
Christian Herwig
University of Michigan

ML4FE workshop, University of Hawai’i Manoa
May 19, 2025

Current applications of ML in
ASICs and opportunities /

challenges for future facilities

C. HerwigMay 19, 2025

1. …

Why ASICs?

2

C. HerwigMay 19, 2025

Why not ASICs?

3

Are we sure this is a good idea….??

C. HerwigMay 19, 2025

Why not ASICs?

3

Are we sure this is a good idea….??

1. No room for mistakes!
• Additional complexity increases the chance to corrupt data, brick chip…
• Should one design in a “fall-back” plan?

C. HerwigMay 19, 2025

Why not ASICs?

3

Are we sure this is a good idea….??

1. No room for mistakes!
• Additional complexity increases the chance to corrupt data, brick chip…
• Should one design in a “fall-back” plan?

2. Environment introduces many new constraints.
• Power, size, potentially radiation-hardness.

C. HerwigMay 19, 2025

Why not ASICs?

3

Are we sure this is a good idea….??

1. No room for mistakes!
• Additional complexity increases the chance to corrupt data, brick chip…
• Should one design in a “fall-back” plan?

2. Environment introduces many new constraints.
• Power, size, potentially radiation-hardness.

3. Requires a specialized knowledge and tools for circuit design.
• Higher barrier (resources, expertise) to prototype new efforts.

C. HerwigMay 19, 2025

Why not ASICs?

3

Are we sure this is a good idea….??

1. No room for mistakes!
• Additional complexity increases the chance to corrupt data, brick chip…
• Should one design in a “fall-back” plan?

2. Environment introduces many new constraints.
• Power, size, potentially radiation-hardness.

3. Requires a specialized knowledge and tools for circuit design.
• Higher barrier (resources, expertise) to prototype new efforts.

4. Challenging to complete a full design verification before fab.
• How to achieve full coverage of all paths for all ML algo configs?

C. HerwigMay 19, 2025

Why not ASICs?

3

Are we sure this is a good idea….??

1. No room for mistakes!
• Additional complexity increases the chance to corrupt data, brick chip…
• Should one design in a “fall-back” plan?

2. Environment introduces many new constraints.
• Power, size, potentially radiation-hardness.

3. Requires a specialized knowledge and tools for circuit design.
• Higher barrier (resources, expertise) to prototype new efforts.

4. Challenging to complete a full design verification before fab.
• How to achieve full coverage of all paths for all ML algo configs?

5. Cannot take advantage of latest technology nodes.
• Versus the latest from AMD Xilinx + friends (never mind your iPhone)

C. HerwigMay 19, 2025

1. No other option is capable of addressing our modern scientific data
processing challenges.

Why ASICs?

4

C. HerwigMay 19, 2025

FastML for Science

5

Figure: Reference latencies and streaming input data rates for common
industry benchmarks and FastML Science.

https://arxiv.org/abs/2207.07958

• Collection of benchmark tasks
for FastML for Science

• Spans many scientific
domains and task categories
• Supervised ML
• Unsupervised ML
• RL for realtime control

• Aside: our tasks are not well-
represented by industry-driven
benchmarks like MLPerf!

C. HerwigMay 19, 2025

FastML for Science

5

• Collection of benchmark tasks
for FastML for Science

• Spans many scientific
domains and task categories
• Supervised ML
• Unsupervised ML
• RL for realtime control

• Aside: our tasks are not well-
represented by industry-driven
benchmarks like MLPerf!

• More folks got interested…

C. HerwigMay 19, 2025

FastML for Science

5

• Collection of benchmark tasks
for FastML for Science

• Spans many scientific
domains and task categories
• Supervised ML
• Unsupervised ML
• RL for realtime control

• Aside: our tasks are not well-
represented by industry-driven
benchmarks like MLPerf!

• More folks got interested…

10 Gbps (~LpGBT)

C. HerwigMay 19, 2025

A typical readout chain

6

2
0
2
2

J
I
N
S
T

1
7

C
0
1
0
3
9

experiment. In that study, a Convolutional Neural Network (CNN) -based autoencoder was real-
ized using automatic layout design (i.e., place and route) tools with more than half a million digital
logic gates dissipating few 100’s of mW of power and consuming significant real-estate. Area
and power metrics are critical design parameters, which define the boundaries for the design and
usable implementation of ASICs.

Figure 1. Introducing a neural processor for real-time data processing on the readout integrated circuit.

2 Signal modeling and data preparation

Ground truth training data, of which the generation process is shown in figure 2, was prepared as
sampled waveform snippets resulting from simulating the readout analog circuitry and modelling
the sensor as a 50 μm thick low-gain avalanche diode sensor. Charge pulses are simulated using a
model based on straggling functions [4] for energy loss of minimum ionizing particles traversing
a silicon sensor and generation of charge due to drift and multiplication. The charge pulses are
represented as 25-point piece-wise linear functions and converted into the s-domain. The sensor
currents and distribution of charge pulses are shown in figures 2(a) and (b). The analog processing
chain, described as a CR-RC3 filter, is characterized by the peaking time of the impulse response
chosen to be approximately two times longer than the duration of the charge pulses and is shown
in figure 2(c). The time domain response of the analog chain stimulated by the charge signals is
calculated as an inverse Laplace transform of the product of s-domain representation of the sensor
charge pulses and the transfer function of the filter. Examples of these operations are shown in
figure 2(d). The time domain response of the analog chain are recorded as waveform snippets
allowing some padding before each pulse. Then, noise is added in time domain, by generation
noise sequences, chopping their length to match the lengths of the waveform snippets and adding
both as shown in figure 2(e). Noise is generating as bandwidth limited time sequences obtained
by a superposition of individual impulse responses to a sequence of delta pulses of randomized
polarity and amplitude. A typical noise power frequency spectrum, for which the dominating
noise source is the first stage of the processing chain is modeled. The variance of the noise time
sequence is calculated and the noise process is scaled to result in the planned signal-to-noise ratio,
for example, 30 or 15. A total of about 10k waveform snippets, such as the one shown in figure 2(f),
with noise have been generated. The original values of charge magnitude and time of arrival have
been written together with each waveform snippet to allow testing of the investigated processing
methods. The subsampling, used in the later experiments, is depicted figure 2(f) by red circles.

The original simulation waveform timing window of 8 ns is sampled at the rate of ∼3 ps,
containing 3401 samples. To reflect waveform digitization in real applications, all waveforms are

– 2 –

Up to multi-GHz Gbps ‘bottleneck’

Adapted from JINST 17 C01039

C. HerwigMay 19, 2025

A typical readout chain

6

2
0
2
2

J
I
N
S
T

1
7

C
0
1
0
3
9

experiment. In that study, a Convolutional Neural Network (CNN) -based autoencoder was real-
ized using automatic layout design (i.e., place and route) tools with more than half a million digital
logic gates dissipating few 100’s of mW of power and consuming significant real-estate. Area
and power metrics are critical design parameters, which define the boundaries for the design and
usable implementation of ASICs.

Figure 1. Introducing a neural processor for real-time data processing on the readout integrated circuit.

2 Signal modeling and data preparation

Ground truth training data, of which the generation process is shown in figure 2, was prepared as
sampled waveform snippets resulting from simulating the readout analog circuitry and modelling
the sensor as a 50 μm thick low-gain avalanche diode sensor. Charge pulses are simulated using a
model based on straggling functions [4] for energy loss of minimum ionizing particles traversing
a silicon sensor and generation of charge due to drift and multiplication. The charge pulses are
represented as 25-point piece-wise linear functions and converted into the s-domain. The sensor
currents and distribution of charge pulses are shown in figures 2(a) and (b). The analog processing
chain, described as a CR-RC3 filter, is characterized by the peaking time of the impulse response
chosen to be approximately two times longer than the duration of the charge pulses and is shown
in figure 2(c). The time domain response of the analog chain stimulated by the charge signals is
calculated as an inverse Laplace transform of the product of s-domain representation of the sensor
charge pulses and the transfer function of the filter. Examples of these operations are shown in
figure 2(d). The time domain response of the analog chain are recorded as waveform snippets
allowing some padding before each pulse. Then, noise is added in time domain, by generation
noise sequences, chopping their length to match the lengths of the waveform snippets and adding
both as shown in figure 2(e). Noise is generating as bandwidth limited time sequences obtained
by a superposition of individual impulse responses to a sequence of delta pulses of randomized
polarity and amplitude. A typical noise power frequency spectrum, for which the dominating
noise source is the first stage of the processing chain is modeled. The variance of the noise time
sequence is calculated and the noise process is scaled to result in the planned signal-to-noise ratio,
for example, 30 or 15. A total of about 10k waveform snippets, such as the one shown in figure 2(f),
with noise have been generated. The original values of charge magnitude and time of arrival have
been written together with each waveform snippet to allow testing of the investigated processing
methods. The subsampling, used in the later experiments, is depicted figure 2(f) by red circles.

The original simulation waveform timing window of 8 ns is sampled at the rate of ∼3 ps,
containing 3401 samples. To reflect waveform digitization in real applications, all waveforms are

– 2 –

Up to multi-GHz Gbps ‘bottleneck’

A modest
example:

1002 array of
10b pixel data
@MHz readout

100 Gbps

Adapted from JINST 17 C01039

C. HerwigMay 19, 2025

A typical readout chain

6

2
0
2
2

J
I
N
S
T

1
7

C
0
1
0
3
9

experiment. In that study, a Convolutional Neural Network (CNN) -based autoencoder was real-
ized using automatic layout design (i.e., place and route) tools with more than half a million digital
logic gates dissipating few 100’s of mW of power and consuming significant real-estate. Area
and power metrics are critical design parameters, which define the boundaries for the design and
usable implementation of ASICs.

Figure 1. Introducing a neural processor for real-time data processing on the readout integrated circuit.

2 Signal modeling and data preparation

Ground truth training data, of which the generation process is shown in figure 2, was prepared as
sampled waveform snippets resulting from simulating the readout analog circuitry and modelling
the sensor as a 50 μm thick low-gain avalanche diode sensor. Charge pulses are simulated using a
model based on straggling functions [4] for energy loss of minimum ionizing particles traversing
a silicon sensor and generation of charge due to drift and multiplication. The charge pulses are
represented as 25-point piece-wise linear functions and converted into the s-domain. The sensor
currents and distribution of charge pulses are shown in figures 2(a) and (b). The analog processing
chain, described as a CR-RC3 filter, is characterized by the peaking time of the impulse response
chosen to be approximately two times longer than the duration of the charge pulses and is shown
in figure 2(c). The time domain response of the analog chain stimulated by the charge signals is
calculated as an inverse Laplace transform of the product of s-domain representation of the sensor
charge pulses and the transfer function of the filter. Examples of these operations are shown in
figure 2(d). The time domain response of the analog chain are recorded as waveform snippets
allowing some padding before each pulse. Then, noise is added in time domain, by generation
noise sequences, chopping their length to match the lengths of the waveform snippets and adding
both as shown in figure 2(e). Noise is generating as bandwidth limited time sequences obtained
by a superposition of individual impulse responses to a sequence of delta pulses of randomized
polarity and amplitude. A typical noise power frequency spectrum, for which the dominating
noise source is the first stage of the processing chain is modeled. The variance of the noise time
sequence is calculated and the noise process is scaled to result in the planned signal-to-noise ratio,
for example, 30 or 15. A total of about 10k waveform snippets, such as the one shown in figure 2(f),
with noise have been generated. The original values of charge magnitude and time of arrival have
been written together with each waveform snippet to allow testing of the investigated processing
methods. The subsampling, used in the later experiments, is depicted figure 2(f) by red circles.

The original simulation waveform timing window of 8 ns is sampled at the rate of ∼3 ps,
containing 3401 samples. To reflect waveform digitization in real applications, all waveforms are

– 2 –

Up to multi-GHz Gbps ‘bottleneck’

For complex sensor data, limited output bandwidth implies

1. Compromise on the data ‘quality’ or transmission rate (ext trigger),

A modest
example:

1002 array of
10b pixel data
@MHz readout

100 Gbps

Adapted from JINST 17 C01039

C. HerwigMay 19, 2025

A typical readout chain

7

2
0
2
2

J
I
N
S
T

1
7

C
0
1
0
3
9

experiment. In that study, a Convolutional Neural Network (CNN) -based autoencoder was real-
ized using automatic layout design (i.e., place and route) tools with more than half a million digital
logic gates dissipating few 100’s of mW of power and consuming significant real-estate. Area
and power metrics are critical design parameters, which define the boundaries for the design and
usable implementation of ASICs.

Figure 1. Introducing a neural processor for real-time data processing on the readout integrated circuit.

2 Signal modeling and data preparation

Ground truth training data, of which the generation process is shown in figure 2, was prepared as
sampled waveform snippets resulting from simulating the readout analog circuitry and modelling
the sensor as a 50 μm thick low-gain avalanche diode sensor. Charge pulses are simulated using a
model based on straggling functions [4] for energy loss of minimum ionizing particles traversing
a silicon sensor and generation of charge due to drift and multiplication. The charge pulses are
represented as 25-point piece-wise linear functions and converted into the s-domain. The sensor
currents and distribution of charge pulses are shown in figures 2(a) and (b). The analog processing
chain, described as a CR-RC3 filter, is characterized by the peaking time of the impulse response
chosen to be approximately two times longer than the duration of the charge pulses and is shown
in figure 2(c). The time domain response of the analog chain stimulated by the charge signals is
calculated as an inverse Laplace transform of the product of s-domain representation of the sensor
charge pulses and the transfer function of the filter. Examples of these operations are shown in
figure 2(d). The time domain response of the analog chain are recorded as waveform snippets
allowing some padding before each pulse. Then, noise is added in time domain, by generation
noise sequences, chopping their length to match the lengths of the waveform snippets and adding
both as shown in figure 2(e). Noise is generating as bandwidth limited time sequences obtained
by a superposition of individual impulse responses to a sequence of delta pulses of randomized
polarity and amplitude. A typical noise power frequency spectrum, for which the dominating
noise source is the first stage of the processing chain is modeled. The variance of the noise time
sequence is calculated and the noise process is scaled to result in the planned signal-to-noise ratio,
for example, 30 or 15. A total of about 10k waveform snippets, such as the one shown in figure 2(f),
with noise have been generated. The original values of charge magnitude and time of arrival have
been written together with each waveform snippet to allow testing of the investigated processing
methods. The subsampling, used in the later experiments, is depicted figure 2(f) by red circles.

