ 
RHIC)


• Future experiments will 
push past Tb/s (EIC)


• In order to reduce trigger 
bias and keep wide 
range of event 
topologies, streaming 
readout will be employed

16



Streaming Readout Example
• Tracking necessary for Gas Electron Multiplier Transition Radiation Detector (GEM TRD)


• Critical for e/pi discrimination


• Ongoing development targeting VU9P FPGA


• Capable of serving 21 hits and 42 edges (3-5 tracks)


• GNN already implemented using 70% of DSPs (16 bits for weights/biases), latency of ~3 μs (200 MHz 
clock)


• Streaming readout makes it necessary to do all parts of reconstruction on-chip!

17[1] https://indico.cern.ch/event/1387540/timetable/?view=standard#44-real-time-ml-fpga-filter-fo 

RNN/LSTM 
for track 

fitting

MLP for 
particle ID

https://indico.cern.ch/event/1387540/timetable/?view=standard#44-real-time-ml-fpga-filter-fo


Readout
• Difficult to push ML into readout!


• System constraints stricter


• In some cases, hardware development has already happened


• Fewer chances for codesign


• Systems often need to be more robust to changing conditions, unforeseen 
circumstances


• Critical part of deployment

18
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• What if we don’t know exactly what we are looking for?


• ML offers unique solution to this challenge (no traditional alternative)


• Broad field of anomaly detection (AD)

Anomaly Detection

20



L1 Trigger AD
• Depending on anomaly, we could have none left in recorded data


• Low-latency ML is the only option! (eg. autoencoders)

21



L1 Trigger AD
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• CMS has already deployed multiple AD algorithms in trigger


• AXOL1TL [CMS DP-2023/079, CMS DP-2024/059] & CICADA 
[CMS DP-2023/086]


• Currently collecting interesting events that would have been 
missed


• Network preferentially identifies large multiplicity events, 
potentially large gains in new physics acceptance


• First AD-based trigger deployed in  
ATLAS as well, results to come soon!


• Other ATLAS AD triggers in  
development as well



GNN Tracking

23ATL-ITK-PROC-2022-006 

• Tracking is an incredibly hard problem, tracking 
in HLT even harder


• Huge combinatorics, only going to get worse


• GNNs show promise for HL-LHC


• ~2.7 x 105 nodes, ~1.3 x 106 edges

https://cds.cern.ch/record/2815578/files/ATL-ITK-PROC-2022-006.pdf


GNN Tracking
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• Pipeline from raw hits to track candidates 
involves multiple steps


• Complicated workflow, large networks


• Pruning one potential option for reducing 
size, still need to run quickly in trigger


• As-a-service is a promising option
ATL-COM-DAQ-2024-004 
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https://cds.cern.ch/record/2888383/files/ATL-COM-DAQ-2024-004.pdf


Lipschitz Monotonic NN
• On-detector ML is not just about speed


• Robustness and understandability are also very important


• Networks can be made provably monotonic [2112.00038]


• LHCb has used this technique to design NNs for use in HLT


• Eg. smooth dependence on flight distance for heavy 
flavor decays


• Improved stability

25
2306.09873 , 2312.14265 

https://arxiv.org/pdf/2112.00038
https://arxiv.org/abs/2306.09873
https://arxiv.org/abs/2312.14265


Continual Learning
• On-detector ML has no re-do button


• Cannot just reprocess with new network if 
conditions change


• Continual learning method uses mix of original and 
new data to retrain model


• Better performance than simple retraining (or no 
retraining)


• Important consideration especially when conditions 
can change significantly


• Example from CMS considers degradations in L1 
tracking

26CMS DP-2023/022



Continual Learning
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28CMS DP-2023/022

• On-detector ML has no re-do button
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Future Opportunities & Challenges
• We do not drive Xilinx product development (although they do pay attention to us)


• Can we make use of new advances like AI engines? Can we learn from them?


• Streaming readout?


• Lots to learn from LHCb [1], EIC


• AI/ML in networking? 


• Algorithm and hardware 
development should be 
considered simultaneously 
(codesign)


• More difficult the closer we go 
to detectors, but vital for 
maximizing performance

29[1] https://indico.cern.ch/event/1387540/contributions/6153414/attachments/2948376/5181940/FMLSC2024%20(2).pdf

vs

Codesign analogy stolen shamelessly from Ryan

https://indico.cern.ch/event/1387540/contributions/6153414/attachments/2948376/5181940/FMLSC2024%20(2).pdf


Conclusions
• Advancing ML on-detector can help 

contribute to maximizing physics of our 
experiments


• Many challenges


• Constraints, stability, implementation 
(along with all the usual ML 
challenges!)


• These challenges may differ but many 
appear in other fields, areas too


• LHCb, EIC, accelerators, Belle-II, 
DUNE, …


• Exciting times!

30



BACKUP
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L1 b-quark Identification

32CMS DP-2022/021

… particles …

b

• NN trained to identify b-quarks using collection of particles


• Architecture includes featurizers that act on each particle individual


• Significantly improved  
acceptance for  
HH→bbbb events  
with low mHH  
(compared to  
traditional cut- 
based methods)



Bkgd

Signal

L1 Trigger AD
• Most common AD algorithms are autoencoders (AEs)


• Can reduce network size by removing decoder, using latent space directly 
(allows to achieve <50 ns latency)

33



Bkgd
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L1 Trigger AD
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• Most common AD algorithms are autoencoders (AEs)


• Can reduce network size by removing decoder, using latent space directly 
(allows to achieve <50 ns latency)



L1 Trigger AD
• Most common AD algorithms are autoencoders (AEs)


• Can reduce network size by knowledge distillation, training student network 
to predict teacher network MSE (allows to achieve <50 ns latency)

35

ℒ = ∥x − xteacher
pred ∥2

Teacher network

Student network
ℒ = ∥( ) − xstudent

pred ∥2∥x − xteacher
pred ∥2



LHC Pileup (PU)
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Pile-up = 2



LHC Pileup (PU) - ~Current
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HL-LHC Pileup (PU) - Future
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ML Size / Complexity
• Regardless of toolkit, big limitation of doing ML fast is device size


• Bigger device → more resources → more computation → larger ML models


• Alternatively, is it possible to reduce network size without hurting performance?


• Pruning and quantization are two potential ways

39

Xilinx Virtex Ultrascale+ VU13P 
12288 Multipliers


1.7M LUTs

3.4M FFs


95 Mb BRAM



• Are all the pieces a given network necessary?


• Many different types of pruning


• Structured vs. unstructured


• Multiplications by 0 can be completely 
removed from FPGA design

Pruning

40

Quantization
• FPGAs are well suited to fixed-point numbers, not 

floating point


• Number of bits can be adjusted as needed (impacts 
accuracy, performance, resources)


• Can greatly reduce number of bits needed by training 
with knowledge of quantization

# of bits # of bits


