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HL-LHC EVENT PROCESSING 2
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SIMPLIFIED HL-LHC L1 TRIGGER MENU
▸ Single/double/triple muons/electrons 
▸ Photons 
▸ Taus 
▸ Hadronic 
▸ Missing transverse energy 
▸ “Cross” triggers (not shown)

Trigger Threshold [GeV]
1 μ 22
2 μ 15, 7
3 μ 5, 3, 3
1 e 36
2 e 25, 12
1 ɣ 36
2 ɣ 22, 12
1 τ 150
2 τ 90, 90

1 jet 180
2 jet 112, 112
HT 450

4 jet + HT 75, 55, 40, 40, 400
pTmiss 200

4-jet event

CMS-TDR-021

Thresholds set by 
backgrounds, 

limited resolution @ 
L1, and rate budget
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https://cds.cern.ch/record/2714892


WHAT COULD WE BE MISSING?
▸ How can we trigger on more complex low-energy 

hadronic signatures? Long-lived/displaced particles? 
▸ What if we don’t know exactly what to look for? 
▸ What if our signatures require complex multivariate 

algorithms (e.g. b tagging)? 
▸ How can we improve on our traditional (often slow) 

reconstruction algorithms?

HH → 4b

Soft Bombs

We’ll focus on a particularly egregious scenario: Quasi-conformal,
strongly-coupled HV from Q to ⇤
[Strassler: 0801.0629; Hatta, Matsuo: 0804.4733; Hofman, Maldacena: 0803.1467]

• Large ‘t-Hooft coupling ⁄ ≥ g
2
N ∫ 1: large angle emission

• Quasi-conformal dynamics: maximally e�cient showering down to ⇤

• Leads to ≥ spherically symmetric event, with multiplicity scaling linearly
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High multiplicity of soft particles
Event resembles pile-up
Passes minimum bias triggers with
very low e�ciency

Dean Robinson dean.robinson@uc.edu Soft Bombs 6/20
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A Kalman Filter for BMTF

Initialize

Propagate
Update

Propagate

Update

Propagate

Update
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Update

Vertex Unconstrained
Measurement

Vertex Constrained
Measurement

● Sequential algorithm: (mathematically equivalent to a χ2 fit)
● Propagate track inwards from station to station and match with a stub
● Update track parameters and continue

● After reaching station 1  save measurement without vertex constraint�

● Propagate to vertex and update  vertex constrained measurement�

● Challenge for an FPGA implementation  �Matrix algebra
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WHAT MAKES THIS HARD?
▸ Reconstruct all events and reject 98% of them in O(10) μs 
▸ Algorithms have to be <1 μs and process new events every 25 ns 

▸ Latency necessitates all FPGA design 

▸Algorithms have to fit on <1 FPGA 

▸How can we satisfy these constraints?

Event 1 L1 TRIGGER ALGORITHMS

Latency ~ 10 μs

Programmable 
interconnects

PASS

L1 TRIGGER ALGORITHMS

L1 TRIGGER ALGORITHMS

Event 2

Event 3

…

FAIL

FAIL

Initiation interval = 25 ns
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▸ Codesign: intrinsic development loop 
between ML design, training, and 
implementation  

▸ Pruning 
▸ Maintain high performance while 

removing redundant operations 
▸ Quantization 
▸ Reduce precision from 32-bit 

floating point to 8-bit fixed point, … 
▸ Parallelization 
▸ Balance parallelization (how fast) 

with resources needed (how costly)

CODESIGN 6 

https://arxiv.org/abs/1804.06913


QUANTIZATION-AWARE TRAINING
▸ Small NN benchmark 

correctly identifies 5 classes 
of jets 70-80% of the time  

▸ Full performance with 6 bits 
instead of 14 bits  

▸ Much smaller fraction of 
resources

7Nat. Mach. Intell. 3, 675 (2021)

Xilinx VU9P

https://arxiv.org/abs/2006.10159


PRUNING + QUANTIZATION-AWARE TRAINING
▸ Iterative pruning further reduces hardware 

complexity of a quantized model 

▸ Can remove 90% of parameters with 
almost no loss in performance! 