The original simulation waveform timing window of 8 ns is sampled at the rate of ∼3 ps,
containing 3401 samples. To reflect waveform digitization in real applications, all waveforms are

– 2 –

Up to multi-GHz Gbps ‘bottleneck’

For complex sensor data, limited output bandwidth implies

1. Compromise on the data ‘quality’ or transmission rate (ext trigger),

Trigger
processor Global

Trigger

Adapted from JINST 17 C01039

C. HerwigMay 19, 2025

A typical readout chain

8

2
0
2
2

J
I
N
S
T

1
7

C
0
1
0
3
9

experiment. In that study, a Convolutional Neural Network (CNN) -based autoencoder was real-
ized using automatic layout design (i.e., place and route) tools with more than half a million digital
logic gates dissipating few 100’s of mW of power and consuming significant real-estate. Area
and power metrics are critical design parameters, which define the boundaries for the design and
usable implementation of ASICs.

Figure 1. Introducing a neural processor for real-time data processing on the readout integrated circuit.

2 Signal modeling and data preparation

Ground truth training data, of which the generation process is shown in figure 2, was prepared as
sampled waveform snippets resulting from simulating the readout analog circuitry and modelling
the sensor as a 50 μm thick low-gain avalanche diode sensor. Charge pulses are simulated using a
model based on straggling functions [4] for energy loss of minimum ionizing particles traversing
a silicon sensor and generation of charge due to drift and multiplication. The charge pulses are
represented as 25-point piece-wise linear functions and converted into the s-domain. The sensor
currents and distribution of charge pulses are shown in figures 2(a) and (b). The analog processing
chain, described as a CR-RC3 filter, is characterized by the peaking time of the impulse response
chosen to be approximately two times longer than the duration of the charge pulses and is shown
in figure 2(c). The time domain response of the analog chain stimulated by the charge signals is
calculated as an inverse Laplace transform of the product of s-domain representation of the sensor
charge pulses and the transfer function of the filter. Examples of these operations are shown in
figure 2(d). The time domain response of the analog chain are recorded as waveform snippets
allowing some padding before each pulse. Then, noise is added in time domain, by generation
noise sequences, chopping their length to match the lengths of the waveform snippets and adding
both as shown in figure 2(e). Noise is generating as bandwidth limited time sequences obtained
by a superposition of individual impulse responses to a sequence of delta pulses of randomized
polarity and amplitude. A typical noise power frequency spectrum, for which the dominating
noise source is the first stage of the processing chain is modeled. The variance of the noise time
sequence is calculated and the noise process is scaled to result in the planned signal-to-noise ratio,
for example, 30 or 15. A total of about 10k waveform snippets, such as the one shown in figure 2(f),
with noise have been generated. The original values of charge magnitude and time of arrival have
been written together with each waveform snippet to allow testing of the investigated processing
methods. The subsampling, used in the later experiments, is depicted figure 2(f) by red circles.

The original simulation waveform timing window of 8 ns is sampled at the rate of ∼3 ps,
containing 3401 samples. To reflect waveform digitization in real applications, all waveforms are

– 2 –

Up to multi-GHz Gbps ‘bottleneck’

For complex sensor data, limited output bandwidth implies

1. Compromise on the data ‘quality’ or transmission rate (ext trigger), or

2. On-device data reduction.

distillation,
filtering,

reconstruction,
etc …

Adapted from JINST 17 C01039

C. HerwigMay 19, 2025

A typical readout chain

9

2
0
2
2

J
I
N
S
T

1
7

C
0
1
0
3
9

experiment. In that study, a Convolutional Neural Network (CNN) -based autoencoder was real-
ized using automatic layout design (i.e., place and route) tools with more than half a million digital
logic gates dissipating few 100’s of mW of power and consuming significant real-estate. Area
and power metrics are critical design parameters, which define the boundaries for the design and
usable implementation of ASICs.

Figure 1. Introducing a neural processor for real-time data processing on the readout integrated circuit.

2 Signal modeling and data preparation

Ground truth training data, of which the generation process is shown in figure 2, was prepared as
sampled waveform snippets resulting from simulating the readout analog circuitry and modelling
the sensor as a 50 μm thick low-gain avalanche diode sensor. Charge pulses are simulated using a
model based on straggling functions [4] for energy loss of minimum ionizing particles traversing
a silicon sensor and generation of charge due to drift and multiplication. The charge pulses are
represented as 25-point piece-wise linear functions and converted into the s-domain. The sensor
currents and distribution of charge pulses are shown in figures 2(a) and (b). The analog processing
chain, described as a CR-RC3 filter, is characterized by the peaking time of the impulse response
chosen to be approximately two times longer than the duration of the charge pulses and is shown
in figure 2(c). The time domain response of the analog chain stimulated by the charge signals is
calculated as an inverse Laplace transform of the product of s-domain representation of the sensor
charge pulses and the transfer function of the filter. Examples of these operations are shown in
figure 2(d). The time domain response of the analog chain are recorded as waveform snippets
allowing some padding before each pulse. Then, noise is added in time domain, by generation
noise sequences, chopping their length to match the lengths of the waveform snippets and adding
both as shown in figure 2(e). Noise is generating as bandwidth limited time sequences obtained
by a superposition of individual impulse responses to a sequence of delta pulses of randomized
polarity and amplitude. A typical noise power frequency spectrum, for which the dominating
noise source is the first stage of the processing chain is modeled. The variance of the noise time
sequence is calculated and the noise process is scaled to result in the planned signal-to-noise ratio,
for example, 30 or 15. A total of about 10k waveform snippets, such as the one shown in figure 2(f),
with noise have been generated. The original values of charge magnitude and time of arrival have
been written together with each waveform snippet to allow testing of the investigated processing
methods. The subsampling, used in the later experiments, is depicted figure 2(f) by red circles.

The original simulation waveform timing window of 8 ns is sampled at the rate of ∼3 ps,
containing 3401 samples. To reflect waveform digitization in real applications, all waveforms are

– 2 –

Up to multi-GHz Gbps ‘bottleneck’

For complex sensor data, limited output bandwidth implies

1. Compromise on the data ‘quality’ or transmission rate (ext trigger), or

2. On-device data reduction.

Trigger
processor Global

Trigger

Adapted from JINST 17 C01039

C. HerwigMay 19, 2025

A quick tour of past & future work

10

Applications to digitization and data processing:
Waveform analysis for LGAD readout
Data reduction for x-ray ptychography

Stay tuned for much more information in the remainder of this workshop!

Challenges at near-future particle detector experiments:
High-granularity calorimetry
Fast charged-particle tracking

What challenges will next-gen experiments (pp, e+e-, μCol) introduce?
Where might they most benefit from ML at the front end?

C. HerwigMay 19, 2025

Waveform processing

11

ML could improve single-channel measurements already at the digi stage.

Fig. 5. Proposed ANN-based methodology and Mean Absolute Error (MAE) estimation [19]. In the MAE plots, (m|n) represents m bit (n bit) precision for
first (last) two hidden layers.

Fig. 6. Time of arrival (ToA) estimation from noisy measured data. Conven-
tional approaches use threshold crossings to estimate ToA; the dashed line
shows a typical threshold value. By contrast, ANN-based approaches fit all
the acquired samples to a previously-learned pulse shape.

Fig. 7. An experimental example of simultaneous detection at high event
rates, i.e., pulse pile-up.

pixels has to be reconstructed to recover the intensity and/or
the position of the impinging radiation. Several approaches
have been developed for this purpose [25], [26]. However they
further limit the readout speed and are not effective in non-
ideal conditions (e.g., due to inter-pixel mismatches).

Fig. 8. Graphical illustration of the process of photon detection within a
pixelated detector.

The in-pixel implementation of ANN methodologies can
significantly increase the detector performance. For example,
the use of CNNs has been shown to improve reconstruction
accuracy and reduce computational complexity [27].

ANNs can be effectively employed to simplify the charge
sharing compensation scheme. Given the encouraging results
of using ANNs for energy detection from a single channel
as described in Section III-A, we plan to implement an ANN
scheme for handling change sharing. In this case the ANN
block will process the input from neighboring pixels (4-8
input channels), as shown in Fig. 9. More precisely, groups
of neighboring pixels are combined into “super pixels” and
then fed into an ANN with multiple outputs. We are currently
implementing this scheme to evaluate its efficacy.

IV. DESIGN CHALLENGES RELATED TO ANNS IN ASICS

The implementation of ANNs on an ASIC requires the
understanding of the ASIC physical limitations and of the
ANN architectures and optimization methods as well. Thus,
the design process is a multidisciplinary effort that requires
diverse expertise. We examined several ANN architectures to
evaluate their suitability for estimating the magnitude of the

From sparse samples to:
∫charge, amplitude, t0, noise, …

Miryala+, JINST 17 C01039
Miryala+, "Peak Prediction Using Multi Layer Perceptron (MLP) for Edge
Computing ASICs Targeting Scientific Applications," 2022 23rd International
Symposium on Quality Electronic Design (ISQED), 2022

C. HerwigMay 19, 2025

Waveform processing

11

ML could improve single-channel measurements already at the digi stage.

Fig. 5. Proposed ANN-based methodology and Mean Absolute Error (MAE) estimation [19]. In the MAE plots, (m|n) represents m bit (n bit) precision for
first (last) two hidden layers.

Fig. 6. Time of arrival (ToA) estimation from noisy measured data. Conven-
tional approaches use threshold crossings to estimate ToA; the dashed line
shows a typical threshold value. By contrast, ANN-based approaches fit all
the acquired samples to a previously-learned pulse shape.

Fig. 7. An experimental example of simultaneous detection at high event
rates, i.e., pulse pile-up.

pixels has to be reconstructed to recover the intensity and/or
the position of the impinging radiation. Several approaches
have been developed for this purpose [25], [26]. However they
further limit the readout speed and are not effective in non-
ideal conditions (e.g., due to inter-pixel mismatches).

Fig. 8. Graphical illustration of the process of photon detection within a
pixelated detector.

The in-pixel implementation of ANN methodologies can
significantly increase the detector performance. For example,
the use of CNNs has been shown to improve reconstruction
accuracy and reduce computational complexity [27].

ANNs can be effectively employed to simplify the charge
sharing compensation scheme. Given the encouraging results
of using ANNs for energy detection from a single channel
as described in Section III-A, we plan to implement an ANN
scheme for handling change sharing. In this case the ANN
block will process the input from neighboring pixels (4-8
input channels), as shown in Fig. 9. More precisely, groups
of neighboring pixels are combined into “super pixels” and
then fed into an ANN with multiple outputs. We are currently
implementing this scheme to evaluate its efficacy.

IV. DESIGN CHALLENGES RELATED TO ANNS IN ASICS

The implementation of ANNs on an ASIC requires the
understanding of the ASIC physical limitations and of the
ANN architectures and optimization methods as well. Thus,
the design process is a multidisciplinary effort that requires
diverse expertise. We examined several ANN architectures to
evaluate their suitability for estimating the magnitude of the

From sparse samples to:
∫charge, amplitude, t0, noise, …

2
0
2
2

J
I
N
S
T

1
7

C
0
1
0
3
9

Figure 2. Generation of sampled waveform snippets, (a) sensor currents with average current waveform,
(b) distribution of signal charges, (c) impulse response of electronic analog filter, (d) convolutions of sensor
currents with filter impulse responses, (e) electronic noise waveforms, (f) waveform snippet with sampling.

downsampled by about 190-fold, reducing its dimension (1D) from 3401 to 18 i.e. sampling rate
of ∼437 ps, resulting in 0 to 1 sample on the rising transition and 1 to 2 samples on the falling
transition of a waveform. The subsampling is a challenge as the maximum value in a downsampled
waveform likely deviates much further from its ground truth amplitude. If we naively treat the
maximum values in downsampled waveforms as our predictions, the average absolute error is
0.135. Therefore, our models aim to outperform this naive method. We randomly separate the
waveforms into train-validation and test subsets. The test dataset has never been exposed to the
model training or validation to reflect the model performance on the test dataset on unseen data.

3 Neural network models and experiment results

Neural-network-based machine learning approaches have demonstrated tremendous success in
complex recognition tasks that previously were prohibitive. Here, we consider two well established
network architectures: MLP and CNN [5]. MLP consists of a sequence of fully connected (fc)
layers with non-linear activation functions. A fc layer is a linear model that takes an input vector,
multiplies it by a weight matrix, and adds a bias vector (figure 3). Despite their apparent simplicity,
such layers, when stacked upon each other, posses universal approximation capabilities [6] and are
competitive with state of the art convolutional and attention based models [7]. A CNN consist of a
sequence of convolutional layers followed by non-linear activations. A convolutional layer (conv)
consists of multiple small matrices, called “kernels” (colored in orange in figure 3). Each kernel
scans through the input signal by a fixed stride and computes the inner product with the aligned
portion of the input.

Computationally expensive operations such as exponentiation and division have been not used
by restricting activation functions to ReLU and avoiding batch normalizations to meet power,
area, performance and latency constraints. Recent studies have shown that a norm-free neural

– 3 –

BNL group studied ps-level simulation of 50μm LGAD; 200x sub-samples.

