Emerging Optical I/O Solutions for Data centers, Quantum Computing, and HEP Detector Read-out

Sajjad Moazeni (Assistant Professor)

May 19, 2025

Emerging Integrated Technologies & Systems (EMIT) Lab Department of Electrical & Computer Engineering University of Washington, Seattle email: <u>smoazeni@uw.edu</u>

Optical I/O bottleneck to scale AI Data Centers

- Compute unit is now a +10 kGPU Cluster (mainly for training now)
- Scale up & Scale out for AI scaling!
- Copper interconnects are reaching their limits ...
 - Limited reach
 - Limited bandwidth
- Optical interconnects are seeing surging market and bandwidth demands!

[XAI]

Interconnects for Quantum Computing

Any physical realization of quantum computers benefits from optical fiber I/O:

- Reduced heat load and thermal noise (glass vs. copper!)
- Both for digital I/O as well as RF-photonics (e.g., superconducting qubit control)
- This is becoming more crucial once we pass +1k qubit systems

Data Aggregation for HEP

- Modern scientific detectors produce Tb/s of data per second (large pixel arrays & detection rates)
- Located in challenging environments (rad-hard, cryogenic)
- Far (+km-range) from the data processing unit

4 | EM/T Lab

• Constraints: Power, Area/Formfactor, Temperature, ...

Skipper CCD-in-CMOS [FermiLab] 10bit x 100 kHz x 1 MPix = 1 Tbps!

Optical Fiber Links for HEP

- Optical links are state of the art for internet backbone and data centers
- Loss < 0.5 dB/km for a wide spectrum
- Robustness to EM interference & crosstalk
- Decouples thermal noise
- 100 ~ 1,000x lower heat load
 - Important for mK ~ 4 K cryogenics (esp. for quantum applications)
- Wavelength Division Multiplexing (WDM) to reduce number of fibers

CMS Detector Readout Architecture

Commercial Optical Transceivers

- Pluggable active optical cables (AOC)
 - Energy Efficiency: ~20-30pJ/b
 - Edge Bandwidth Density: 10-100Gb/s/mm
 - Electrical path signal loss at high frequency
- Not optimized for cryogenic nor radhard applications
- Co-packaging with "Pixel/Detector" might be challenging – Large Formfactor

Need for Co-packaged Optics (CPO)

	Go	bal for C	o-Packa	ged DW	DM	
	IPoser	PCB	CPO	Cable	AOC	
Power	10 ⁻¹³	5x10 ⁻¹²	10-12	5x10 ⁻¹²	10-11	J/b
Cost	10 ⁻¹⁵	10 ⁻¹³	10 ⁻¹⁰	10 ⁻¹⁰	10 ⁻⁹	\$-s/b
Density	10 ¹³	5x10 ¹¹	2x10 ¹²	5x10 ¹⁰	1011	b/s-mm
Reach	.005	0.5	100	5	100	m
Lower p	ower than c	able with cor	mparable cos	.t [[Dally O	FC 2022

Lower power than cable with comparable cos Density higher than PCB Reach comparable to AOC

7 | EM*i* T Lab

ELECTRICAL & COMPUTER ENGINEERING

State-of-the-art Optical Transmitters

- Modulation:
 - Intensity modulation + direct detection (IM-DD)
 - Coherent links
- Directly Modulated Laser vs. Externally Modulated Laser
 - VCSEL-based links
 - Modulator based links (with an external laser):
 - Micro-ring modulator (MRM)
 - Mach-Zehnder Modulator (MZM)

4K VCSEL (~5pJ/b @ 20Gb/s)

[Feng Group, UIUC 2022]

State-of-the-art Optical Transmitters

- MZM devices have ...
 - Large footprints (mm-scale long) -> pF capacitive load!
 - Poor energy efficiency (5-10pJ/b)
- *Silicon Photonics*: Silicon based devices using CMOS foundries (GF, AMF, AIM, ...)

