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SLAC LCLS Data Challenge
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https: /wwwé . slac.stanford.edu/news/2021-02-17-bigger-faster-more-powerful-
slacs-new-x-ray-laser-data-system-will-process-million

LCLS-II
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Equivalent to
How much Seemet e amemen s Watching about a
data LCLS-II D thousand streaming
will ultimately . movies per second
produce per Aﬂ and analyzing every

second frame of each
(terabyte) movie in real time

COMPARING DATA RATES

LCLS-II 1280 GB/s - raw data

LCLS-II
(2029)

with data
— 128 GB/s - reduction

LCLS-II beamlines. (SLAC National Accelerator Laboratorv) 2



Example Challenge: Data Streaming and Storage In LCLS-I|

Image A Image B

Al generated image

Al generated image

LCLS-II

® Generating data at TB/sec
® Streaming the raw data at every microsecond will

LCLS-I

® Generating & storing data at GB/sec overwhelm the system
® Storing this much raw data is not possible and could cost
billion dollars annually
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Goals For LCLS-Il Data Processing.. And Other Applications

The main goal of our research is to autonomously select data which contains valid
scientific data, removing the unwanted data

Machine Learning (ML) has demonstrated the potential to digest large datasets to extract
relevant insights, or do the classifications for hit or miss targets

Data volumes and image rates necessitate processing at the edge, near or on the detector
embedded within the devices, as close to the sensor as possible.



EdgeAl is Heterogeneous
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Science Applications for FPGA

Data Rates are superhuman

Beamline optimization happens at human

timescales

The firehose is filling drives with $#!+
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CookieBox Example — “Attosecond Streaking”

Need for MHz inference

Inverse problem of pulse
reconstruction

X-ray Pulses

Enables time-bandwidth
version of “super-resolution”

Where to produce which links
of the inference chain?

Hirschman et al., “A Hybrid Neural Network for
High-Throughput Attosecond Resolution Single-shot X-ray
Pulse Characterization”, (2025) arXiv 2502.16141

|
Double Sub-Spike Sinogram



ML For Fusion Reactors - DIlI-D Example

MaxPooling perse s
Beam Emission Spectroscopy (BES) for S © xh
tokamak disruption event identification (Edge —=
Localized Mode - ELM) . "
Developed with intention of forecasting ELMs 2120 pixel
L. Malhotra et al., APS DPP Meeting 2021, CP11.67 Image : :
L. Malhotra et al., IAEA FEC 2023, Contribution
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https://meetings.aps.org/Meeting/DPP21/Session/CP11.67
https://conferences.iaea.org/event/251/contributions/20654/attachments/11043/16211/MALHOTRA_LAKSHYA.pdf
https://conferences.iaea.org/event/251/contributions/20654/attachments/11043/16211/MALHOTRA_LAKSHYA.pdf

LHC - FCC Trigger & Data Reduction
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Evolution Of Data Processing: LCLS-2
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Direct to disk storage.
Processing done offline
(LCLS & slower imagers)

On detector processing
using classical and ML
based approaches. FPGA +
ASIC + co-processor

In gateway FPGA processing
using classical and ML based
approaches (SNL)

processing

Rate reduction

(= oo
(= oo
= Online CPU based data
(== oo
=llED
(— -]

ASIC Level *  Application specific
Limited number of techniques

Sparsification,

GPU Based Online
Processing

Event driven triggered based techniques

.
.
. Back-end zero suppression
.

FPGA Level Region of Interest (Rol)

I d Algorithms can be tailored
) Limited number of techniques
Back-end zero suppression

Other commercial
hardware processing
(Groq, etc)

o Region of Interest (Rol)

¢ Algorithms can be tailored to

EDGE Computing Farm of FPGAs
/
on camera
different applications

l . Fast feedback to the detector
- (trigger generation)
. Calibration (required)

*  Large number of lossless This application described in this talk supports 35Khz
techniques events from 5 FPGA boards = 50GB/s processed in a
single GPU with an output bandwidth of 5GB/s 9

