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(Sensor) Data is the New Oil!
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= Today’s sensors are generating orders of magnitude more data than can be
consumed by humans

Figure from: SRC, Decadal Plan for Semiconductors, January 2021




Solution: Near-Sensor Data Distillation

= Computer vison example: Sensor device output is scene understanding

Integrated vision sensor & processor,
independent of main processor
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Figure from: SRC, Decadal Plan for Semiconductors, January 2021




tinyML within the ML/Al Spectrum
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* In addition to data distillation: Low latency, improved privacy, autonomy
= Power~1 mW, ML model size ~100+ kB

tinyML.: The Next Big Opportunity in Tech, ABI Research Report, May 2021




What Do We Want?
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= ML inferenceis dominated by multiply & add operations (each counts as 1 OP)
= Need ~1 GOP for one neural network inference (can vary significantly)

= Wantto perform ~100 inferences per second = 100 GOP/s

= Wantto consume~1 mW = 100 TOP/s/W = 10 fJ/OP

= Even more aggressive goal 2> 1 fJ/OP

>4



MCUs for tinyML

Blend of uC, DSP &
NN accelerator

GreenWaves GAP9 (GF 22nm FDX)
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= Support of well-
established toolchains

= MobileNetV1 inference
(160x160input)

> ~800 ud/frame
> ~1 GOP/frame
> ~800 fJ/OP
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= How to lower energy?




Memory Access Bottleneck
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= Energy bound considering processing element’s register files alone
> 28nm CMOS, 8-bit multiply & add (MAC), ~100-Byte RF
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Opportunities

Energy Operations Energy
Power = Rate X = Rate X X .
Inference Inference Operation
Ultimate Reduceinputdata Better architecture
care-about Compress model Better circuits

Exploit sparsity Better technology

= Armies of R&D engineers are working on these problems across multiple
domains (HW, SW, Algorithms)




My Group’s Work

[Young, ISSCC 2019]
- _

[Bankman, ISSCC 2018]
[Giordano, VLSI 2021]
[Doshi, VLSI 2024]

Video Preprocessing

[Villamizar, TCAS-12021]
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Custom Neural
Network Accelerators

Audio Preprocessing




Computer Vision Pipeline

0.2-2 nJ/pixel 1-2 nJ/pixel 3-10 nJ/pixel
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= Image data volume s already large
> And CNN blows it up further

* Forexample, 224 x224 x3 > 112 x
112 x 64 (150,000 - 800,000)




Log Gradient Image Sensor

4-T Pixel Array
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Young, ISSCC 2019
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Prototype Chip with Processing Pipeline (Off-Chip)
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Young, ISSCC 2019
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DPM Detector

3.3x Power
Savings

Bounding

T Box




Using Log-Gradients as CNN Inputs

Qianyun Lu

to discern relevant
image features

g, |18 ComaD 2% ConvaD Classifier =  CNN needs fewer filters
Ija FC

f"“s = Cantolerate coarse
| | quantization due to
'’ illumination invariance
15t Conv2D 2" Conv2D Classifier
FC

Q. Lu and B. Murmann, ACM Trans. Embed. Comput. Syst., May 2024 #
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Sound Classification and Keyword Spotting
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D. Villamizar, IEEE TCAS, 2021

Dan Villamizar

Spectrogram “Yes”

Information rate
~39 bits/sec




Fully Passive Switched-Capacitor N-Path Filterbank
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- Ultra-low power (~800 nW)
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Voice Command “Yes”
Ideal Our chip
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The Next Frontier: End-to-End Training
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Custom Neural Network Accelerators:
Should We also Embrace Analog Processing Here?
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Elementary Convolution Layer

Filter weights
FxxFyxC one

Input pixel Output

dot
activations " - -’ o activations

(K tensors total)

= Three-dimensional dot-product (multiply & add)
= Highly parallelizable computations (“embarrassingly parallel”)
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Just a Big For-Loop

= Custom DNN accelerators leverage parallelism and data re-use
> Loop unrolling
> Optimum not tractable

for (k=0 to K-1); each output channel
for (c=0 to C-1); each input channel
for (x=0 to X-1); each input column
for (y=0 to Y-1); each input row
for (f,=0 to F,-1); each filter column
for (f,=0 to Fv-1); each filter row
olk, x, y] +=w[k, c, f;, f,] x i[c, x+fy, y+f|]




Mixed-Signal BinaryNet - Fully Unrolled (1024 x 64)

Filter 1 Filter M
= =
3 = Aggressive quantization
> Binary weights and
) . ) . . .
Broa(;j_cats_t input Cl!_ Wim ’ CIL._ activations
— | ' = Analog accumulation
> Bankman, ISSCC 2018
. W1 Wnm D. ’

Amortized  ue = Digital accumulation
across 64

columns bias, biasy, > MOOI‘\S, CICC 2018

F Output activation =

function
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Fully Digital Implementation

Energy dominated by neuron array adder tree

1.45 mm .
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T‘f’rrrrhrrrCTEFrmrED
- 7
‘E SN |O+other: 3%
= " North Weights XMUX: 6%
- . - - e WMUX: 3% .
c [Lf E ‘5 IS Control: < 1%
S ES Neuron Arra i = AMIER: 576
A=l | S TR
N EE" = = WMEM: 4%
~  South Weights 75% g FC: < 1%
= | LEBM _Stanford Neuron Array
Lh LLUJ_L 1Ll LLLLLLLEL

1.22 mm

[Moons, CICC 2018]
TSMC 28 nm, 328 KB SRAM

Bert Moons




Mixed-Signal Implementation

Energy consumption balanced

< 24 mm
A et a 3.8 pJ/classification (CIFAR-10)
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[Bankman, ISSCC 2018]
TSMC 28 nm, 328 KB SRAM

Danny Bankman
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Critical Review

= Analog CIM macros have great block-level specs, but tend to be one-trick ponies
> Limited programmability
> Efficient only for relatively large, fixed kernels

> Energy benefits diminish for multi-bit compute

Modern CNNs are less overprovisioned, tend to require multi-bit compute

> Example: Bottleneck layer in MobileNetV2

Expansion
C' filters
1x1xC

Depthwise convolution Projection

C’ filters
3x3x1

K filters
1x1xC’

=

-
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Compute Precision Affects Model Size

Accuracy vs. Model Size for Cifar10
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Medusa - Fully Digital Accelerator for tinyML
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Techniques for Reducing Memory Access Energy

= Pipelining reduces large memory access overhead of bottleneck layer activations
= Local memory (Inner Loop Memory) reduces weight access energy
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Summary

= tinyML systems are gaining relevance due to sensor data deluge

= Custom chips for tinyML
> Analog feature extraction = Data reduction

> Custom computing for deep neural networks = Lower energy,
improved density, reduced data movement

= Expectsignificant progress as application drivers emerge
> Application targets and ML architectures are in constant flux
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