2
0
2
2

J
I
N
S
T

1
7

C
0
1
0
3
9

Figure 3. Schematics of MLP and Conv1D. Performances of MLP and CNN in various model sizes.

network can perform well [8]. To promote low latency, the investigated networks were of not more
than 6 layers. The resulting network architectures are suitable for deployment on most non-GPU
computing hardware, such as FPGAs, intelligence processing units (IPUs), microcontrollers, or
in ASICs.

Section 3.1 details the performance of various MLP and CNN configurations as the baseline.
Section 3.2 shows the experiments with different pruning methods on these networks. Section 3.3
applies variable-bit quantization-aware training to reduce model sizes, and section 3.4 details how
combining pruning with quantization further reduces model sizes.

3.1 Neural network model baseline performance

Neural architectures and suitable hyperparameters are explored and determined by experimenting
with various network configurations. The layer widths and kernel sizes in consideration are
tabulated in table 1. To establish a fair comparison between MLPs and CNNs, models of different
sizes are denoted as “Tiny” (T), “Small” (S), “Medium” (M), and “Large” (L) for the number of
parameters in the proximities of 400, 1300, 4000 and 9700, respectively. The number of layers of
both MLP and CNN are fixed at five: one input layer, three hidden layers, and one output layer.
Using the tiny MLP as an example, the input layer has a dimension of input-dim ×8, the three
hidden layers have 8 × 8, and the output layer has 8 × 1, where the input-dim is 18. Each number in
an MLP configuration indicates the width of a fully connected layer. For the CNN configurations,
the first three numbers indicate the number of output channels in convolutional layers with the last
number noting the width of the fully connected output layer.

Models are trained to regress the waveform ground truth amplitude using the MSE as the target
loss function and the AdamW optimizer. The optimal number of epochs required for training is
determined by using the 90/10 train-valid split and finding the minimum validation error epoch.
The model then is retrained with the entire training data for the optimal number of epochs.

All models were evaluated on a held-out data set using the Mean-Absolute-Error, MAE =
1/N∑N

i=1 |yi − ŷi | . Lower MAEs between predicted signal amplitudes and ground truth values are
better. Violin graphs shown in figure 3 capture the highest (violin bottom), lowest (violin top) and
median performing models sampled from 10 runs for the specific model configuration.

Model sizes also play an important role. In general, the tiny models do not perform as well
as other models. The large models have similar performance as the medium models but are prone

– 4 –

NN improve amplitudes by >4x (by MAE).

Miryala+, JINST 17 C01039
Miryala+, "Peak Prediction Using Multi Layer Perceptron (MLP) for Edge
Computing ASICs Targeting Scientific Applications," 2022 23rd International
Symposium on Quality Electronic Design (ISQED), 2022

C. HerwigMay 19, 2025

2
0
2
2

J
I
N
S
T

1
7

C
0
1
0
3
9

can reach the test MAE of 0.0373 (averaged over 10 runs), whereas MLPS (1.15 KB) with all
hidden layer of 8 bits of 0.0375, which is close to that of MLPM. When the precision of the first
two hidden layers is less than the precision of the last two hidden layers, a loss of information
is evident as the evaluation MAE in such cases is relatively higher than others. In terms of the
CNN models, figure 5(b), when the precision of hidden layers is homogeneous 8-bits, the MAE
is lowest, around 0.036. Even though CNNS (0.75 KB) has only two-thirds of the parameters
comparing to its MLPS (1.154 KB), it has better performance. Therefore, CNN models deliver
better performance at lower precision using QAT with a small memory footprint.

Figure 5. Variable bit Quantization-aware Training (QAT) and pruning with QAT in CNN and MLP.

– 7 –

Waveform processing

12

Python: compare
NN architectures,
pruning,
quantization, …

C. HerwigMay 19, 2025

2
0
2
2

J
I
N
S
T

1
7

C
0
1
0
3
9

can reach the test MAE of 0.0373 (averaged over 10 runs), whereas MLPS (1.15 KB) with all
hidden layer of 8 bits of 0.0375, which is close to that of MLPM. When the precision of the first
two hidden layers is less than the precision of the last two hidden layers, a loss of information
is evident as the evaluation MAE in such cases is relatively higher than others. In terms of the
CNN models, figure 5(b), when the precision of hidden layers is homogeneous 8-bits, the MAE
is lowest, around 0.036. Even though CNNS (0.75 KB) has only two-thirds of the parameters
comparing to its MLPS (1.154 KB), it has better performance. Therefore, CNN models deliver
better performance at lower precision using QAT with a small memory footprint.

Figure 5. Variable bit Quantization-aware Training (QAT) and pruning with QAT in CNN and MLP.

– 7 –

Waveform processing

12

Python: compare
NN architectures,
pruning,
quantization, …

hls4ml Catapult
HLSqKeras

Good agreement found at each stage

M
AE

0.07
0.074
0.078
0.082
0.086
0.09
0.094
0.098

6|6 6|8 8|6 8|8
Qkeras hls4ml RTL

(a) Tiny (8)

0.065
0.07
0.075
0.08
0.085
0.09
0.095

0.1

6|6 6|8 8|6 8|8
Qkeras hls4ml RTL

(b) Small (16) (c) Medium (36) (d) Large (52)

Fig. 5: Mean Absolute Error (MAE) Comparison for Different Precision Configuration of Parameters in Hidden Layers

(a) Tiny (8) (b) Small (16) (c) Medium (36) (d) Large (52)

Fig. 6: Mean Absolute Percentage Error (MAPE) Comparison of RTL for Different Precision Configuration of Parameters in
Hidden Layers (bottom horizontal) and corresponding model sizes in kiloBytes (top horizontal)

(a) Area (b) Power

Fig. 7: PPA Comparison for Different Precision Configuration of Parameters in Hidden Layers

TABLE II: Percent Change in MAE and Area with Removal of Quantization and Overflow Logic

Number of neurons
in each layer

Percent change in MAE and area with removal of quantization and
overflow logic for Different Precision Configuration

4|4 4|6 4|8 6|4 6|6 6|8 8|4 8|6 8|8
Tiny (8)

Increase in MAE (%) 15.40 133.99 117.26 25.24 124.27 93.77 185.46 76.35 53.02
Area Savings (%) 1.08 0.90 0.77 0.93 0.47 0.57 0.90 0.65 0.80

Small (16)
Increase in MAE (%) 203.65 167.26 183.24 204.08 94.16 103.57 196.72 59.30 31.40

Area Savings (%) 0.28 0.38 0.57 0.51 0.32 0.55 0.32 0.27 0.65
Medium (36)

Increase in MAE (%) 204.28 27.60 184.05 188.04 135.67 88.01 261.93 112.99 61.84
Area Savings (%) 2.44 3.60 3.67 2.54 1.76 2.75 3.11 2.88 2.43

Large (52)
Increase in MAE (%) 65.19 155.99 163.90 200.27 51.59 114.28 156.55 9.99 59.78

Area Savings (%) 1.87 2.43 2.88 1.40 1.58 2.25 2.46 2.45 2.62

Tiny Small
Implemented in 65nm TSMC

C. HerwigMay 19, 2025

2
0
2
2

J
I
N
S
T

1
7

C
0
1
0
3
9

can reach the test MAE of 0.0373 (averaged over 10 runs), whereas MLPS (1.15 KB) with all
hidden layer of 8 bits of 0.0375, which is close to that of MLPM. When the precision of the first
two hidden layers is less than the precision of the last two hidden layers, a loss of information
is evident as the evaluation MAE in such cases is relatively higher than others. In terms of the
CNN models, figure 5(b), when the precision of hidden layers is homogeneous 8-bits, the MAE
is lowest, around 0.036. Even though CNNS (0.75 KB) has only two-thirds of the parameters
comparing to its MLPS (1.154 KB), it has better performance. Therefore, CNN models deliver
better performance at lower precision using QAT with a small memory footprint.

Figure 5. Variable bit Quantization-aware Training (QAT) and pruning with QAT in CNN and MLP.

– 7 –

Waveform processing

12

Python: compare
NN architectures,
pruning,
quantization, …

hls4ml Catapult
HLSqKeras

Good agreement found at each stage

M
AE

0.07
0.074
0.078
0.082
0.086
0.09
0.094
0.098

6|6 6|8 8|6 8|8
Qkeras hls4ml RTL

(a) Tiny (8)

0.065
0.07
0.075
0.08
0.085
0.09
0.095

0.1

6|6 6|8 8|6 8|8
Qkeras hls4ml RTL

(b) Small (16) (c) Medium (36) (d) Large (52)

Fig. 5: Mean Absolute Error (MAE) Comparison for Different Precision Configuration of Parameters in Hidden Layers

(a) Tiny (8) (b) Small (16) (c) Medium (36) (d) Large (52)

Fig. 6: Mean Absolute Percentage Error (MAPE) Comparison of RTL for Different Precision Configuration of Parameters in
Hidden Layers (bottom horizontal) and corresponding model sizes in kiloBytes (top horizontal)

(a) Area (b) Power

Fig. 7: PPA Comparison for Different Precision Configuration of Parameters in Hidden Layers

TABLE II: Percent Change in MAE and Area with Removal of Quantization and Overflow Logic

Number of neurons
in each layer

Percent change in MAE and area with removal of quantization and
overflow logic for Different Precision Configuration

4|4 4|6 4|8 6|4 6|6 6|8 8|4 8|6 8|8
Tiny (8)

Increase in MAE (%) 15.40 133.99 117.26 25.24 124.27 93.77 185.46 76.35 53.02
Area Savings (%) 1.08 0.90 0.77 0.93 0.47 0.57 0.90 0.65 0.80

Small (16)
Increase in MAE (%) 203.65 167.26 183.24 204.08 94.16 103.57 196.72 59.30 31.40

Area Savings (%) 0.28 0.38 0.57 0.51 0.32 0.55 0.32 0.27 0.65
Medium (36)

Increase in MAE (%) 204.28 27.60 184.05 188.04 135.67 88.01 261.93 112.99 61.84
Area Savings (%) 2.44 3.60 3.67 2.54 1.76 2.75 3.11 2.88 2.43

Large (52)
Increase in MAE (%) 65.19 155.99 163.90 200.27 51.59 114.28 156.55 9.99 59.78

Area Savings (%) 1.87 2.43 2.88 1.40 1.58 2.25 2.46 2.45 2.62

Tiny Small
Implemented in 65nm TSMC

(a) Tiny (8) (b) Small (16) (c) Medium (36) (d) Large (52)

Fig. 5: Mean Absolute Error (MAE) Comparison for Different Precision Configuration of Parameters in Hidden Layers

(a) Tiny (8) (b) Small (16) (c) Medium (36) (d) Large (52)

Fig. 6: Mean Absolute Percentage Error (MAPE) Comparison of RTL for Different Precision Configuration of Parameters in
Hidden Layers (bottom horizontal) and corresponding model sizes in kiloBytes (top horizontal)

0

3

6

9

12

15

18

4|4 4|6 4|8 6|4 6|6 6|8 8|4 8|6 8|8

m
m

2

Tiny (8) Small (16) Medium (36) Large (52)

(a) Area

0
200
400
600
800

1000
1200
1400
1600

4|4 4|6 4|8 6|4 6|6 6|8 8|4 8|6 8|8

m
W

Tiny (8) Small (16) Medium (36) Large (52)

(b) Power

Fig. 7: PPA Comparison for Different Precision Configuration of Parameters in Hidden Layers

TABLE II: Percent Change in MAE and Area with Removal of Quantization and Overflow Logic

Number of neurons
in each layer

Percent change in MAE and area with removal of quantization and
overflow logic for Different Precision Configuration

4|4 4|6 4|8 6|4 6|6 6|8 8|4 8|6 8|8
Tiny (8)

Increase in MAE (%) 15.40 133.99 117.26 25.24 124.27 93.77 185.46 76.35 53.02
Area Savings (%) 1.08 0.90 0.77 0.93 0.47 0.57 0.90 0.65 0.80

Small (16)
Increase in MAE (%) 203.65 167.26 183.24 204.08 94.16 103.57 196.72 59.30 31.40

Area Savings (%) 0.28 0.38 0.57 0.51 0.32 0.55 0.32 0.27 0.65
Medium (36)

Increase in MAE (%) 204.28 27.60 184.05 188.04 135.67 88.01 261.93 112.99 61.84
Area Savings (%) 2.44 3.60 3.67 2.54 1.76 2.75 3.11 2.88 2.43

Large (52)
Increase in MAE (%) 65.19 155.99 163.90 200.27 51.59 114.28 156.55 9.99 59.78

Area Savings (%) 1.87 2.43 2.88 1.40 1.58 2.25 2.46 2.45 2.62

Tradeoff model
performance for
area, power
consumption

C. HerwigMay 19, 2025

X-ray ptychography

13

C. HerwigMay 19, 2025

X-ray ptychography

13

Typical sensors: (few-hundred)2 pixel array with 10-12b ADCs

Real data has high occupancy → zero suppression is ineffective.

Readout limited: Data reduction of 50-100x needed to enable Mfps.

Enable quicker scanes / more samples (beam-time is in high demand!)

C. HerwigMay 19, 2025

X-ray ptychography

14

AI-In-Pixel-65 (FNAL/Northwestern)
demonstrator in 65nm Low Power CMOS

Nuclear Inst. and Methods in Physics Research, A 1057 (2023) 168665

2

M.B. Valentin et al.

Fig. 1. Functional block diagram of AI-In-Pixel-65 test chip with either PCA or AE performing data compression for 1024 pixels.

