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Why not ASICs?

Are we sure this is a good idea....??

1. No room for mistakes!
« Additional complexity increases the chance to corrupt data, brick chip...
« Should one design in a “fall-back” plan?
2. Environment introduces many new constraints.
* Power, size, potentially radiation-hardness.
3. Requires a specialized knowledge and tools for circuit design.
« Higher barrier (resources, expertise) to prototype new efforts.
4. Challenging to complete a full design verification before fab.
 How to achieve full coverage of all paths for all ML algo configs?
5. Cannot take advantage of latest technology nodes.
» Versus the latest from AMD Xilinx + friends (never mind your iPhone)
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Why ASICs?

1. No other option is capable of addressing our modern scientific data
processing challenges.
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FastML for Science

https://arxiv.org/abs/2207.07958
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Figure: Reference latencies and streaming input data rates for common
industry benchmarks and FastML Science.

Collection of benchmark tasks
for FastML for Science

Spans many scientific
domains and task categories

e Supervised ML
e Unsupervised ML
* RL for realtime control

Aside: our tasks are not well-
represented by industry-driven
benchmarks like MLPerf!
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FastML for Science

D TEe— FastML Science e (Collection of benchmark tasks
(Work in Progress) for FastML for Science

* Spans many scientific
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FastML for Science
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Collection of benchmark tasks
for FastML for Science

Spans many scientific
domains and task categories

Supervised ML
e Unsupervised ML
* RL for realtime control

* More folks got interested...
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A typical readout chain

Up to muIti-GHz Gbps ‘bottleneck’

Read Out Integrated Circuit (ROIC) as an ASIC

‘ Digital
— h Di
e > Shaper Eagd Digitizer Processor

@mpllﬂer

Adapted from JINST 17 C01039
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A modest 100° array of
" 10b pixel data I:{> 100 Gbps
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A typical readout chain

Up to muIti-GHz Gbps ‘bottleneck’

Read Out Integrated Circuit (ROIC) as gn ASIC \

Digital
— h Di ‘
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distillation,
filtering,
reconstruction,
etc ...

Adapted from JINST 17 C01039

For complex sensor data, limited output bandwidth implies
1. Compromise on the data ‘quality’ or transmission rate (ext trigger), or

2. On-device data reduction.
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A typical readout chain

Up to muIti-GHz Gbps ‘bottleneck’

Read Out Integrated Circuit (ROIC) as an ASIC \ \

Digital
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Adapted from JINST 17 C01039

Trigger .
Processor_.
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For complex sensor data, limited output bandwidth implies

Global
Trigger

1. Compromise on the data ‘quality’ or transmission rate (ext trigger), or

2. On-device data reduction.
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A quick tour of past & future work

Applications to digitization and data processing:
Waveform analysis for LGAD readout
Data reduction for x-ray ptychography

Challenges at near-future particle detector experiments:
High-granularity calorimetry

Fast charged-particle tracking

What challenges will next-gen experiments (pp, ete-, nCol) introduce?
Where might they most benefit from ML at the front end?

Stay tuned for much more information in the remainder of this workshop!
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Waveform processing

ML could improve single-channel measurements already at the digi stage.
hd

From sparse samples to:
Jcharge, amplitude, to, noise, ...

Miryala+, JINST 17 C01039

Miryala+, "Peak Prediction Using Multi Layer Perceptron (MLP) for Edge
Computing ASICs Targeting Scientific Applications," 2022 23rd International
Symposium on Quality Electronic Design (ISQED), 2022
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Waveform processing

ML could improve single-channel measurements already at the digi stage.
hd

0t~ (time)

1 i<ty

From sparse samples to:
Jcharge, amplitude, to, noise, ...

Miryala+, JINST 17 C01039

Miryala+, "Peak Prediction Using Multi Layer Perceptron (MLP) for Edge
Computing ASICs Targeting Scientific Applications," 2022 23rd International
Symposium on Quality Electronic Design (ISQED), 2022

BNL group studied ps-level simulation of 50um LGAD; 200x sub-samples.
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Waveform processing

Bit Pre|01510n in Hldden Layers (flrstTwollastTwo)
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X-ray ptychography

(a) (b)
Overlap area
Incident Incident
radiation: radiation:

First position Second position

Specimen .. petector - scattered Specimen: shifted up !)etector - scattered
3 interference pattern: interference pattern:
first position Second position
(c) (d)

[llumination
position (x,y)
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X-ray ptychography

(a) (b)

Overlap area

Incident
radiation:
First position

Incident
radiation:
Second position

Specimen 5 Detector - scattered Specimen: shifted up Detector - scattered
" interference pattern: interference pattern:

first position Second position

Typical sensors: (few-hundred)?2 pixel array with 10-12b ADCs
Real data has high occupancy — zero suppression is ineffective.
Readout limited: Data reduction of 50-100x needed to enable Mfps.