▸ After pruning and quantization-aware 
training, can achieve  reduction in  
bit operations compared to original 32-bit 
model

50 ×

8

Bit operations (BOPs) definition:  
arXiv:1804.10969

Front. AI 4, 94 (2021)

https://arxiv.org/abs/1804.10969
https://arxiv.org/abs/2102.11289


▸ High-granularity quantization (HGQ) further extends this paradigm by 
implementing gradient-based automatic bit width optimization at (up to)  
per-weight and per-activation granularity 

▸ Demonstration on a CNN image classification (SVHN) benchmark

HIGH-GRANULARITY QUANTIZATION 9arXiv:2405.00645

https://arxiv.org/abs/2405.00645


NEURAL ARCHITECTURE CODESIGN
▸ Combine neural architecture search with hardware-aware codesign to find 

Pareto-optimal front 

▸ Example: set-based jet tagging model in FPGAs 
[arXiv:2402.01876]

10arXiv:2501.05515
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https://arxiv.org/abs/2402.01876
https://arxiv.org/abs/2501.05515


PROGRAMMING HARDWARE (FPGAS) 11

High-Level Synthesis

▸ How do we implement an optimized AI model (e.g., in QONNX) for an FPGA?

https://github.com/fastmachinelearning/qonnx


HLS4ML 12

Generic flows

Frontends Internal representation (IR)

ModelGraph

Layer

Attribute Type Variable …
…

Flow

Optimizer …

keras_to_hls

Layer parser …

pytorch_to_hls

Fn parser …

onnx_to_hls

Node parser …
Configuration

Key/Value …

Extension API

Backends

Vivado/Vitis (+Acc)

Flow …

Type/Variable …

HLS Template …

Quartus/oneAPI

Catapult

MicroChip/Libero…

Custom parser Custom layer Custom opt.Custom template …

User API

Output

ReportFirmwareHLS Project

Input

Initial config.Model

…

▸ hls4ml for scientists or 
ML experts to translate 
ML algorithms into RTL 
firmware 

▸ NN model is parsed 
through the front ends 
into the IR, modified by 
the optimizer, and 
passed to the back 
ends, which create the 
output

JINST 13, P07027 (2018)

https://fastmachinelearning.org/hls4ml/
https://arxiv.org/abs/1804.06913


LATEST FEATURES IN HLS4ML 1.1.0 13

▸ QONNX front end 

▸ Automatic precision inference 

▸ Support for HGQ models 

▸ Symbolic regression, hardware-aware 
optimization API, and more…



APPLICATION: SENSOR DATA COMPRESSION ON ASIC
▸ Autoencoder on the detector front-end for data compression: ~100 ns latency and 

area/power/radiation tolerance requirements 

▸ Reconfigurable ASIC to address: evolving LHC conditions (beam-related), detector 
performance (noise, dead channels), and updated performance metrics (resolution, 
new physics signatures)

14

8’’ hexagonal silicon module  
(1 out of ~27,000)

Figure 3. Schematic of the compress-transmit-decompress pipeline
for the HGCal trigger data stream.

with energies represented as a custom 7b float. These 48⇥7b
floating-point inputs are converted to 22b integers, summed,
and finally normalized to obtain 8b fixed-point trigger cell
data. The sum is preserved as a 9b float for transmission.
The benchmark task begins from this point, which must
capture this 48 ⇥ 8 = 384b representation in a budget
of either 144 or 48 bits, for the moderate—and extreme—
compression variants, respectively.

Baseline Model A convolutional neutral network (CNN)
auto-encoder architecture is used to perform the compress-
and-decompress task. Normalized sensor data is re-arranged
and fed to a CNN with one convolutional and one dense
layer with 6b weights, leading to a maximum of 16⇥9b
outputs, saturating the 144b bandwidth (Di Guglielmo et al.,
2021). Data is decompressed by a second CNN with in-
verted architecture, whose outputs are multiplied by the
energy sum to recover the original input image.

The compression logic is implemented in an “encoder ASIC”
using a low-power CMOS process with 65 nm feature size.
The total latency for this circuit is 25 ns and is estimated to
draw 60mW in simulation.

Real-time System Constraints The encoder must accept
new inputs at 40 MHz input rate and complete processing
within 100 ns. Furthermore, we must consider protection
against single-event effects due to the high-radiation envi-
ronment of the on-detector readout. As a rough first order
guideline, on a low-power CMOS 65 nm technology node,
the algorithm area must not be greater than 4 mm2 while
drawing less than 100 mW.

Performance Metrics Performance is assessed by directly
comparing the individual energies of each decoded array
of hexagonal sensors (i.e. 48 trigger cells) to the origi-
nal image of normalized inputs. The energy mover’s dis-
tance (Komiske et al., 2019) is used to compare the re-
constructed radiation patterns, giving smaller penalties for
mis-reconstructed energies that are close-by to the original
deposit.