Fig. 2. Our ROIC test chip (AI-In-Pixel-65) with the PCA and AE algorithms integrated in the pixelated area. On the right, an highlight of the compression algorithm in digital
logic surrounding the analog pixels.

stream is a tiny fraction of the raw data rate, and discarding data which
is not ‘‘interesting’’ before it is moved off-chip can dramatically reduce
both power and bandwidth consumption. The advancement of both
CMOS technology nodes and machine learning algorithms has made
on-chip discrimination realistic with only a modest power and area
overhead, making data compression useful to both bridge the gap until
more efficient link strategies are mature, as well as complement them
when they arrive.

In this work, we aim to demonstrate that lossy data compression
techniques such as Principal Component Analysis (PCA) and AI/ML-
based AutoEncoders (AE) could enable 50ω to 80ω on-chip data com-
pression as a pathway to overcoming the I/O bottleneck while main-
taining the accuracy required for image reconstruction and further
scientific analysis. Traditionally, edge AI has constituted the implemen-
tation of neural networks (NNs) on FPGAs or digital data concentrator
ASICs, which collect and process data from several front-end ROICs.
However, integrating NNs directly in the pixelated front-end ROICs
would result in a significant reduction in off-chip data transfer.

Our AI-In-Pixel-65 test chip architecture for X-ray detectors includes
two 32 ω 32 arrays of pixels with independent readouts after data com-
pression, as shown in Fig. 1. Fig. 2 shows the layout of the readout chip
with the PCA and AE algorithms integrated into the pixelated areas.
The following sections describe the pixel front-end architecture, the
algorithm development, some implementation issues, and our co-design
solutions.

2. Front-end architecture

The AI-In-Pixel-65 analog front-end consists of three stages: a charge-
sensitive integrator, correlated double-sampling circuit, and compact
100 KSPS serial SAR ADC [9].

A charge-sensitive integrator is directly connected to the photo-
diode, converting pulses of charge to voltage. Its feedback capaci-
tor is a 3 fF plate capacitor with the top-metal bump bond forming
one plate. The integrator’s output is sampled by a correlated double-
sampling (CDS) circuit, which suppresses low-frequency noise and reset
noise [10].

The sampled voltage is digitized by a ten-bit serial successive ap-
proximation register (SAR) ADC. The ADC generates approximation
voltages using a charge redistribution DAC based on two capacitors 𝜔𝜀
and 𝜔𝜗. Six binary weighted trim capacitors are used to tune 𝜔𝜗 =
𝜔𝜀. When not selected, these trim capacitors are bootstrapped by the
comparator’s input buffer.

The DAC generates each successive bit of the approximation voltage
by charging 𝜔𝜀 either to 𝜛𝜚𝜍𝜑 or to 0 V, then shorting the positive
terminals of 𝜔𝜀 and 𝜔𝜗 together [11]. The final voltage developed at
the positive terminal of 𝜔𝜗 (the negative input to the comparator) after
𝛻 phases is given by:

𝛻⌋
𝜕=1

𝜛𝜚𝜍𝜑 ℵ𝜕
2𝛻ε𝜕+1

Where ℵ𝜕 is one if 𝜔𝜀 is charged to 𝜛𝜚𝜍𝜑 at stage 𝜕 and zero if it
is discharged. The ADC compares each approximation to the sampled
voltage at its positive input to decide the next ℵ𝜕. 𝜔𝜗 is then discharged.
Thus, one 10-bit ADC acquisition requires 55 clock cyles:

⌈10
𝜕=1 𝜕 = 45

cycles to compute 10 approximations, plus 10 discharge/clear cycles.
However, the data from one ADC acquisition can be read out while the
next sample is being acquired, so no dead time is introduced if total
readout time is less than one acquisition period [5].

∫Q + CDS

100 KSPS
serial SAR ADC

Autoencoder or
PCA compress

Valentin+, NIM A 1057 (2023) 168665

Nuclear Inst. and Methods in Physics Research, A 1057 (2023) 168665

2

M.B. Valentin et al.

Fig. 1. Functional block diagram of AI-In-Pixel-65 test chip with either PCA or AE performing data compression for 1024 pixels.

Fig. 2. Our ROIC test chip (AI-In-Pixel-65) with the PCA and AE algorithms integrated in the pixelated area. On the right, an highlight of the compression algorithm in digital
logic surrounding the analog pixels.

stream is a tiny fraction of the raw data rate, and discarding data which
is not ‘‘interesting’’ before it is moved off-chip can dramatically reduce
both power and bandwidth consumption. The advancement of both
CMOS technology nodes and machine learning algorithms has made
on-chip discrimination realistic with only a modest power and area
overhead, making data compression useful to both bridge the gap until
more efficient link strategies are mature, as well as complement them
when they arrive.

In this work, we aim to demonstrate that lossy data compression
techniques such as Principal Component Analysis (PCA) and AI/ML-
based AutoEncoders (AE) could enable 50ω to 80ω on-chip data com-
pression as a pathway to overcoming the I/O bottleneck while main-
taining the accuracy required for image reconstruction and further
scientific analysis. Traditionally, edge AI has constituted the implemen-
tation of neural networks (NNs) on FPGAs or digital data concentrator
ASICs, which collect and process data from several front-end ROICs.
However, integrating NNs directly in the pixelated front-end ROICs
would result in a significant reduction in off-chip data transfer.

Our AI-In-Pixel-65 test chip architecture for X-ray detectors includes
two 32 ω 32 arrays of pixels with independent readouts after data com-
pression, as shown in Fig. 1. Fig. 2 shows the layout of the readout chip
with the PCA and AE algorithms integrated into the pixelated areas.
The following sections describe the pixel front-end architecture, the
algorithm development, some implementation issues, and our co-design
solutions.

2. Front-end architecture

The AI-In-Pixel-65 analog front-end consists of three stages: a charge-
sensitive integrator, correlated double-sampling circuit, and compact
100 KSPS serial SAR ADC [9].

A charge-sensitive integrator is directly connected to the photo-
diode, converting pulses of charge to voltage. Its feedback capaci-
tor is a 3 fF plate capacitor with the top-metal bump bond forming
one plate. The integrator’s output is sampled by a correlated double-
sampling (CDS) circuit, which suppresses low-frequency noise and reset
noise [10].

The sampled voltage is digitized by a ten-bit serial successive ap-
proximation register (SAR) ADC. The ADC generates approximation
voltages using a charge redistribution DAC based on two capacitors 𝜔𝜀
and 𝜔𝜗. Six binary weighted trim capacitors are used to tune 𝜔𝜗 =
𝜔𝜀. When not selected, these trim capacitors are bootstrapped by the
comparator’s input buffer.

The DAC generates each successive bit of the approximation voltage
by charging 𝜔𝜀 either to 𝜛𝜚𝜍𝜑 or to 0 V, then shorting the positive
terminals of 𝜔𝜀 and 𝜔𝜗 together [11]. The final voltage developed at
the positive terminal of 𝜔𝜗 (the negative input to the comparator) after
𝛻 phases is given by:

𝛻⌋
𝜕=1

𝜛𝜚𝜍𝜑 ℵ𝜕
2𝛻ε𝜕+1

Where ℵ𝜕 is one if 𝜔𝜀 is charged to 𝜛𝜚𝜍𝜑 at stage 𝜕 and zero if it
is discharged. The ADC compares each approximation to the sampled
voltage at its positive input to decide the next ℵ𝜕. 𝜔𝜗 is then discharged.
Thus, one 10-bit ADC acquisition requires 55 clock cyles:

⌈10
𝜕=1 𝜕 = 45

cycles to compute 10 approximations, plus 10 discharge/clear cycles.
However, the data from one ADC acquisition can be read out while the
next sample is being acquired, so no dead time is introduced if total
readout time is less than one acquisition period [5].

Compression algorithm
surrounding analog pixels

Analog island
(4 pixels)

32x32pix arrays

C. HerwigMay 19, 2025

X-ray ptychography

14

AI-In-Pixel-65 (FNAL/Northwestern)
demonstrator in 65nm Low Power CMOS

Nuclear Inst. and Methods in Physics Research, A 1057 (2023) 168665

2

M.B. Valentin et al.

Fig. 1. Functional block diagram of AI-In-Pixel-65 test chip with either PCA or AE performing data compression for 1024 pixels.

Fig. 2. Our ROIC test chip (AI-In-Pixel-65) with the PCA and AE algorithms integrated in the pixelated area. On the right, an highlight of the compression algorithm in digital
logic surrounding the analog pixels.

stream is a tiny fraction of the raw data rate, and discarding data which
is not ‘‘interesting’’ before it is moved off-chip can dramatically reduce
both power and bandwidth consumption. The advancement of both
CMOS technology nodes and machine learning algorithms has made
on-chip discrimination realistic with only a modest power and area
overhead, making data compression useful to both bridge the gap until
more efficient link strategies are mature, as well as complement them
when they arrive.

In this work, we aim to demonstrate that lossy data compression
techniques such as Principal Component Analysis (PCA) and AI/ML-
based AutoEncoders (AE) could enable 50ω to 80ω on-chip data com-
pression as a pathway to overcoming the I/O bottleneck while main-
taining the accuracy required for image reconstruction and further
scientific analysis. Traditionally, edge AI has constituted the implemen-
tation of neural networks (NNs) on FPGAs or digital data concentrator
ASICs, which collect and process data from several front-end ROICs.
However, integrating NNs directly in the pixelated front-end ROICs
would result in a significant reduction in off-chip data transfer.

Our AI-In-Pixel-65 test chip architecture for X-ray detectors includes
two 32 ω 32 arrays of pixels with independent readouts after data com-
pression, as shown in Fig. 1. Fig. 2 shows the layout of the readout chip
with the PCA and AE algorithms integrated into the pixelated areas.
The following sections describe the pixel front-end architecture, the
algorithm development, some implementation issues, and our co-design
solutions.

2. Front-end architecture

The AI-In-Pixel-65 analog front-end consists of three stages: a charge-
sensitive integrator, correlated double-sampling circuit, and compact
100 KSPS serial SAR ADC [9].

A charge-sensitive integrator is directly connected to the photo-
diode, converting pulses of charge to voltage. Its feedback capaci-
tor is a 3 fF plate capacitor with the top-metal bump bond forming
one plate. The integrator’s output is sampled by a correlated double-
sampling (CDS) circuit, which suppresses low-frequency noise and reset
noise [10].

The sampled voltage is digitized by a ten-bit serial successive ap-
proximation register (SAR) ADC. The ADC generates approximation
voltages using a charge redistribution DAC based on two capacitors 𝜔𝜀
and 𝜔𝜗. Six binary weighted trim capacitors are used to tune 𝜔𝜗 =
𝜔𝜀. When not selected, these trim capacitors are bootstrapped by the
comparator’s input buffer.

The DAC generates each successive bit of the approximation voltage
by charging 𝜔𝜀 either to 𝜛𝜚𝜍𝜑 or to 0 V, then shorting the positive
terminals of 𝜔𝜀 and 𝜔𝜗 together [11]. The final voltage developed at
the positive terminal of 𝜔𝜗 (the negative input to the comparator) after
𝛻 phases is given by:

𝛻⌋
𝜕=1

𝜛𝜚𝜍𝜑 ℵ𝜕
2𝛻ε𝜕+1

Where ℵ𝜕 is one if 𝜔𝜀 is charged to 𝜛𝜚𝜍𝜑 at stage 𝜕 and zero if it
is discharged. The ADC compares each approximation to the sampled
voltage at its positive input to decide the next ℵ𝜕. 𝜔𝜗 is then discharged.
Thus, one 10-bit ADC acquisition requires 55 clock cyles:

⌈10
𝜕=1 𝜕 = 45

cycles to compute 10 approximations, plus 10 discharge/clear cycles.
However, the data from one ADC acquisition can be read out while the
next sample is being acquired, so no dead time is introduced if total
readout time is less than one acquisition period [5].

∫Q + CDS

100 KSPS
serial SAR ADC

Autoencoder or
PCA compress

Valentin+, NIM A 1057 (2023) 168665

Nuclear Inst. and Methods in Physics Research, A 1057 (2023) 168665

2

M.B. Valentin et al.

Fig. 1. Functional block diagram of AI-In-Pixel-65 test chip with either PCA or AE performing data compression for 1024 pixels.

Fig. 2. Our ROIC test chip (AI-In-Pixel-65) with the PCA and AE algorithms integrated in the pixelated area. On the right, an highlight of the compression algorithm in digital
logic surrounding the analog pixels.

stream is a tiny fraction of the raw data rate, and discarding data which
is not ‘‘interesting’’ before it is moved off-chip can dramatically reduce
both power and bandwidth consumption. The advancement of both
CMOS technology nodes and machine learning algorithms has made
on-chip discrimination realistic with only a modest power and area
overhead, making data compression useful to both bridge the gap until
more efficient link strategies are mature, as well as complement them
when they arrive.

In this work, we aim to demonstrate that lossy data compression
techniques such as Principal Component Analysis (PCA) and AI/ML-
based AutoEncoders (AE) could enable 50ω to 80ω on-chip data com-
pression as a pathway to overcoming the I/O bottleneck while main-
taining the accuracy required for image reconstruction and further
scientific analysis. Traditionally, edge AI has constituted the implemen-
tation of neural networks (NNs) on FPGAs or digital data concentrator
ASICs, which collect and process data from several front-end ROICs.
However, integrating NNs directly in the pixelated front-end ROICs
would result in a significant reduction in off-chip data transfer.

Our AI-In-Pixel-65 test chip architecture for X-ray detectors includes
two 32 ω 32 arrays of pixels with independent readouts after data com-
pression, as shown in Fig. 1. Fig. 2 shows the layout of the readout chip
with the PCA and AE algorithms integrated into the pixelated areas.
The following sections describe the pixel front-end architecture, the
algorithm development, some implementation issues, and our co-design
solutions.

2. Front-end architecture

The AI-In-Pixel-65 analog front-end consists of three stages: a charge-
sensitive integrator, correlated double-sampling circuit, and compact
100 KSPS serial SAR ADC [9].