Enable quicker scanes / more samples (beam-time is in high demand!)
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X-ray ptychography

Al-In-Pixel-65 (FNAL/Northwestern)
demonstrator in 65nm Low Power CMOS

JQ + CDS
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Valentin+, NIM A 1057 (2023) 168665
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X-ray ptychography

Al-In-Pixel-65 (FNAL/Northwestern)
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Looking to the (near) future

Next-generation particle detectors will generate data at PB/s.
With high-luminosity LHC detectors, we are ~already there.
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Next-generation particle detectors will generate data at PB/s.
With high-luminosity LHC detectors, we are ~already there.
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‘On-detector intelligence’ filters hits
from straight tracks (high-pr)
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Looking to the (near) future

Next-generation particle detectors will generate data at PB/s.
With high-luminosity LHC detectors, we are ~already there.

High-granularity endcap calorimeter (CMS HGCal)
"5D Imaging calorimeter"
6.3M channels, 0.5-2 cm2, 0i=50ps (was 50k)
High dynamic range (1-100k MIPs)

32 GeV

= W
= AU

Data challenge in an ultra-high radiation environment!

May 19, 2025 C. Herwig 16




CMS HGCal data concentrator

High-granularity QOutput to
detector data trigger path

Level-1
Trigger
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CMS HGCal data concentrator

High-granularity Algorithms Output to
detector data trigger path

WO NN OO, 556

Level-1
Trigger

“Super ] 3 \}i‘ ‘1:;‘ |
cells” . 4 |
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CMS HGCal data concentrator

High-granularity Algorithms Output to
detector data trigger path

Network
Auto-
Encoder

Level-1
Trigger
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CMS HGCal data concentrator

High-granularity Algorithms Qutput to
detector data trigger path

=P | Normalizer

Sensor output NN outputs

4.0- bandwidth — 6
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35 --=- 160 bits — 16
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=
Network 231 |
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104 |0Werlval . TTeEeeeees
0 5 10 15 20
Occupancy [1 MIPt cells]
- »QXQ Search for NN architectures with

: :  Best decoded image fidelit
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Cartesify 8 Conv 128 16 o o
inputs (20b) filters features outputs | Minimal bit-widths prevent overflow
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CMS HGCal data concentrator

High-granularity Algorithms Qutput to
detector data trigger path

N e

Network

Auto-
Encoder

Metric Simulation Target W ,o°9“°°°°°°
'3.&3355-5555;.5...353..!:55:3:.
Power 48 mW <I00 mW =
Enerqy / inference 12 n] N/A 3':*__;_:..22
Area 288 mm? <4 mm2 =,
Gates 780k N/A =
atendy 20 ns 00 ns o e e |
Di Guglielmo+, IEEE TNS 68.8 (2021) 2179 s (kS [ies
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In-pixel data filtering

A core HL-LHC motivation is (di-)Higgs production. Main decay: h—bb.
 Pixel tracker critical to identify B decays with O(mm) displacements.
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In-pixel data filtering

A core

HL-LHC motivation is (di-)Higgs production. Main decay: h—bb.

 Pixel tracker critical to identify B decays with O(mm) displacements.

4N pixels
i Butter LG SmartPixels concept could (e.g.) upgrade
N | ‘ inner CMS layers for 50x readout rate.
MHZ.\K\\

Rest of
CMS

| 40 MHz

- Demonstrator: 50 x 12.5 x 100 um pixels
wourz [ WA 7 Consider size, shape, + time structures to

| | remove sub-2 GeV track data (95% hits).
1 MHz
Buffer

12 s latency credit: J. Dickinson
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In-pixel data filtering

A core HL-LHC motivation is (di-)Higgs production. Main decay: h—bb.

 Pixel tracker critical to identify B decays with O(mm) displacements.
4N pixels

——  Bufter ILE SmartPixels concept could (e.g.) upgrade
A | ‘ inner CMS layers for 50x readout rate.
MHL\\\ Lovel Demonstrator: 50 x 12.5 x 100 um pixels
rest of 424 | ISR UEEAM ¢ Consider size, shape, + time structures to

CMS l | remove sub-2 GeV track data (95% hits).
1 MHz
Buffer

| 40 MHz

12 ps latency credit: J. Dickinson
Yoo+, Mach.Learn.Sci.Tech. 5 (2024) 3, 035047

10 10
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— . . x [pixels Charge [ke x [pixels Charge [ke
— trajectories alter e e e e
pixel cluster shapes Differences can be subtle!
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In-pixel data filtering

NN of varying complexity were optimized, and implemented in 28nm CMOS
Cluster profile model balances performance, complexity.

1004 + - . 4 | -
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true Pr (GeV) Model

Fully parallel implementation minimizes latency

Familiar chain for co-design
(gKeras— hls4dml— Catapult)

Second prototype ROIC now
being characterized.
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Next-gen tracking detectors

Longer term, hit rates at future colliders should far surpass the HL-LHC.
(Can extrapolate LHC to a 50-100 TeV hadron collider w/ ~1000 pileup)
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Next-gen tracking detectors

Longer term, hit rates at future colliders should far surpass the HL-LHC.
(Can extrapolate LHC to a 50-100 TeV hadron collider w/ ~1000 pileup)

* Neutrons ] 29 . e~ ; :

5 Photons Al R T s A AN A SIS T
/Electrons X~ ‘ ' Calzolari
2Positrons o >

PAC N2 AP A AR T

Muon collider is a bit of a different beast due to Beam Induced Background
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Next-gen tracking detectors

Longer term, hit rates at future colliders should far surpass the HL-LHC.