Power supply 
control system

Programmable 
logic

Booster
Synchrotron

Control signal

Environment 
feedback

Bending magnet 
in-situ measurement

Figure 4. Synchrotron magnet power supply control system for the
Fermilab Booster Ring, adapted from (St. John et al., 2021)

3.4 Reinforcement Learning: Beam Control

Intense and energetic particle beams are used for various
applications, from materials discovery to studying nuclear
matter to fundamental particle physics, and even cancer ther-
apy. Controlling precise particle beams, such as those at the
Department of Energy User Facilities, requires intelligent
algorithms running at the edge in low-latency, real-time sys-
tems to steer particles traversing miles of beamline at nearly
the speed of light.

A dataset has been developed (Kafkes & St John, 2021) for
studying how to control the bending magnet ramping rate
of power supplies (St. John et al., 2021) in the rapidly cy-
cling Booster synchrotron ring (Hubbard et al., 1973) at the
Fermilab Accelerator Complex. This is illustrated diagram-
matically in Figure 4. The power supply control signals are
provided at 15 Hz. This beam controls application can be
framed as a reinforcement learning benchmark task. Be-
cause an accurate and reliable simulation of the synchrotron
is not possible from first principles, a “virtual” accelerator
complex surrogate model has been developed to emulate
the actual physical system. This surrogate model will serve
as the environment with which our reinforcement learning
benchmark interacts.

Dataset A Booster synchrotron power supply regulation
dataset provides cycle-by-cycle time series of readings and
settings from the most relevant devices available in the Fer-
milab control system. This data was drawn from the time
series of a select subset of the roughly 200,000 entries that
populate the device database of the accelerator control net-
work. Data was sampled at 15 Hz for 54 devices pertaining
to the system’s regulation. Because of how data is trans-
mitted and communicated, inputs are 32-bit floating-point
numbers, but the sensor source’s precision is, in many cases,
less.

IEEE TNS 68, 2179 (2021)

https://arxiv.org/abs/2105.01683
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b-tag NN (AUC = 0.801)

Large GRU (AUC = 0.811)

Receiver operating characteristic 
curve showing the misidentification 
probability vs b jet efficiency where 
misidentification probability is defined 
as the probability to incorrectly 
identify a jet originating from a light 
quark or gluon.


The blue line is the b-tag NN used in 
these studies, while the orange line is 
a more complex architecture that 
better mimics offline algorithms for b-
tagging by using a gated recurrent 
unit (GRU) but is too large to be run 
in the Level-1 Trigger environment.
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Trigger efficiency in HH→bbbb events as a 
function of the di-Higgs mass at generator-
level. 


The efficiency for the modified 
QuadJetJet+HT trigger or Jets+Muon 
trigger is shown in blue squares, for the b-
tag NN trigger or QuadJet+HT trigger or 
Jets+Muon trigger is shown in red circles. 


The bottom frame shows the ratio of the 
efficiency for each trigger option to the 
efficiency of the QuadJet+HT trigger.


We observe that the trigger combination 
with the b-tag NN trigger increases the 
efficiency for events with low mHH by up to a 
factor of 1.25 over the modified 
QuadJet+HT or Jets+Muon triggers.
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APPLICATION: JET TAGGING @ L1 15CMS-DP-2022-021

3

The inputs to the network are the top ten 
PUPPI candidates ranked by pT within each jet. 
The information for each particle candidate is: 
particle type (one-hot encoded; 8 indices), 
kinematic information (pT, η, φ scaled relative 
to jet; 3 indices), and vertex information (z-
position and transverse impact parameter with 
respect to the primary vertex; 2 indices).


The neural network architecture is based 
around two 1D convolutional layers which act 
as featurizers for inputs from each jet. The 
resulting features are flattened and passed 
through 3 dense layers to produce a single 
value between 0 and 1. Scores close to 1 
indicate jets that are likely to have originated 
from bottom quarks, while scores close to 0 
indicate jets that are likely to have originated 
from light quarks or gluons.
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Pointwise convolution

(per particle dense layer)
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▸ Upgraded HL-LHC level-1 track trigger information enables b-tagging with a 
neural network to improve the  search 
▸ Input features for 10 particles within each jet: particle type, momentum, and 

vertex information

HH → 4b

~2  greater efficiency at low 
mHH for same rate!

×

https://cds.cern.ch/record/2814728


APPLICATION: ANOMALY DETECTION AT 40 MHZ
▸ Challenge: if new physics has an unexpected signature that doesn’t align with 

existing triggers, precious signal events will be discarded 

▸ Can we use unsupervised algorithms to detect non-SM-like anomalies? 