Micro-Ring Modulators (MRMs)

- Resonance wavelength: $\lambda_0 = n_{eff} L/m$, m = 1,2,3,...
 - Q-factor: Q = $\lambda_0 / \Delta \lambda$
- Compact device (radius of 5μm)
 - Energy & area efficient modulator/filter
- Supporting wavelength division multiplexing (WDM)

Micro-Ring Modulators (MRMs)

Modulation Scheme:

- 1. Deplete/Inject carriers using PN junctions
- 2. Δfree carriers -> Δindex of refraction [Carrier-Plasma Effect] -> Resonance shift

CTRICAL & COMPUTER

ENGINEERING

3. On-Off Keying (OOK) modulation (*OMA: Optical Modulation Amplitude)

MRM in Advanced Silicon Photonics

- Low-power (Sub-pJ/b) & high bandwidth (+50GHz) optical I/O
- MRMs used in R&D and research mainly -> 2025 in Nvidia CPO Switch
- Available in most of major silicon photonics processes such as GlobalFoundries, AMF, and recently in TSMC.

ELECTRICAL & COMPUTER

ENGINEERING

Rad-hard & Cryogenic Photonics

Figure 7 Impacts of ionization radiations on MRM/MZM photonic modulators and how device design optimization can help (c) in green a highly doped device is [CERN Study]

- MRMs are more robust to radiation/temperature effects compared with MZMs (mainly due to smaller footprint)
- Low-thickness slab sections of PN junctions will have reduced resistance ...

(1) Due to career freeze-out in cryogenic temperatures

(2) Due to TID effects under radiation

Challenge 1: Limited Bandwidth of Cryo MRMs

- Electro-optical (EO) BW depends on: (1) RC time-constant of PN junctions, (2) Optical FWHM
- MRM's EO BW reduces at 4K due to carrier freeze-out! (under-radiation this is due to "pinch-off" effect)

Need to optimize doping and reduce junction resistances

14 | EM/T Lab

Challenge 1: Limited Bandwidth of Cryo MRMs

- Lateral junctions with lower PN junction lengths
- Design the MRM with moderate doping (instead of lower doping)

Challenge 2: Tuning Cryogenic MRMs

- Resonance wavelength and laser has to be precisely aligned
 - Due to process variation & temperature fluctuations
 - Closed-loop thermal tuning has been demonstrated for this issue at room temperature

TRICAL & COMPUTER

ENGINEERING

Challenge 2: Tuning Cryogenic MRMs

	Method	Device Footprint	Tuning Speed	Tuning Range	Operation Voltage	Power Efficiency
Tuning	Magneto-optic effect	Small	Moderate	Moderate		Low
	InAlGaAs QW-on-Si, QCSE	Moderate	Moderate	Moderate	Low	High
	MEMS / optomechanical effects	Small	Low	Large	Large	Low
	Phase Change Materials (PCM)	Small	Low	Large	Large	High (Non-volatile)

. & COMPUTER

CAL

ENGINEERING

- Thermo-optical effect are extremely weak at 4K! (less challenging for 70K)
- Alternative are not energy-efficient, can require large voltages, and are not compact!
- Using tunable lasers is not a practical and scalable solution!
- We propose to use Phase change materials (PCM) for non-volatile tuning ... (we get back to this soon ...)

Challenge 3: Electronic/photonic Co-design

Fig. 13. (a) Power consumption breakdown of individual channel/wavelength optical transceiver at 18 Gb/s. (b) Link power efficiency at 18 Gb/s based on link budget analysis of Table I with passively cooled laser and wavelength shuffling tuning scheme of [17], and (c) based on tuning of 3σ wavelength variation.

ELECTRICAL & COMPUTER

ENGINEERING

- Sub-pJ/b energy-efficiency requires ultra-low power CMOS design (co-designed with photonics), and resonance thermal tuning mechanism
- Co-design Examples: using optical DAC rather than electrical, trades on MRM Q-factor and OMA, etc.