A charge-sensitive integrator is directly connected to the photo-
diode, converting pulses of charge to voltage. Its feedback capaci-
tor is a 3 fF plate capacitor with the top-metal bump bond forming
one plate. The integrator’s output is sampled by a correlated double-
sampling (CDS) circuit, which suppresses low-frequency noise and reset
noise [10].

The sampled voltage is digitized by a ten-bit serial successive ap-
proximation register (SAR) ADC. The ADC generates approximation
voltages using a charge redistribution DAC based on two capacitors 𝜔𝜀
and 𝜔𝜗. Six binary weighted trim capacitors are used to tune 𝜔𝜗 =
𝜔𝜀. When not selected, these trim capacitors are bootstrapped by the
comparator’s input buffer.

The DAC generates each successive bit of the approximation voltage
by charging 𝜔𝜀 either to 𝜛𝜚𝜍𝜑 or to 0 V, then shorting the positive
terminals of 𝜔𝜀 and 𝜔𝜗 together [11]. The final voltage developed at
the positive terminal of 𝜔𝜗 (the negative input to the comparator) after
𝛻 phases is given by:

𝛻⌋
𝜕=1

𝜛𝜚𝜍𝜑 ℵ𝜕
2𝛻ε𝜕+1

Where ℵ𝜕 is one if 𝜔𝜀 is charged to 𝜛𝜚𝜍𝜑 at stage 𝜕 and zero if it
is discharged. The ADC compares each approximation to the sampled
voltage at its positive input to decide the next ℵ𝜕. 𝜔𝜗 is then discharged.
Thus, one 10-bit ADC acquisition requires 55 clock cyles:

⌈10
𝜕=1 𝜕 = 45

cycles to compute 10 approximations, plus 10 discharge/clear cycles.
However, the data from one ADC acquisition can be read out while the
next sample is being acquired, so no dead time is introduced if total
readout time is less than one acquisition period [5].

Compression algorithm
surrounding analog pixels

Analog island
(4 pixels)

Nuclear Inst. and Methods in Physics Research, A 1057 (2023) 168665

7

M.B. Valentin et al.

Fig. 10. Example of routing congestion issues faced during PnR for the AE algorithm, when using a floorplan with an increase in area by 125% full compared to a baseline
implementation without compression logic. We report the entire chip and a closeup view. Here, colors represent different levels of congestion (e.g., the bottom-most entry of the
legend, in dark blue, represents a density of wires that is 104% above the limit for any given specific space, thus causing congestion). It is very noticeable how the congestion
spreads across the entire chip, while only the pixels at the edges show no issues. This leads to the aforementioned congestion and the inability of the tool to route the design
without causing a large amount of unwaivable DRC violations.

Fig. 11. PCA and AE bit-precision and HLS architectural choices.

channel dimension was last, as shown for the buffer at line 7 and for-
loops at lines 17–21 of Listing 1. A channel-last layout of the data is
a default in machine-learning frameworks such as TensorFlow that we
used to train the model.

We explored moving the channel dimension first to reduce the
amount of control logic as shown at line 9 of Listing 2. Restructuring the
weight buffers allowed us to perform 1,024 multiplication in parallel
and efficiently pipeline them across each of the 30 channels (lines 13–24
in Listing 2). We also increased the modularity of the HLS-generated
RTL code by partitioning the fully-parallel 1,024-input multiplier ac-
cumulator (MAC) into 256 four-input MACs and an additional adder
tree in the top-level module (lines 17–22). For each of those smaller

Table 1
Latency and area estimate for the AE and PCA HLS designs.
Latency is in clock cycles; area is in mm2.

AE PCA
HLS Solution Latency Area Latency Area
modular 30 0.549 30 1.516
inlined 1 1.700 1 0.652

MACs, we wired four neighboring pixels and constrained the place and
route tool to position the associated logic in their proximity, as shown
in Fig. 12.

Nuclear Inst. and Methods in Physics Research, A 1057 (2023) 168665

7

M.B. Valentin et al.

Fig. 10. Example of routing congestion issues faced during PnR for the AE algorithm, when using a floorplan with an increase in area by 125% full compared to a baseline
implementation without compression logic. We report the entire chip and a closeup view. Here, colors represent different levels of congestion (e.g., the bottom-most entry of the
legend, in dark blue, represents a density of wires that is 104% above the limit for any given specific space, thus causing congestion). It is very noticeable how the congestion
spreads across the entire chip, while only the pixels at the edges show no issues. This leads to the aforementioned congestion and the inability of the tool to route the design
without causing a large amount of unwaivable DRC violations.

Fig. 11. PCA and AE bit-precision and HLS architectural choices.

channel dimension was last, as shown for the buffer at line 7 and for-
loops at lines 17–21 of Listing 1. A channel-last layout of the data is
a default in machine-learning frameworks such as TensorFlow that we
used to train the model.

We explored moving the channel dimension first to reduce the
amount of control logic as shown at line 9 of Listing 2. Restructuring the
weight buffers allowed us to perform 1,024 multiplication in parallel
and efficiently pipeline them across each of the 30 channels (lines 13–24
in Listing 2). We also increased the modularity of the HLS-generated
RTL code by partitioning the fully-parallel 1,024-input multiplier ac-
cumulator (MAC) into 256 four-input MACs and an additional adder
tree in the top-level module (lines 17–22). For each of those smaller

Table 1
Latency and area estimate for the AE and PCA HLS designs.
Latency is in clock cycles; area is in mm2.

AE PCA
HLS Solution Latency Area Latency Area
modular 30 0.549 30 1.516
inlined 1 1.700 1 0.652

MACs, we wired four neighboring pixels and constrained the place and
route tool to position the associated logic in their proximity, as shown
in Fig. 12.

Autoencoder
block

hls4ml Catapult
HLSqKerasTool

flow:

32x32pix arrays

C. HerwigMay 19, 2025

X-ray ptychography

14

AI-In-Pixel-65 (FNAL/Northwestern)
demonstrator in 65nm Low Power CMOS

Nuclear Inst. and Methods in Physics Research, A 1057 (2023) 168665

2

M.B. Valentin et al.

Fig. 1. Functional block diagram of AI-In-Pixel-65 test chip with either PCA or AE performing data compression for 1024 pixels.

Fig. 2. Our ROIC test chip (AI-In-Pixel-65) with the PCA and AE algorithms integrated in the pixelated area. On the right, an highlight of the compression algorithm in digital
logic surrounding the analog pixels.

stream is a tiny fraction of the raw data rate, and discarding data which
is not ‘‘interesting’’ before it is moved off-chip can dramatically reduce
both power and bandwidth consumption. The advancement of both
CMOS technology nodes and machine learning algorithms has made
on-chip discrimination realistic with only a modest power and area
overhead, making data compression useful to both bridge the gap until
more efficient link strategies are mature, as well as complement them
when they arrive.

In this work, we aim to demonstrate that lossy data compression
techniques such as Principal Component Analysis (PCA) and AI/ML-
based AutoEncoders (AE) could enable 50ω to 80ω on-chip data com-
pression as a pathway to overcoming the I/O bottleneck while main-
taining the accuracy required for image reconstruction and further
scientific analysis. Traditionally, edge AI has constituted the implemen-
tation of neural networks (NNs) on FPGAs or digital data concentrator
ASICs, which collect and process data from several front-end ROICs.
However, integrating NNs directly in the pixelated front-end ROICs
would result in a significant reduction in off-chip data transfer.

Our AI-In-Pixel-65 test chip architecture for X-ray detectors includes
two 32 ω 32 arrays of pixels with independent readouts after data com-
pression, as shown in Fig. 1. Fig. 2 shows the layout of the readout chip
with the PCA and AE algorithms integrated into the pixelated areas.
The following sections describe the pixel front-end architecture, the
algorithm development, some implementation issues, and our co-design
solutions.

2. Front-end architecture

The AI-In-Pixel-65 analog front-end consists of three stages: a charge-
sensitive integrator, correlated double-sampling circuit, and compact
100 KSPS serial SAR ADC [9].

A charge-sensitive integrator is directly connected to the photo-
diode, converting pulses of charge to voltage. Its feedback capaci-
tor is a 3 fF plate capacitor with the top-metal bump bond forming
one plate. The integrator’s output is sampled by a correlated double-
sampling (CDS) circuit, which suppresses low-frequency noise and reset
noise [10].

The sampled voltage is digitized by a ten-bit serial successive ap-
proximation register (SAR) ADC. The ADC generates approximation
voltages using a charge redistribution DAC based on two capacitors 𝜔𝜀
and 𝜔𝜗. Six binary weighted trim capacitors are used to tune 𝜔𝜗 =
𝜔𝜀. When not selected, these trim capacitors are bootstrapped by the
comparator’s input buffer.

The DAC generates each successive bit of the approximation voltage
by charging 𝜔𝜀 either to 𝜛𝜚𝜍𝜑 or to 0 V, then shorting the positive
terminals of 𝜔𝜀 and 𝜔𝜗 together [11]. The final voltage developed at
the positive terminal of 𝜔𝜗 (the negative input to the comparator) after
𝛻 phases is given by:

𝛻⌋
𝜕=1

𝜛𝜚𝜍𝜑 ℵ𝜕
2𝛻ε𝜕+1

Where ℵ𝜕 is one if 𝜔𝜀 is charged to 𝜛𝜚𝜍𝜑 at stage 𝜕 and zero if it
is discharged. The ADC compares each approximation to the sampled
voltage at its positive input to decide the next ℵ𝜕. 𝜔𝜗 is then discharged.
Thus, one 10-bit ADC acquisition requires 55 clock cyles:

⌈10
𝜕=1 𝜕 = 45

cycles to compute 10 approximations, plus 10 discharge/clear cycles.
However, the data from one ADC acquisition can be read out while the
next sample is being acquired, so no dead time is introduced if total
readout time is less than one acquisition period [5].

∫Q + CDS

100 KSPS
serial SAR ADC

Autoencoder or
PCA compress

Valentin+, NIM A 1057 (2023) 168665

Nuclear Inst. and Methods in Physics Research, A 1057 (2023) 168665

2

M.B. Valentin et al.

Fig. 1. Functional block diagram of AI-In-Pixel-65 test chip with either PCA or AE performing data compression for 1024 pixels.

Fig. 2. Our ROIC test chip (AI-In-Pixel-65) with the PCA and AE algorithms integrated in the pixelated area. On the right, an highlight of the compression algorithm in digital
logic surrounding the analog pixels.

stream is a tiny fraction of the raw data rate, and discarding data which
is not ‘‘interesting’’ before it is moved off-chip can dramatically reduce
both power and bandwidth consumption. The advancement of both
CMOS technology nodes and machine learning algorithms has made
on-chip discrimination realistic with only a modest power and area
overhead, making data compression useful to both bridge the gap until
more efficient link strategies are mature, as well as complement them
when they arrive.

In this work, we aim to demonstrate that lossy data compression
techniques such as Principal Component Analysis (PCA) and AI/ML-
based AutoEncoders (AE) could enable 50ω to 80ω on-chip data com-
pression as a pathway to overcoming the I/O bottleneck while main-
taining the accuracy required for image reconstruction and further
scientific analysis. Traditionally, edge AI has constituted the implemen-
tation of neural networks (NNs) on FPGAs or digital data concentrator
ASICs, which collect and process data from several front-end ROICs.
However, integrating NNs directly in the pixelated front-end ROICs
would result in a significant reduction in off-chip data transfer.

Our AI-In-Pixel-65 test chip architecture for X-ray detectors includes
two 32 ω 32 arrays of pixels with independent readouts after data com-
pression, as shown in Fig. 1. Fig. 2 shows the layout of the readout chip
with the PCA and AE algorithms integrated into the pixelated areas.
The following sections describe the pixel front-end architecture, the
algorithm development, some implementation issues, and our co-design
solutions.

2. Front-end architecture

The AI-In-Pixel-65 analog front-end consists of three stages: a charge-
sensitive integrator, correlated double-sampling circuit, and compact
100 KSPS serial SAR ADC [9].

A charge-sensitive integrator is directly connected to the photo-
diode, converting pulses of charge to voltage. Its feedback capaci-
tor is a 3 fF plate capacitor with the top-metal bump bond forming
one plate. The integrator’s output is sampled by a correlated double-
sampling (CDS) circuit, which suppresses low-frequency noise and reset
noise [10].

The sampled voltage is digitized by a ten-bit serial successive ap-
proximation register (SAR) ADC. The ADC generates approximation
voltages using a charge redistribution DAC based on two capacitors 𝜔𝜀
and 𝜔𝜗. Six binary weighted trim capacitors are used to tune 𝜔𝜗 =
𝜔𝜀. When not selected, these trim capacitors are bootstrapped by the
comparator’s input buffer.

The DAC generates each successive bit of the approximation voltage
by charging 𝜔𝜀 either to 𝜛𝜚𝜍𝜑 or to 0 V, then shorting the positive
terminals of 𝜔𝜀 and 𝜔𝜗 together [11]. The final voltage developed at
the positive terminal of 𝜔𝜗 (the negative input to the comparator) after
𝛻 phases is given by:

𝛻⌋
𝜕=1

𝜛𝜚𝜍𝜑 ℵ𝜕
2𝛻ε𝜕+1

Where ℵ𝜕 is one if 𝜔𝜀 is charged to 𝜛𝜚𝜍𝜑 at stage 𝜕 and zero if it
is discharged. The ADC compares each approximation to the sampled
voltage at its positive input to decide the next ℵ𝜕. 𝜔𝜗 is then discharged.
Thus, one 10-bit ADC acquisition requires 55 clock cyles:

⌈10
𝜕=1 𝜕 = 45

cycles to compute 10 approximations, plus 10 discharge/clear cycles.
However, the data from one ADC acquisition can be read out while the
next sample is being acquired, so no dead time is introduced if total
readout time is less than one acquisition period [5].