(Can extrapolate LHC to a 50-100 TeV hadron collider w/ ~1000 pileup)
th=t—1t,,(f=1)

ta [ns]
BIB Particle Interactions

-60 —-40 -20 0 20 40 60
Z [ecm]

Sensors will require timing resolution at the scale of 10ps.
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Next-gen tracking detectors

Longer term, hit rates at future colliders should far surpass the HL-LHC.
(Can extrapolate LHC to a 50-100 TeV hadron collider w/ ~1000 pileup)

Ih=1—1,(f=1) « beam, Lattice v0.4, Vs =10 TeV
‘_'_' B T T T T T T | T T T | T T T | T T T | T T T ]
' 9|
70 £10 = Muon Collider
S, - Simulation
8 - |
$ 10°¢ —Y —-€
-e* —n

ta [ns]

-60 —40 -20 0 20 40 60 =20 I2&) - 40I I60I . | I100
z[cm] t [ns]

Sensors will require timing resolution at the scale of 10ps.
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Next-gen tracking detectors

Implications for in-pixel intelligence?
A number of avenues to pursue:

1. Timing will play a key role, but how to
cope w/ higher dimensionality?

2. Can we move from filtering to
featurization (e.g. predict hit position +
angle), to speed up trigger tracking?

3. More efficient algorithm designs
(Spiking NNs, e.g.?)

Miniskar+, "Neuro-Spark: A Submicrosecond Spiking Neural
Networks Architecture for In-Sensor Filtering," International
Conference on Neuromorphic Systems (ICONS), 2024

y [um] y [um] y [um] y [um] y [um]

y [um]

135 MeV pr particle

4 t =200 ps

] t=400ps

] t=600ps

4 t =800 ps

4 t=1000 ps

] t=1200ps

100 A

t = 1400 ps

4 t = 1600 ps

] t=4000 ps

200 400 600 800

1000

Charge [ke]
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Next-gen tracking detectors

1.9 GeV pr particle

Implications for in-pixel intelligence?

100 t =200 ps

IS
=) /=
>

A number of avenues to pursue:

100 4 t =400 ps

1. Timing will play a key role, but how to ;

cope w/ higher dimensionality?

y [um]

100 t =800 ps

2. Can we move from filtering to
featurization (e.g. predict hit position + :

y [um]

Charge [ke]

angle), to speed up trigger tracking? _
0
3. More efficient algorithm designs T 00| t=1200ps
(Spiking NNs, e.9.?) " —
g 1004 t=1400ps
Miniskar+, "Neuro-Spark: A Submicrosecond Spiking Neural ~ § 10 '=600s
Networks Architecture for In-Sensor Filtering," International - . -
Conference on Neuromorphic Systems (ICONS), 2024
g 1004 t=4000ps
0 0 2(I)0 4(I)0 660 860 10I00
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In-sensor featurization for FCC-ee?

Data rates at next-gen e+e- colliders are generally small (hadron, uCol).
Total bandwidth @FCC-ee is ~3x LHCDb (but 200kHz physics rate).

Tracker dominates the total data rate (~% Xo: drift chamber or straws).
Pulse structure is critical for particle ID!

Particle separation (2 m track)
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Cluster counting ~2x better than dE/dx
N. De Filippis (but never used in experiment)!
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In-sensor featurization for FCC-ee?

Efforts are underway for a straw tracker demonstratio
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3+1 ATLAS sMDT chambers to measure ‘dx’ of cosmics,
and test new readout electronics (low-noise, high gain).
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Achieve 0~100um hit resolution in 90:10 He:lsobutane.

Individual clusters evident on the oscilloscope!

ML-based clustering should give a nice
improvement in performance!
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Conclusions and outlook

Despite the inherent challenges, intelligent processing within custom ASICs
will be critical to unlock the full potential of next-gen experiments.
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Conclusions and outlook

Despite the inherent challenges, intelligent processing within custom ASICs
will be critical to unlock the full potential of next-gen experiments.
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Conclusions and outlook

Despite the inherent challenges, intelligent processing within custom ASICs
will be critical to unlock the full potential of next-gen experiments.

Past 5 years have seen exciting new efforts, but much is still theoretical.
~10k ECONSs will “go live” in CMS in a few years... how will they work?
What lessons can we learn for the next-generation of detectors?
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Conclusions and outlook

Despite the inherent challenges, intelligent processing within custom ASICs
will be critical to unlock the full potential of next-gen experiments.

Past 5 years have seen exciting new efforts, but much is still theoretical.
~10k ECONSs will “go live” in CMS in a few years... how will they work?
What lessons can we learn for the next-generation of detectors?

In the coming years, | will be eager to see:
What possibilities new sensor tech enables (e.g. fast timing).
As well as how “competitor” tech (non-ASIC) evolves.
Staying tuned for (e)FPGA, ... and perhaps most important: links!

Thanks for your attention!
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