▸ Autoencoders (AEs): compress input to a smaller dimensional latent space then 
decompress and calculate difference 

▸ Variational autoencoders (VAEs): model the latent space as a probability 
distribution; possible to detect anomalies purely with latent space variables

Nat. Mach. Intell. 4, 154 (2022) 16

Key observation: Can build an anomaly 
score from the latent space of VAE directly! 
No need to run decoder!

https://doi.org/10.1038/s42256-022-00441-3


APPLICATION: ANOMALY DETECTION AT 40 MHZ CMS-DP-2023-079 
CMS-DP-2024-059 17

▸ AXOL1TL anomaly detection algorithm  
for the trigger based on a  
variational autoencoder 

▸ Selects unique events relative to existing 
triggers 

▸ Preference for high multiplicity events

Selected by AXOL1TL, 
but not other L1

https://cds.cern.ch/record/2876546?ln=en
https://twiki.cern.ch/twiki/bin/view/CMS/AXOL1TL2024


APPLICATION: SMART PIXELS 18

▸ Locally customized neural network for pT filtering of charged particles in sensor 
readout can enable data reduction by 55-75% with low power consumption of 
~300 μW and latency of 3.9 ns 

▸ hls4ml + Catapult AI to ASIC workflowNeural network for pT filter Image: Benjamin Parpillon

6

Registers for weights and 
biases on ASIC allow for 
tuning each network to 
local position in detector.

Concept behind smartpixels

High pTLow pT (negative)

• Can use a locally customized neural network 
in sensor readout to distinguish low pT  from 
high pT charged particles

• Lorentz drift shifts cluster charge distribution

3

Low pT (positive)

B-field

Yoo et al 2024 Mach. Learn.: Sci. Technol. 5 035047
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Concept behind smartpixels

High pTLow pT (negative)

• Can use a locally customized neural network 
in sensor readout to distinguish low pT  from 
high pT charged particles

• Lorentz drift shifts cluster charge distribution

3

Low pT (positive)

B-field

Yoo et al 2024 Mach. Learn.: Sci. Technol. 5 035047

Mach. Learn. Sci. Tech. 5 (2024) 3, 035047 
arXiv:2406.14860

https://iopscience.iop.org/article/10.1088/2632-2153/ad6a00
https://arxiv.org/abs/2406.14860


SUMMARY AND OUTLOOK
▸ ML allows us to better reconstruct our data and save 

potentially overlooked data 
▸ Codesign principles can enable ML on hardware with 

stringent constraints 
▸ Community (fastmachinelearning.org, e-group hls-

fml@cern.ch), Institute (a3d3.ai) and CERN Project 
(NextGen Triggers) developing open-source tools and 
techniques to enable this 
▸ hls4ml: expanding open-source toolkit for translating 

ML into hardware aimed at trigger applications and 
more… 

▸ Applications range from jet tagging to tracking, and 
more! 
▸ Enhance future particle physics program

19

https://fastmachinelearning.org/
https://e-groups.cern.ch/e-groups/EgroupsSubscription.do?egroupName=hls-fml
https://e-groups.cern.ch/e-groups/EgroupsSubscription.do?egroupName=hls-fml
http://a3d3.ai
https://nextgentriggers.web.cern.ch/
http://fastmachinelearning.org/hls4ml
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PARALLEL OR STREAMING INPUTS 21

▸ hls4ml supports two 
modes for parallel or 
streaming inputs

Pa
rt

iti
on

ed
In

pu
t

FI
FO

Pa
rt

iti
on

ed
O

ut
pu

t
Pa

rt
iti

on
ed

O
ut

pu
t

Pa
rt

iti
on

ed
N
✕

M
 W

ei
gh

t M
at

rix

N-element Array

31 2 … N

31 2 … N

N+3N+1 N+2 … 2N

… …

mN+3mN+1 mN+2 … MN

… …

31 2 … M

+

✕ ✕ ✕ ✕

+ + +

2N+32N+1 2N+2 … 2N

31 2 … N

(a) io_parallel (b) io_stream

Partition the array

…

31 2 … M

>0? >0? >0? >0?

Li
ne

ar
 L

ay
er

 w
ith

 M
 u

ni
ts

R
eL

U

H✕W✕C Tensor

31 2 … C 1

Concatenate every C values 
into one new item

Insert into a FIFO

(the FIFO will contain N=HxW items)

1

Read sequentially from FIFO

31 2 … C

Parallel matrix-vector multiplication

31 2 … K

1

FI
FO 31 2 … N

Write to FIFO

Unpack data

Pack data

FI
FO 31 2 … N

…

R
eL

U
2D

 C
on

vo
lu

tio
n 

w
ith

 K
 o

ut
pu

t f
ilt

er
s

1 Unpack / ReLU / Pack 1


