Mixed-Signal Interfaces and Compute Fabrics for tinyML Systems

Boris Murmann <u>bmurmann@hawaii.edu</u> May 19, 2025

UNIVERSITY of HAWAI'I' at MĀNOA

(Sensor) Data is the New Oil!

 Today's sensors are generating orders of magnitude more data than can be consumed by humans

Figure from: SRC, Decadal Plan for Semiconductors, January 2021

Solution: Near-Sensor Data Distillation

Computer vison example: Sensor device output is scene understanding

Figure from: SRC, Decadal Plan for Semiconductors, January 2021

tinyML within the ML/AI Spectrum

- In addition to data distillation: Low latency, improved privacy, autonomy
- Power ~1 mW, ML model size ~100+ kB

tinyML: The Next Big Opportunity in Tech, ABI Research Report, May 2021

What Do We Want?

- ML inference is dominated by multiply & add operations (each counts as 1 OP)
- Need ~1 GOP for one neural network inference (can vary significantly)
- Want to perform ~100 inferences per second → 100 GOP/s
- Want to consume ~1 mW → 100 TOP/s/W → 10 fJ/OP
- Even more aggressive goal → 1 fJ/OP

MCUs for tinyML

GreenWaves GAP9 (GF 22nm FDX)

- Blend of µC, DSP & NN accelerator
 - Support of wellestablished toolchains
- MobileNetV1 inference (160x160input)
 - \rightarrow ~800 μ J/frame
 - > ~1 GOP/frame
 - > ~800 fJ/OP
- How to lower energy?

Memory Access Bottleneck

Bitlines

- Energy bound considering processing element's register files <u>alone</u>
 - > 28nm CMOS, 8-bit multiply & add (MAC), ~100-Byte RF

$$\frac{Energy}{OP} = \frac{E_{RF} + E_{MAC}}{2} = \frac{4 \times 50 fJ + 100 fJ}{2} = 150 \, fJ/OP$$

Opportunities

 Armies of R&D engineers are working on these problems across multiple domains (HW, SW, Algorithms)

My Group's Work

[Young, ISSCC 2019]

Video Preprocessing

[Villamizar, TCAS-I 2021]

Audio Preprocessing

Custom Neural Network Accelerators

Computer Vision Pipeline

- Image data volume is already large
 And CNN blows it up further
- For example, 224 x 224 x 3 → 112 x 112 x 64 (150,000 → 800,000)

Log Gradient Image Sensor

11

Prototype Chip with Processing Pipeline (Off-Chip)

- 0.13 µm CIS 1P4M
- 5µm 4T pixels
- QVGA 320(V) x 240(H)
- + 229 μW @ 30 FPS

Young, ISSCC 2019

Using Log-Gradients as CNN Inputs

Qianyun Lu

- CNN needs fewer filters to discern relevant image features
- Can tolerate coarse quantization due to illumination invariance

Q. Lu and B. Murmann, ACM Trans. Embed. Comput. Syst., May 2024

Sound Classification and Keyword Spotting

D. Villamizar, IEEE TCAS, 2021

Fully Passive Switched-Capacitor N-Path Filterbank

Voice Command "Yes"

Ideal

Mel yes/0a7c2a8d nohash 0.wav

Our chip

30

25 -

20 -

15 -

10 -

15 -

10 -

5 · 0 ·

0

20

Mel yes/0a7c2a8d_nohash_0-0.csv

40

60

80

The Next Frontier: End-to-End Training

Custom Neural Network Accelerators: Should We also Embrace Analog Processing Here?

Elementary Convolution Layer

- Three-dimensional dot-product (multiply & add)
- Highly parallelizable computations ("embarrassingly parallel")

Just a Big For-Loop

- Custom DNN accelerators leverage parallelism and data re-use
 - › Loop unrolling
 - > Optimum not tractable

for (k=0 to K-1); each output channel for (c=0 to C-1); each input channel for (x=0 to X-1); each input column for (y=0 to Y-1); each input row for (f_x=0 to F_x-1); each filter column for (f_y=0 to F_y-1); each filter row $o[k, x, y] += w[k, c, f_x, f_y] \times i[c, x+f_x, y+f_y]$

Mixed-Signal BinaryNet \rightarrow Fully Unrolled (1024 x 64)

- Aggressive quantization
 - Binary weights and activations
- Analog accumulation
 Bankman, ISSCC 2018
- Digital accumulation
 Moons, CICC 2018

Fully Digital Implementation

Energy dominated by neuron array adder tree

14.4 µJ/classification (CIFAR-10)

Bert Moons

Mixed-Signal Implementation

Danny Bankman

Lita Yang

Critical Review

- Analog CIM macros have great block-level specs, but tend to be one-trick ponies
 - > Limited programmability
 - > Efficient only for relatively large, fixed kernels
 - > Energy benefits diminish for multi-bit compute
- Modern CNNs are less overprovisioned, tend to require multi-bit compute
 - > Example: Bottleneck layer in MobileNetV2

Compute Precision Affects Model Size

Massimo Giordano

Rohan Doshi

- 8b digital arithmetic requires smaller model
 At ISO-accuracy
- Our next-gen design uses fully digital arithmetic...

Techniques for Reducing Memory Access Energy

- Pipelining reduces large memory access overhead of bottleneck layer activations
- Local memory (Inner Loop Memory) reduces weight access energy

Summary

- tinyML systems are gaining relevance due to sensor data deluge
- Custom chips for tinyML
 - \rightarrow Analog feature extraction \rightarrow Data reduction
 - > Custom computing for deep neural networks → Lower energy, improved density, reduced data movement
- Expect significant progress as application drivers emerge
 Application targets and ML architectures are in constant flux

