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Figure from: SRC, Decadal Plan for Semiconductors, January 2021

(Sensor) Data is the New Oil!
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▪ Today’s sensors are generating orders of magnitude more data than can be 
consumed by humans



Figure from: SRC, Decadal Plan for Semiconductors, January 2021

Solution: Near-Sensor Data Distillation
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▪ Computer vison example: Sensor device output is scene understanding



tinyML: The Next Big Opportunity in Tech, ABI Research Report, May 2021

tinyML within the ML/AI Spectrum
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▪ In addition to data distillation: Low latency, improved privacy, autonomy

▪ Power ~1 mW, ML model size ~100+ kB

Sensors



What Do We Want?
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▪ ML inference is dominated by multiply & add operations (each counts as 1 OP)

▪ Need ~1 GOP for one neural network inference (can vary significantly)

▪ Want to perform ~100 inferences per second → 100 GOP/s

▪ Want to consume ~1 mW → 100 TOP/s/W → 10 fJ/OP

▪ Even more aggressive goal → 1 fJ/OP 

Convolutional Neural 
Network (CNN)



MCUs for tinyML
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▪ Blend of C, DSP & 
NN accelerator

▪ Support of well-
established toolchains

▪ MobileNetV1 inference 
(160x160input)

› ~800 J/frame
› ~1 GOP/frame
› ~800 fJ/OP

▪ How to lower energy?

GreenWaves GAP9 (GF 22nm FDX)



Memory Access Bottleneck
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▪ Energy bound considering processing element’s register files alone

› 28nm CMOS, 8-bit multiply & add (MAC), ~100-Byte RF
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Opportunities
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▪ Armies of R&D engineers are working on these problems across multiple 
domains (HW, SW, Algorithms)
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Better architecture
Better circuits

Better technology
…



My Group’s Work
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Custom Neural 
Network Accelerators

[Bankman, ISSCC 2018]

Video Preprocessing

Audio Preprocessing

[Young, ISSCC 2019]

[Villamizar, TCAS-I 2021]

[Giordano, VLSI 2021]

[Doshi, VLSI 2024]



Computer Vision Pipeline
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▪ Image data volume is already large
› And CNN blows it up further

▪ For example, 224 x 224 x 3 → 112 x 
112 x 64  (150,000 → 800,000)

Imager output Image Signal Processor
0.2-2 nJ/pixel 1-2 nJ/pixel 

Convolutional Neural Network
3-10 nJ/pixel 



Young, ISSCC 2019

Log Gradient Image Sensor
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Chris Young



Young, ISSCC 2019

Prototype Chip with Processing Pipeline (Off-Chip)
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• 0.13 µm CIS 1P4M

• 5µm 4T pixels

• QVGA 320(V) x 240(H)

• 229 W @ 30 FPS

Histogram of Oriented Gradients + Deformable Parts Model



Q. Lu and B. Murmann, ACM Trans. Embed. Comput. Syst., May 2024

Using Log-Gradients as CNN Inputs
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▪ CNN needs fewer filters 
to discern relevant 
image features

▪ Can tolerate coarse 
quantization due to 
illumination invariance 

Qianyun Lu
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D. Villamizar, IEEE TCAS, 2021

Sound Classification and Keyword Spotting
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Spectrogram “Yes”

Information rate
~39 bits/sec

Dan Villamizar



Fully Passive Switched-Capacitor N-Path Filterbank
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Ultra-low power (~800 nW) 
(but ample nonidealities!)



Voice Command “Yes”
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Ideal Our chip

→ Retrain neural 
network to absorb 

nonidealities



The Next Frontier: End-to-End Training
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Feature-Extracting 
A/D Interface
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Custom Neural Network Accelerators:

Should We also Embrace Analog Processing Here?



Elementary Convolution Layer
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▪ Three-dimensional dot-product (multiply & add)

▪ Highly parallelizable computations (“embarrassingly parallel”)
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Just a Big For-Loop

20

▪ Custom DNN accelerators leverage parallelism and data re-use

› Loop unrolling

› Optimum not tractable



Mixed-Signal BinaryNet → Fully Unrolled (1024 x 64)
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▪ Aggressive quantization

› Binary weights and 
activations

▪ Analog accumulation

› Bankman, ISSCC 2018

▪ Digital accumulation

› Moons, CICC 2018
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14.4 J/classification (CIFAR-10)

Fully Digital Implementation
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Energy dominated by neuron array adder tree

[Moons, CICC 2018]
TSMC 28 nm, 328 KB SRAM

75%

Neuron Array

Bert Moons



Mixed-Signal Implementation
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Energy consumption balanced
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Danny Bankman

Lita Yang



Critical Review
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▪ Analog CIM macros have great block-level specs, but tend to be one-trick ponies

› Limited programmability

› Efficient only for relatively large, fixed kernels

› Energy benefits diminish for multi-bit compute

▪ Modern CNNs are less overprovisioned, tend to require multi-bit compute

› Example: Bottleneck layer in MobileNetV2 



Compute Precision Affects Model Size
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▪ 8b digital arithmetic 
requires smaller model
› At ISO-accuracy

▪ Our next-gen design uses 
fully digital arithmetic… 

Massimo 
Giordano

Rohan 
Doshi
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Analog nonidealities
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Medusa – Fully Digital Accelerator for tinyML
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[Doshi, VLSI 2024]
[Giordano, ASPLOS 2024]



Techniques for Reducing Memory Access Energy

▪ Pipelining reduces large memory access overhead of bottleneck layer activations

▪ Local memory (Inner Loop Memory) reduces weight access energy
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Summary
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▪ tinyML systems are gaining relevance due to sensor data deluge

▪ Custom chips for tinyML

› Analog feature extraction → Data reduction

› Custom computing for deep neural networks → Lower energy, 
improved density, reduced data movement 

▪ Expect significant progress as application drivers emerge
› Application targets and ML architectures are in constant flux  
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