Compression algorithm
surrounding analog pixels

Analog island
(4 pixels)

Nuclear Inst. and Methods in Physics Research, A 1057 (2023) 168665

6

M.B. Valentin et al.

Fig. 8. Reconstructed diffraction patterns from autoencoder algorithm. The diffraction patterns on the top row show the original simulated diffraction patterns, and the bottom
row show the reconstruction of the same patterns after compressing and decompressing with the autoencoder.

Fig. 9. Distribution of the weights for the PCA (left) and AE (right) algorithms. Due to the nature of the training of these algorithms, the PCA tends to have a larger fraction of
zero-valued weights compared to the AE.

in turn, leads to congestion issues during routing as the requirement
for more multiply and accumulates (MACs) that perform the matrix
multiplication between evermore far-away pixels also grows.

Fig. 10 shows an example of the amount of congestion these designs
can display after routing (in this case, the AE algorithm). This conges-
tion commonly translates into unwaivable DRC violations at the end of
the digital routing stage, and thus require active manual intervention in
order to be fixed. The most common and straightforward methodology
applied in such cases is to increase the total size of the design, in
case area is not a strict constraint. Nevertheless, this solution might
not be enough in some cases. Fig. 10 shows the congestion our design
displayed after routing, even after increasing the pitch between pixels,
and thus the area by a factor of 125%. The initial logic occupancy is

only 43%, and thus the congestion is entirely due to routing signals
across the matrix. Thus, in order to solve the issues with congestion we
performed the co-design solution introduced in Section 6.

6. Co-design solutions for integrated signal and data processing

We used two complementary approaches to tackle the congestion
issues. First, we increased the pitch size, as described in Section 5.
This section instead describes our co-design solutions with Catapult
HLS to produce implementations that are easier to place and route in a
pixelated area. Fig. 11 highlights the main architectural choices for the
two HLS designs. For the AE implementation, we had initially designed
the weights of the dense layer as a two-dimensional array where the

Nuclear Inst. and Methods in Physics Research, A 1057 (2023) 168665

6

M.B. Valentin et al.

Fig. 8. Reconstructed diffraction patterns from autoencoder algorithm. The diffraction patterns on the top row show the original simulated diffraction patterns, and the bottom
row show the reconstruction of the same patterns after compressing and decompressing with the autoencoder.

Fig. 9. Distribution of the weights for the PCA (left) and AE (right) algorithms. Due to the nature of the training of these algorithms, the PCA tends to have a larger fraction of
zero-valued weights compared to the AE.

in turn, leads to congestion issues during routing as the requirement
for more multiply and accumulates (MACs) that perform the matrix
multiplication between evermore far-away pixels also grows.

Fig. 10 shows an example of the amount of congestion these designs
can display after routing (in this case, the AE algorithm). This conges-
tion commonly translates into unwaivable DRC violations at the end of
the digital routing stage, and thus require active manual intervention in
order to be fixed. The most common and straightforward methodology
applied in such cases is to increase the total size of the design, in
case area is not a strict constraint. Nevertheless, this solution might
not be enough in some cases. Fig. 10 shows the congestion our design
displayed after routing, even after increasing the pitch between pixels,
and thus the area by a factor of 125%. The initial logic occupancy is

only 43%, and thus the congestion is entirely due to routing signals
across the matrix. Thus, in order to solve the issues with congestion we
performed the co-design solution introduced in Section 6.

6. Co-design solutions for integrated signal and data processing

We used two complementary approaches to tackle the congestion
issues. First, we increased the pitch size, as described in Section 5.
This section instead describes our co-design solutions with Catapult
HLS to produce implementations that are easier to place and route in a
pixelated area. Fig. 11 highlights the main architectural choices for the
two HLS designs. For the AE implementation, we had initially designed
the weights of the dense layer as a two-dimensional array where the

Nuclear Inst. and Methods in Physics Research, A 1057 (2023) 168665

7

M.B. Valentin et al.

Fig. 10. Example of routing congestion issues faced during PnR for the AE algorithm, when using a floorplan with an increase in area by 125% full compared to a baseline
implementation without compression logic. We report the entire chip and a closeup view. Here, colors represent different levels of congestion (e.g., the bottom-most entry of the
legend, in dark blue, represents a density of wires that is 104% above the limit for any given specific space, thus causing congestion). It is very noticeable how the congestion
spreads across the entire chip, while only the pixels at the edges show no issues. This leads to the aforementioned congestion and the inability of the tool to route the design
without causing a large amount of unwaivable DRC violations.

Fig. 11. PCA and AE bit-precision and HLS architectural choices.

channel dimension was last, as shown for the buffer at line 7 and for-
loops at lines 17–21 of Listing 1. A channel-last layout of the data is
a default in machine-learning frameworks such as TensorFlow that we
used to train the model.

We explored moving the channel dimension first to reduce the
amount of control logic as shown at line 9 of Listing 2. Restructuring the
weight buffers allowed us to perform 1,024 multiplication in parallel
and efficiently pipeline them across each of the 30 channels (lines 13–24
in Listing 2). We also increased the modularity of the HLS-generated
RTL code by partitioning the fully-parallel 1,024-input multiplier ac-
cumulator (MAC) into 256 four-input MACs and an additional adder
tree in the top-level module (lines 17–22). For each of those smaller

Table 1
Latency and area estimate for the AE and PCA HLS designs.
Latency is in clock cycles; area is in mm2.

AE PCA
HLS Solution Latency Area Latency Area
modular 30 0.549 30 1.516
inlined 1 1.700 1 0.652

MACs, we wired four neighboring pixels and constrained the place and
route tool to position the associated logic in their proximity, as shown
in Fig. 12.

~20% of total
chip area

Nuclear Inst. and Methods in Physics Research, A 1057 (2023) 168665

7

M.B. Valentin et al.

Fig. 10. Example of routing congestion issues faced during PnR for the AE algorithm, when using a floorplan with an increase in area by 125% full compared to a baseline
implementation without compression logic. We report the entire chip and a closeup view. Here, colors represent different levels of congestion (e.g., the bottom-most entry of the
legend, in dark blue, represents a density of wires that is 104% above the limit for any given specific space, thus causing congestion). It is very noticeable how the congestion
spreads across the entire chip, while only the pixels at the edges show no issues. This leads to the aforementioned congestion and the inability of the tool to route the design
without causing a large amount of unwaivable DRC violations.

Fig. 11. PCA and AE bit-precision and HLS architectural choices.

channel dimension was last, as shown for the buffer at line 7 and for-
loops at lines 17–21 of Listing 1. A channel-last layout of the data is
a default in machine-learning frameworks such as TensorFlow that we
used to train the model.

We explored moving the channel dimension first to reduce the
amount of control logic as shown at line 9 of Listing 2. Restructuring the
weight buffers allowed us to perform 1,024 multiplication in parallel
and efficiently pipeline them across each of the 30 channels (lines 13–24
in Listing 2). We also increased the modularity of the HLS-generated
RTL code by partitioning the fully-parallel 1,024-input multiplier ac-
cumulator (MAC) into 256 four-input MACs and an additional adder
tree in the top-level module (lines 17–22). For each of those smaller

Table 1
Latency and area estimate for the AE and PCA HLS designs.
Latency is in clock cycles; area is in mm2.

AE PCA
HLS Solution Latency Area Latency Area
modular 30 0.549 30 1.516
inlined 1 1.700 1 0.652

MACs, we wired four neighboring pixels and constrained the place and
route tool to position the associated logic in their proximity, as shown
in Fig. 12.

Nuclear Inst. and Methods in Physics Research, A 1057 (2023) 168665

7

M.B. Valentin et al.

Fig. 10. Example of routing congestion issues faced during PnR for the AE algorithm, when using a floorplan with an increase in area by 125% full compared to a baseline
implementation without compression logic. We report the entire chip and a closeup view. Here, colors represent different levels of congestion (e.g., the bottom-most entry of the
legend, in dark blue, represents a density of wires that is 104% above the limit for any given specific space, thus causing congestion). It is very noticeable how the congestion
spreads across the entire chip, while only the pixels at the edges show no issues. This leads to the aforementioned congestion and the inability of the tool to route the design
without causing a large amount of unwaivable DRC violations.

Fig. 11. PCA and AE bit-precision and HLS architectural choices.

channel dimension was last, as shown for the buffer at line 7 and for-
loops at lines 17–21 of Listing 1. A channel-last layout of the data is
a default in machine-learning frameworks such as TensorFlow that we
used to train the model.

We explored moving the channel dimension first to reduce the
amount of control logic as shown at line 9 of Listing 2. Restructuring the
weight buffers allowed us to perform 1,024 multiplication in parallel
and efficiently pipeline them across each of the 30 channels (lines 13–24
in Listing 2). We also increased the modularity of the HLS-generated
RTL code by partitioning the fully-parallel 1,024-input multiplier ac-
cumulator (MAC) into 256 four-input MACs and an additional adder
tree in the top-level module (lines 17–22). For each of those smaller

Table 1
Latency and area estimate for the AE and PCA HLS designs.
Latency is in clock cycles; area is in mm2.

AE PCA
HLS Solution Latency Area Latency Area
modular 30 0.549 30 1.516
inlined 1 1.700 1 0.652

MACs, we wired four neighboring pixels and constrained the place and
route tool to position the associated logic in their proximity, as shown
in Fig. 12.

Autoencoder
block

hls4ml Catapult
HLSqKerasTool

flow:

32x32pix arrays

C. HerwigMay 19, 2025

Looking to the (near) future

15

Next-generation particle detectors will generate data at PB/s.
With high-luminosity LHC detectors, we are ~already there.

C. HerwigMay 19, 2025

Looking to the (near) future

15

Next-generation particle detectors will generate data at PB/s.
With high-luminosity LHC detectors, we are ~already there.

CMS outer tracker:
9.6M→213M channels
(Partial 40 MHz)

Inner tracker:
124M→1.9B channels
(.75 MHz readout)

20 Chapter 2. Overview of the Phase-2 Tracker Upgrade

z [mm]0 500 1000 1500 2000 2500
0

200

400

600

800

1000

1200
r [

m
m

] 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

4.0
�

1.6

1.8

2.0
2.2
2.4
2.6
2.83.0

Figure 2.3: Sketch of one quarter of the tracker layout in r-z view. In the Inner Tracker the
green lines correspond to pixel modules made of two readout chips and the yellow lines to
pixel modules with four readout chips. In the Outer Tracker the blue and red lines represent
the two types of modules described in the text.

Figure 2.4: Average number of module layers traversed by particles, including both the Inner
Tracker (red) and the Outer Tracker (blue) modules, as well as the complete tracker (black). Par-
ticle trajectories are approximated by straight lines, using a flat distribution of primary vertices
within |z0| < 70 mm, and multiple scattering is not included.

The following section summarizes the main concepts and features of the upgraded tracking
system. One quarter of the Phase-2 tracker layout can be seen in Fig. 2.3. Figure 2.4 shows
the average number of active layers that are traversed by particles originating from the lumi-
nous region, for the complete tracker as well as for the Inner Tracker and the Outer Tracker
separately.

The number of layers has been optimised to ensure robust tracking, i.e. basically unaffected
performance when one detecting layer is lost in some parts of the rapidity acceptance. The six
layers of the Outer Tracker are the minimum required to ensure robust track finding at the L1
trigger in the rapidity acceptance of |h| < 2.4, as discussed in more details in Section 3.1.

‘On-detector intelligence’ filters hits
from straight tracks (high-pT)

C. HerwigMay 19, 2025

Looking to the (near) future

16

Next-generation particle detectors will generate data at PB/s.
With high-luminosity LHC detectors, we are ~already there.

CPAD 2019Zoltan Gecse

Technology Choices

• Dissipated power ~250kW
• Removed with two-phase CO2 cooling operated at -35C

!4

300 GeV
hadron

32 GeV
electron

25 X0, 1.7 λ 8 λ

High-granularity endcap calorimeter (CMS HGCal)
"5D Imaging calorimeter"
6.3M channels, 0.5-2 cm2, σt=50ps (was 50k)
High dynamic range (1-100k MIPs)

Data challenge in an ultra-high radiation environment!

C. HerwigMay 19, 2025

CMS HGCal data concentrator

17

High-granularity
detector data

05-April-2022 APx Update 2

APxF First Boards
▪ Two units assembled (VU13P-1,

VU9P-2)

▪ Same PCB stackup as APd1

▪ Heat Sink 2X larger than APd1

▪ Testing optical link positions with
2020 (3.3V only) and 2021 (3.75V
Tx) Firefly 25X12 Alpha parts and
production 28X4 part

▪ All results shown from VU13P FPGA

Level-1
Trigger

Output to
trigger path

C. HerwigMay 19, 2025

CMS HGCal data concentrator

17

High-granularity
detector data

“Super
cells”

05-April-2022 APx Update 2

APxF First Boards
▪ Two units assembled (VU13P-1,

VU9P-2)

▪ Same PCB stackup as APd1

▪ Heat Sink 2X larger than APd1

▪ Testing optical link positions with
2020 (3.3V only) and 2021 (3.75V
Tx) Firefly 25X12 Alpha parts and
production 28X4 part

▪ All results shown from VU13P FPGA

Output to
trigger path

Level-1
Trigger

Algorithms

C. HerwigMay 19, 2025

CMS HGCal data concentrator

17

High-granularity
detector data

05-April-2022 APx Update 2

APxF First Boards
▪ Two units assembled (VU13P-1,

VU9P-2)

▪ Same PCB stackup as APd1

▪ Heat Sink 2X larger than APd1

▪ Testing optical link positions with
2020 (3.3V only) and 2021 (3.75V
Tx) Firefly 25X12 Alpha parts and
production 28X4 part

▪ All results shown from VU13P FPGA

Output to
trigger path

Level-1
Trigger

Algorithms

Neural
Network
Auto-
Encoder

Sum
Q

Normalizer

C. HerwigMay 19, 2025

CMS HGCal data concentrator

17

High-granularity
detector data

Output to
trigger path

Algorithms

Neural
Network
Auto-
Encoder

Sum
Q

Normalizer

5

NN outputsSensor output
bandwidth

64 bits
160 bits

6
10
16

Fig. 4. Median EMD for decoded HGCAL images from the validation
dataset, as function of sensor occupancy for six NN configurations. Vertical
lines (suppressed for the 160-bit configurations) denote 68% EMD intervals.
Occupancy is defined as the number of TCs with signals exceeding one
minimum ionizing particle divided by cosh ⌘ where ⌘ is the pseudorapidity
of the TC. (Results shown for version of NN with maximum of 10 bits for
each of 16 outputs rather than 9 bits as described in the text.)