Non-volatile Tunable Cryogenic MRMs

Highspeed modulation with carrier plasma-dispersion effect => With optimized doping & device design

Non-volatile resonance tuning using PCM

- => zero energy for tuning!
- **Commercial foundry compatible**

=> Post-processed PCM for now!

Adya, Uthkarsh, Rui Chen, I-Tung Chen, Sanskriti Joshi, Arka Majumdar, Mo Li and Sajjad Moazeni. "Non-volatile Tuning of Cryogenic Optical Resonators." (2024).

Phase Change Material (PCM)

Properties of interest in PCM

- Phase transition (Crystalline -> Amorphous)
- Reversibility (Amorphous -> Crystalline)
- Non-volatile phase transition
- Drastic change in optical properties on phase transition
- Switching mechanisms: Electrical or Optical Examples: GST, GeTe, SbS, SbSe etc

Suitable for photonic applications as they provide a non-volatile EO-reconfigurability

Optical Properties of GST [J. Zheng 2020] [R. Chen 2020]

Applications majorly include programmable units that require infrequent switching

Photonic memory [C. Rios, 2015]

Neuromorphic computing [C. Rios, 2017]

Optical programmable units [P. Xu, 2019], [Zheng, 2020]

20 | **EM***i***T** Lab

Integrating PCM in Commercial SiPh process

- Our devices were fabricated in the AMF silicon photonics process, followed by a zerochange monolithic integration of PCM
- Postprocessing was performed on a die level using a few fabrication steps and coarse resolution photolithography

MRM with Integrated PCM

Adya, Uthkarsh, et al "Non-volatile Tuning of Cryogenic Optical Resonators." (2024).

PCM-integrated Cryogenic MRM

PN junction cross-section

ELECTRICAL & COMPUTER

ENGINEERING

Adya, Uthkarsh, et al "Non-volatile Tuning of Cryogenic Optical Resonators." (2024).

23 | EMi T Lab

PCM-based Tuning of Cryogenic MRM Crystalline-> Amorphous Short pulse & Fast cooling **Amorphous-> Crystalline** - T > 923 K (GST) Crystallization Amorphization Long pulse & Slow cooling V amf - 423 K < T < 923 K (GST) Switching V crys pulse applied to PCM Localized t amf heating to affect only the PCM **Uniform temperature** t crys + 60% t crys profile over the whole Dptical Pow **GST** volume Properties in PCM that make it ideal for cryogenic tuning **Reconfigurability** [Multilevel switching] **Non-volatile** [Zero-Static Power dissipation] Infrequent switching [Cryogenic environment **Optical fiber Small footprint** Optical fiber Postprocessed **Commercial foundry compatible** Adya, Uthkarsh, et al "Non-volatile Tuning of Cryogenic Optical Chip inside the crypgenic probe-station Resonators." (2024).

Resonance Tuning of the Cryogenic MRM

ENGINEERING

25 | EMi^{*}T Lab

MRM Integration for HEP with FermiLab

- Silicon photonics integration with CMOS (Monolithic, 3D, wire-bond)
- Integration with the detector chip
- Fiber/Optical packaging

- Target specs for initial demo:
- 4 Kelvin Operation
- Wavelength-Division Multiplexing (target 4 wavelengths)
- +100 Gb/s per fiber
- < 1pJ/b @25Gb/s per wavelength

Conclusion

- Ultra-low power MRM-based silicon photonic links is the most suitable communication link for HEP & Quantum applications
 - High data-rate, km-range reach, and path for co-packaging with detectors
- Several challenges need to be addressed for cryogenic/rad-hard operations & co-packaging with detectors/ASIC:
 - MRM's tuning & limited EO bandwidth
 - Integration with CMOS and Detector
 - Optical packaging
- We have demonstrated first-ever non-volatile tuning at 4K using PCM & foundry silicon photonics with +10Gb/s MRM transmitters

Acknowledgment

• We would like to thank Fermi Lab, and Department of Energy (DOE) for their support.

Fermilab