TABLE I
AREA BREAKDOWN FOR PIPELINED IMPLEMENTATIONS. THE RESULTS

ARE FROM CATAPULT HLS ESTIMATIONS AND AREAS ARE IN µm2 .

Initiation Interval Total Area Register Area MUX Area

1 1,138,242 925 0
2 891,195 5,228 12,989
4 765,877 8,503 16,089
8 699,988 8,509 16,252

16 (3, 4, 7, 9) bit outputs, though the network can also be
configured to transmit fewer than 16 outputs, or a mix of
precisions.

IV. IMPLEMENTATION METHODOLOGY AND RESULTS

In this section, we detail the implementation of the trained
NN described in Sec. III in the ECON-T ASIC. We discuss
the design and verification flow, the architectural and design
exploration, steps required for deployment in a radiation
environment, design performance metrics, and finally the
implementation results.

Algorithm to Accelerator Development

For our design flow, we adopted the hls4ml framework [5]
to automate the mapping of ML models onto reconfigurable
logic. For this work, we extended hls4ml to our ASIC flow.
Traditionally, hardware designers utilize hardware description
languages (HDLs) and a level of abstraction known as the
Register Transfer Level (RTL). In recent years, HLS has
become an alternative for generating hardware modules from
code written in programming languages such as C/C++. HLS
comes with significant benefits: it raises the level of abstraction
and reduces the simulation time; it simplifies the verification
phases; and finally, it makes the exploration and evaluation
of design alternatives easier. The original flow of hls4ml
generates state-of-the-art synthesizable C++ code and HLS

directives from the ML-model specifications. The generated
code is then fed into the Vivado HLS tool to generate an
accelerator in HDL RTL code for the deployment on Xilinx
FPGAs [16]. We extended hls4ml to support Mentor’s
Catapult HLS [17] tool and target our specific 65 nm LP
CMOS technology for ASIC fabrication. We integrated the
HLS-generated code with a SystemVerilog RTL IP of the
programmable I2C peripheral1. We finally created a component
database and layout to be incorporated into the ECON-T ASIC
top-level assembly using a digital implementation flow. The
standard flow was modified to accommodate automatic triple
modular redundancy implementation for HLS-generated RTL
integrated with other SystemVerilog modules.

We complemented our design flow with a robust validation
and verification methodology across the various refinement
steps. We validated the C++ HLS code against the QKeras
trained model to guarantee the model’s functional correct-
ness. Earlier in the design flow, we also performed dynamic
and static verification of the synthesizable specifications: we
checked design rules with static analysis of the C++ HLS
code (Mentor CDesignChecker [19]), measured coverage met-
rics (Mentor CCov [19]), and finally, ran simulation-based
equivalence checking. For the HLS-generated RTL code, we
followed a more traditional simulation-based verification to
ensure optimized power, area, and speed.

Architectural Exploration

hls4ml coupled with the industry standard Catapult HLS
(ver. 10.6) tool allowed us to explore the cost and performance
trade-offs of various micro-architectural hardware implemen-
tations for our ML model. We decided on a pipelined imple-
mentation for our accelerator to increase concurrent execution
as an early design decision. A pipelined design can process
new inputs every N clock cycles, where N is the initiation
interval (II) of the design. Table I shows the area breakdown
for different II values (1, 2, 4, 8). It is noticeable that although
the area is higher for II= 1, the required resources are mostly
functional logic to implement a highly-parallel datapath, i.e.
there are no multiplexers. A higher II value implies less design
parallelism and more functional-resource reuse. This choice
reduces the overall area, but the resource breakdown shows
an increase in control logic (MUX) and registers. An II of 1
was ultimately selected so that new inputs may be processed
in sync with a single clock operating at 40 MHz LHC crossing
frequency.

We used a fixed-point representation (ac_fixed [20]) for
the input, intermediate, and output parameters of our ML
model designed with hls4ml. This choice provided us with
a high degree of flexibility for exploring the area and accuracy
trade-off of the ML-model hardware implementations obtained
with HLS. The RTL schematics for the encoder block are
shown in Fig. 5. The basic structure of the convolution and
dense layers can be seen at the schematic level. The top right
and bottom right diagrams are zoomed in portions of this
schematic depicting the output and MACs.

1The authors use controller/peripheral in place of master/slave when
referring to such I2C devices or processes [18].

16
outputs

128
features

Cartesify
inputs (20b)

8 Conv
filters

Search for NN architectures with
• Best decoded image fidelity
• Minimal logic (power, area)
Minimal bit-widths prevent overflow

lower values better

C. HerwigMay 19, 2025

CMS HGCal data concentrator

18

High-granularity
detector data

Output to
trigger path

Algorithms

Neural
Network
Auto-
Encoder

Sum
Q

Normalizer

Se
ns

or
 m

od
ule

 P
CB

System overview

3

10 Gb/s links

10 Gb/s links

On

detector

Off

detector

Control

Data

Data

Front-end electronics are challenging 19

Thorben Quast | Edinburgh PPE Seminar, 11 June 2021

HGCAL FE electronics requirements:
• Low noise (<2500e) and high dynamic range

(0.2fC -10pC).

• Timing information to tens of picoseconds.

• Radiation tolerant.
• <20mW per channel (cooling limitation).

• Zero-suppression of data to transmit to DAQ.

• Computation of trigger sums for L1 trigger.

V3 HGCROC ASIC both for silicon and SiPMs ECON as concentrator ASIC

Time-of-arrival (TOA) & time-over-threshold (TOT)

Si
gn

al

hls4ml for on-sensor/detector AI

42

• First design and implementation
of modern DL for HEP on ASIC

• Enables powerful non-linear
data compression schemes on
detector; better trigger primitives
downstream

• Chips fabricated and tested,
performed well under functional/
radiation validation

Data compression encoder
ASIC for CMS HGCal

Fahim ECA

Herwig, Hirschauer, Kwok, Ngadiuba, Tran, et al.,

IEEE Trans. Nucl. Sci. 68, 2179 (2021)

Dickinson et al. CPAD talk

On-detector/sensor AI can be a game-changer for extreme environments
Extreme data bandwidths, radiation environments, low power, cryogenic, etc.

Pushing state-of-the-art of technology

See more in Farah’s talk next!

Goal: 40 MHz pixel detectors
Other applications:  
Quantum readout in cryo

Sensors for light sources

etc.

Advance sensing technology
in AI+Microelectronics

Analog NNs, spiking/neuromorphic,

new devices/materials,…

CMS HGCal data compression
• QKeras used for quantization-aware training

• Weights at 6b, but accumulations padded with 3b to be sure no saturation
• More lower-precision outputs is better

• for both high- and low-bandwidth scenarios, for full range of module occupancy
• Adding weights to I2C ~doubles the area, but important for reconfigurability

• Chip Fabricated! Functionality and SEE tests complete, look out for papers/talks!

9

Metric Simulation Target

Power 48 mW <100 mW

Energy / inference 1.2 nJ N/A

Area 2.88 mm2 <4 mm2

Gates 780k N/A

Latency 50 ns <100 ns
Di Guglielmo+, IEEE TNS 68.8 (2021) 2179

C. HerwigMay 19, 2025

In-pixel data filtering

19

A core HL-LHC motivation is (di-)Higgs production. Main decay: h→bb.
• Pixel tracker critical to identify B decays with O(mm) displacements.

C. HerwigMay 19, 2025

In-pixel data filtering

19

A core HL-LHC motivation is (di-)Higgs production. Main decay: h→bb.
• Pixel tracker critical to identify B decays with O(mm) displacements.

4

40
MHz

credit: J. Dickinson

SmartPixels concept could (e.g.) upgrade
inner CMS layers for 50x readout rate.

Demonstrator: 50 x 12.5 x 100 μm pixels
Consider size, shape, + time structures to
remove sub-2 GeV track data (95% hits).

C. HerwigMay 19, 2025

In-pixel data filtering

19

A core HL-LHC motivation is (di-)Higgs production. Main decay: h→bb.
• Pixel tracker critical to identify B decays with O(mm) displacements.

4

40
MHz

credit: J. Dickinson

SmartPixels concept could (e.g.) upgrade
inner CMS layers for 50x readout rate.

Demonstrator: 50 x 12.5 x 100 μm pixels
Consider size, shape, + time structures to
remove sub-2 GeV track data (95% hits).

Smart Pixel Sensors 5

• The detector is immersed in a 3.8T magnetic field parallel to the x coordinate.

The detector response is simulated using a time-sliced version of PixelAV [16], which

provides: an accurate model of charge deposition by primary hadronic tracks (in particular

to model delta rays), a realistic electric field map resulting from the simultaneous solution

of Poisson’s Equation, carrier continuity equations, and various charge transport models, an

established model of charge drift physics including mobilities, Hall E!ect, and 3-D di!usion,

a simulation of charge trapping and the signal induced from trapped charge, and a simulation

of electronic noise, response, and threshold e!ects. A particularly valuable aspect of PixelAV

used in this study is time evolution of the drift and induced currents in the pixel sensor.

(a) (b)

Figure 2: (a): A schematic of the pixel sensor area and the specific region of interest (blue)

of 21→13 pixels for a given cluster. The magnetic field is parallel to the sensor x coordinate.

(b): A diagram of three charged particles traversing our simulated silicon sensor at the same

y0 position. The sensor is viewed in the bending plane of the magnetic field. The solid track

corresponds to a charged particle with high pT , while the two dashed tracks correspond to

low pT particles with opposite charge.

Figure 2 sketches out key features of the pixel sensor and corresponding strategies

employed by this paper. Within the pixel sensor area, we define a cluster region of interest,

shown in blue, which corresponds to 21→13 pixels in x and y, respectively. This region is

large enough to fully encompass a charge cluster and serves as input to the ML algorithm

used to extract cluster features. The position (x, y) where the charged particle traverses the

sensor mid-plane is uniformly distributed across the central 3 → 3 pixel array. The shape

Smart Pixel Sensors 6

of the charge deposited in the pixel array is sensitive to this position and to the particle’s

angle of incidence. The incident angle in the x → z plane is denoted by ω, and by ε in the

y → z plane. Due to the bending of charged particle tracks in the magnetic field, the shape

of the charge cluster also depends on the particle’s pT , which is highly correlated with ε.

The shape of the cluster also depends strongly on its azimuthal position with respect to the

center of the sensor, which is denoted by the coordinate y0.

For a given cluster, the sum over pixel columns projects the cluster shape onto the

x-axis: this distribution is referred to as the x-profile. The sum over pixel rows, y-profile,

which projects the cluster shape onto the y-axis, is sensitive to incident angle ε and therefore

to the particle’s pT . Two example clusters are shown in Figure 3 with the corresponding x-

and y-profile projections.

(a) (b)

Figure 3: Two example charge clusters and the corresponding x- and y-profile projections.

The color scale (common between the panels) represents the collected charge. Both clusters

have y0 = 2.3 mm, but di!erent pT : (a) pT = 1.9 GeV, (b) pT = 135 MeV.

The mean y-profile cluster charge distributions for particles impinging near the center

of a sensor (→1 < y0 < 1 mm) are shown in Figure 4a for three populations of clusters.

Clusters created by high pT particles (pT > 2 GeV) are represented by the black distribution,

while clusters created by low pT particles (pT < 200 MeV) are represented by red and blue

for positively and negatively charged particles, respectively. Due to the deflection of charge

carriers by the magnetic field (Lorentz drift), the cluster shape is not symmetric in ε. For

a flat detector module that measures 16 mm in y, particles of similar momentum leave

markedly di!erent cluster shapes at di!erent y0 positions on the module. Figures 4b-c show

the average cluster shapes at the extreme edges of the module.

The cluster y-size is defined as the number of pixel rows in which non-zero net charge

has been deposited after 4 nanoseconds. The dependence of the cluster y-size on both the

charged particle pT and y0 is shown in Figure 5. The decrease in y-size from the left to right

edge of the sensor is due to Lorentz drift. In order to study the potential gain from timing

pT = 1.9 GeV pT = 135 MeV

Straight/curved
trajectories alter
pixel cluster shapes Differences can be subtle!

Yoo+, Mach.Learn.Sci.Tech. 5 (2024) 3, 035047

C. HerwigMay 19, 2025

In-pixel data filtering

20

NN of varying complexity were optimized, and implemented in 28nm CMOS
Cluster profile model balances performance, complexity.

Smart Pixel Sensors 10

This model consists of one dense layer with 128 neurons and 2307 parameters.

Model 3: cluster y-profile with timing information. The third and most complex model

takes as input the cluster y-profile distribution at eight time slices (13→ 8 features) and the

y0 position (1 feature). The first eight time slices contain the most useful information, as

most charge deposition occurs at the beginning of the cluster time evolution. This model

uses a convolutional neural network (CNN) to pass a time-lapse picture of the cluster charge

to the network. The cluster y-profile inputs weree passed through two two-dimensional

convolutional layers (Conv2D), with 16 and 64 filters, respectively, using ReLU activations

to introduce non-linearity [20]. The shape of the kernels was 3 → 3, and strides was 1 → 1.

The output of the Conv2D layers was flattened and concatenated with the y0 input. This

was then passed through a dense layer with 32 neurons, and using dropout of 0.1. The final

model contains 83,331 parameters.

The classifier acceptance is defined as the fraction of clusters that the network selects

as pT > 200 MeV. A comparison of the three models in terms of the acceptance is shown as

a function of the true pT in Figure 6. Table 1 compares two figures of merit for each model:

• signal e!ciency: the fraction of clusters with pT > 2 GeV that are classified as high pT

• background rejection: the fraction of clusters with pT < 2 GeV that are classified as low

pT

Figure 6: Classifier acceptance as a function of pT for three models with di”erent input

features. Positive and negative values of pT represent the performance on clusters initiated

by particles of positive and negative charge, respectively.

Model 1 (y-size and y0) has the simplest architecture and achieves the highest data

reduction rate. However, the information contained in only two features is insu!cient for

achieving a high signal e!ciency, and this model selects less than 85% of tracks with pT > 2

GeV. Model 2 (cluster y-profile) achieves an accuracy of 93.3% for tracks with pT > 2

C
lu

st
er

 fi
lte

r e
ffi

ci
en

cy

Length only

Cluster profile
200ps timing

Smart Pixel Sensors 10

This model consists of one dense layer with 128 neurons and 2307 parameters.

Model 3: cluster y-profile with timing information. The third and most complex model

takes as input the cluster y-profile distribution at eight time slices (13→ 8 features) and the

y0 position (1 feature). The first eight time slices contain the most useful information, as

most charge deposition occurs at the beginning of the cluster time evolution. This model

uses a convolutional neural network (CNN) to pass a time-lapse picture of the cluster charge

to the network. The cluster y-profile inputs weree passed through two two-dimensional

convolutional layers (Conv2D), with 16 and 64 filters, respectively, using ReLU activations

to introduce non-linearity [20]. The shape of the kernels was 3 → 3, and strides was 1 → 1.

The output of the Conv2D layers was flattened and concatenated with the y0 input. This

was then passed through a dense layer with 32 neurons, and using dropout of 0.1. The final

model contains 83,331 parameters.

The classifier acceptance is defined as the fraction of clusters that the network selects

as pT > 200 MeV. A comparison of the three models in terms of the acceptance is shown as

a function of the true pT in Figure 6. Table 1 compares two figures of merit for each model:

• signal e!ciency: the fraction of clusters with pT > 2 GeV that are classified as high pT

• background rejection: the fraction of clusters with pT < 2 GeV that are classified as low

pT

Figure 6: Classifier acceptance as a function of pT for three models with di”erent input

features. Positive and negative values of pT represent the performance on clusters initiated

by particles of positive and negative charge, respectively.

Model 1 (y-size and y0) has the simplest architecture and achieves the highest data

reduction rate. However, the information contained in only two features is insu!cient for

achieving a high signal e!ciency, and this model selects less than 85% of tracks with pT > 2

GeV. Model 2 (cluster y-profile) achieves an accuracy of 93.3% for tracks with pT > 2

Smart Pixel Sensors 20

Figure 13: Comparison of the algorithm accuracy and area in 28nm CMOS for di!erent

model configurations. The model name corresponds to d{number of neurons in the first

hidden layer} w{weight bit-width} a{activation bit-width}.

classifies the clusters as a negatively charged low momentum track, a positively charged

low momentum track, or a high momentum track. The sum over the ADCs and their

subsequent input into the NN algorithm is depicted in Fig. 14. At the top of the figure, we

also illustrate that the algorithm is reconfigurable by introducing new weights and biases

into a fixed architecture. This allows the algorithm to be adapted to di!erent regions of the

detector and changing detector conditions (due to radiation damage, for example).

The physical layout of the super-pixel is shown in Figure 15. The size of the digitally

implemented super-pixel is 889µm → 222µm. The green areas correspond to the analog

circuit islands, while the red contains the digital logic. Given our design, the registers

require a one-time setup and leakage at low temperatures is deemed insignificant, thus

the combinatorial logic is projected to account for the majority of the power utilization.

Based on the technology power models, the anticipated power consumption of the digital

logic is roughly 300µW , measured when toggling 50% of the inputs every clock cycle (25

nanoseconds).

5. Conclusions and Outlook

High granularity silicon pixel sensors are at the heart of energy frontier particle physics

collider experiments and provide the highest spatial granularity measurements for charged

particles. At an LHC collision rate of 40MHz, these detectors create massive amounts of

data. Our goal in this proof-of-concept study is to explore the potential for on-sensor data

Algorithm accuracy →

Implementation area →

Fully parallel implementation minimizes latency

Familiar chain for co-design
(qKeras→hls4ml→Catapult)
Second prototype ROIC now
being characterized.

C. HerwigMay 19, 2025

Next-gen tracking detectors

21

Longer term, hit rates at future colliders should far surpass the HL-LHC.
(Can extrapolate LHC to a 50-100 TeV hadron collider w/ ~1000 pileup)

C. HerwigMay 19, 2025

Next-gen tracking detectors

21

Longer term, hit rates at future colliders should far surpass the HL-LHC.
(Can extrapolate LHC to a 50-100 TeV hadron collider w/ ~1000 pileup)

Images from Slides by D. Calzolari

Conical “nozzle” shields
in forward region

6

In the end, still trying to make a
detector in a super challenging
environment.

7

Muon collider is a bit of a different beast due to Beam Induced Background
In the end, still trying to make a
detector in a super challenging
environment.

0.0003% of BIB shown

Enormous contribution into
detector region from

glowing nozzles

Neutrons
Photons

Electrons
Positrons

Much more about the Machine-Detector
Interface (MDI) this afternoon from Kiley

Kennedy and Daniele Calzolari

Luckily total ionizing dose/year is
comparable to HL-LHC

And orders of magnitude less than FCC-hh

D. Calzolari7

D. Calzolari
0.0003% of (1/2) a BIB event

C. HerwigMay 19, 2025

36

E . G . T R A C K E R

36

• Closest to the beam — most
affected by BIB

• BIB hits plague readout and offline
tracking algorithms

• Build trackers with more information
to reject BIB hits on-/off-detector

• Instead of a point in 3-space:

• Every hit should be an event in
space-time with precision
timing

• Precision timing is central to any
muon collider detector design

tΔ = t − texp(σ = 1)

Ally, Carpenter, Holmes, LL, Wagenknecht - [2203.06773]

∃ information on ~10 ps scale to
differentiate BIB from signal

Collision Byproducts

Next-gen tracking detectors

22

Longer term, hit rates at future colliders should far surpass the HL-LHC.
(Can extrapolate LHC to a 50-100 TeV hadron collider w/ ~1000 pileup)

Sensors will require timing resolution at the scale of 10ps.

L. Lee

C. HerwigMay 19, 2025

36

E . G . T R A C K E R

36

• Closest to the beam — most
affected by BIB

• BIB hits plague readout and offline
tracking algorithms

• Build trackers with more information
to reject BIB hits on-/off-detector

• Instead of a point in 3-space:

• Every hit should be an event in
space-time with precision
timing

• Precision timing is central to any
muon collider detector design

tΔ = t − texp(σ = 1)

Ally, Carpenter, Holmes, LL, Wagenknecht - [2203.06773]

∃ information on ~10 ps scale to
differentiate BIB from signal

Collision Byproducts

Next-gen tracking detectors

22

Longer term, hit rates at future colliders should far surpass the HL-LHC.
(Can extrapolate LHC to a 50-100 TeV hadron collider w/ ~1000 pileup)

12− 10− 8− 6− 4− 2− 0 2
) [GeV]

kin
 (E

10
log

410

510

610

710

810

910

1010

E
dN

/d
E

γ -e
+e n

)∞,∞ (-∈t
 [-0.5, 15] ns∈t

 = 10 TeVs beam, Lattice v0.4, -µ

Muon Collider
Simulation

20− 0 20 40 60 80 100
t [ns]

410

510

610

710

810

910

]
-1

dN
/d

t [
ns

γ -e
+e n

 = 10 TeVs beam, Lattice v0.4, -µ

Muon Collider
Simulation

200− 150− 100− 50− 0 50 100 150 200
z [cm]

310

410

510

610

710

810

910

]
-1

dN
/d

z
[c

m γ -e
+e n

)∞,∞ (-∈t
 [-1, 15] ns∈t

 = 10 TeVs beam, Lattice v0.4, -µ

Muon Collider
Simulation

0 10 20 30 40 50 60 70 80 90 100
 [m]µz

410

510

610

710

810

]
-1

 [m
µ

dN
/d

z

γ -e
+e n

 = 10 TeVs beam, Lattice v0.4, -µ

Muon Collider
Simulation

Figure 2: Various spectra of BIB particles as generated by FLUKA are presented. All

the results are normalized to the BIB generated during a single bunch crossing at nominal

bunch intensity. Only the main particle components are reported (i.e., electrons, positrons,

photons, and neutrons). At the top, the energy and time distribution spectra are shown.

The bottom-left image displays the distribution of the particle z position at the exit of the

nozzle elements, while the bottom-right plot shows the total number of secondary particles

as a function of the longitudinal muon decay position: muon decays occurring outside of the

final focusing region contribute negligibly to the BIB.

10

Sensors will require timing resolution at the scale of 10ps.

L. Lee

C. HerwigMay 19, 2025

Next-gen tracking detectors

23

Implications for in-pixel intelligence?
A number of avenues to pursue:
1. Timing will play a key role, but how to

cope w/ higher dimensionality?
2. Can we move from filtering to

featurization (e.g. predict hit position +
angle), to speed up trigger tracking?

3. More efficient algorithm designs
(Spiking NNs, e.g.?)

REFERENCES 31

Figure A7: Time evolution of a charge cluster in the simulated 21 → 13 pixel array. The

incident particle has y0 = 2.3 mm and pT = 135 MeV. The color scale represents the number

of electrons collected after the time denoted. Blue indicates induced negative charge in the

pixel.

135 MeV pT particle

Miniskar+, "Neuro-Spark: A Submicrosecond Spiking Neural
Networks Architecture for In-Sensor Filtering," International

Conference on Neuromorphic Systems (ICONS), 2024

C. HerwigMay 19, 2025

Next-gen tracking detectors

24

REFERENCES 30

Figure A6: Time evolution of a charge cluster in the simulated 21 → 13 pixel array. The

incident particle has y0 = 2.3 mm and pT = 1.9 GeV. The color scale represents the number

of electrons collected after the time denoted. Blue indicates induced negative charge in the

pixel.

1.9 GeV pT particle
Implications for in-pixel intelligence?
A number of avenues to pursue:
1. Timing will play a key role, but how to

cope w/ higher dimensionality?
2. Can we move from filtering to

featurization (e.g. predict hit position +
angle), to speed up trigger tracking?

3. More efficient algorithm designs
(Spiking NNs, e.g.?)

Miniskar+, "Neuro-Spark: A Submicrosecond Spiking Neural
Networks Architecture for In-Sensor Filtering," International

Conference on Neuromorphic Systems (ICONS), 2024

C. HerwigMay 19, 2025

In-sensor featurization for FCC-ee?

25

Data rates at next-gen e+e- colliders are generally small (hadron, μCol).
Total bandwidth @FCC-ee is ~3x LHCb (but 200kHz physics rate).

Tracker dominates the total data rate (~% X0: drift chamber or straws).
Pulse structure is critical for particle ID!

Cluster counting ~2x better than dE/dx
(but never used in experiment)!N. De Filippis

J. Zhu

C. HerwigMay 19, 2025

In-sensor featurization for FCC-ee?

26

Efforts are underway for a straw tracker demonstration at Michigan.

3+1 ATLAS sMDT chambers to measure ‘dx’ of cosmics,
and test new readout electronics (low-noise, high gain).

Achieve σ~100μm hit resolution in 90:10 He:Isobutane.

Npeak from simple
peak-finder algo

Individual clusters evident on the oscilloscope!
ML-based clustering should give a nice
improvement in performance!

C. HerwigMay 19, 2025

Conclusions and outlook

27

Despite the inherent challenges, intelligent processing within custom ASICs
will be critical to unlock the full potential of next-gen experiments.

C. HerwigMay 19, 2025

Conclusions and outlook

27

Despite the inherent challenges, intelligent processing within custom ASICs
will be critical to unlock the full potential of next-gen experiments.

C. HerwigMay 19, 2025

Conclusions and outlook

28

Despite the inherent challenges, intelligent processing within custom ASICs
will be critical to unlock the full potential of next-gen experiments.

Your FE ASIC here

FastMLLudicrous
SpeedML

ML4FE X (2035)

C. HerwigMay 19, 2025

Conclusions and outlook

29

Despite the inherent challenges, intelligent processing within custom ASICs
will be critical to unlock the full potential of next-gen experiments.

Past 5 years have seen exciting new efforts, but much is still theoretical.
~10k ECONs will “go live” in CMS in a few years… how will they work?

What lessons can we learn for the next-generation of detectors?

C. HerwigMay 19, 2025

Conclusions and outlook

29

Despite the inherent challenges, intelligent processing within custom ASICs
will be critical to unlock the full potential of next-gen experiments.

Past 5 years have seen exciting new efforts, but much is still theoretical.
~10k ECONs will “go live” in CMS in a few years… how will they work?

What lessons can we learn for the next-generation of detectors?

In the coming years, I will be eager to see:
What possibilities new sensor tech enables (e.g. fast timing).
As well as how “competitor” tech (non-ASIC) evolves.

Staying tuned for (e)FPGA, … and perhaps most important: links!

Thanks for your attention!