CPUs/GPUs

Data System




HeteroFlow Streaming Pipelines

Sensor Tile/Segment

ASIC
ASls > Froa
ASIC

Sensor Tile/Segment

Heterogeneity

Heterogeneous Accelerators
Heterogeneous Models

GROQ

Tile Aggregator
"event builder”

GPU

S3AIl = SLAC Sandbox for Streaming Al

Know the “Why”, need the “How” ... S3AI to support hetero-stream exploration

Inference Aggregator
Distribution/UQ out

1 AR
B 7 >
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Solving The Problem By
Moving Artificial Intelligence Closer To The Sensor

FPGA SoC

‘ Trained Model

Processmg j

Dataset Neural Network

Edge AI Processor
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https://doi.org/10.48550/arxiv.2305.19455
https://doi.org/10.1088/1748-0221/19/08/p08023
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CMOS-Based Simulated Ising Machine
research for solving optimization
problems in high energy physics (particle
tracking, jet clustering and etc) on edge.

SRAM-Based compute in-memory
macro architecture and compiler-like
design methodology research for
energy/area efficient data processing
in AI-ML workloads on the edge with
ASIC form factor.

New for FY25

Analog Instrument
—p p output
Input System
Signal /Y

T
Y
Al processor ; @

. (model) L
* * predictio

n

Target
Advanced modeling, real-time optimization

and autonomous operation of scientific
instruments enabled by an analog Al processor
at the edge 12




Hardware Resource Challenge

o Usually these Machine Learning models are oversized and the biggest challenge is how to fit
them on to FPGA!

13



Domain specific vs Detector specific
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(a) Vectorized Calculation of the Photon Correlation
. : two-ti
q22r::?;g::;f new 2D array Faiil i;ltiz);ti 57 transposed array cg\r/:)elal?:n
Generalizabe algorithms - 5 - A
M ‘T‘ A/N'
what users need, not what they T
wa nt (b) Offline Compression Scheme
N 2D images of new 2D array encoding matrix ~ compressed transposed two-time
the entire scan generate data compressed correlation
Recast offline for streami & -
ecast offline for streaming - ) A y - A
5 a—— Mo = N ~—r | =
M=M,xM, - . K matrik N
explores S L " .matrixmultiplication . ¥ g e
information sufficiency (GiiGnRComprassion Schame
latest 2D images ﬂewflattened anay pre-generated  append to exis& transposed two-time
. of the scan encoding matrix compressed data] compressed correlation
d
FPGA/ASIC encoding opens a
....... » —
\ ‘\»I‘/N' Xﬁ—‘\"%
- M=M,x M, 4 ~ K matrix 1 N+1
new can of worms, e.g. , L mati).
.. matrixmultipication T

firmware is meta-data

Al is Unavoidable

Strempfer et al., "Homomorphic data compression for real time
photon correlation analysis," Opt. Express 33, 12059-12070 (2025)
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AUREIS Overview - Moving Processing Into The Detector

ol Ay
o P B 20>
Rate reduction
' i eve ication specific
"\/ s w ~ 'Ii\irr:iltedtnumser o‘;techniques M E E RCAT -
PE? 8 *  Sparsification, R R
/ ; o Event driven triggered based techniques, M |Croe I ect ro n | CS E ne rgy
. Back-end zero suppression .

FPGA Level . Region of Interest (Rol) EfﬁCIency Resea rCh Ce nter
Algorithms can be tailored for Advanced Technologies

Limited number of techniques
Back-end zero suppression

Region of Interest (Rol)

* Algorithms can be tailored to
different applications

d Fast feedback to the detector

~ (trigger generation)
Calibration (required)

. Large number of lossless
techniques

EDGE Computing Farm of FPGAs
on camera

CPUs/GPUs

Data System

AUREIS

AUREIS aims to develop the underpinning microelectronics technologies for ultrafast, energy-efficient, dense
networks of sensors, large-area imagers, and future detectors, solving the extreme data deluge problem by:

* Reimagining network of sensors as data-driven adaptive intelligent architectures
* Introducing optimally distributed computing at the data source (edge)
* Leveraging meshed hierarchical interconnections

+ Optimizing and benchmarking energy and information extraction efficiency 15



AUREIS Overview - Algorithm Mapping & Interconnects

o=l A
st B 0>
Thrust 1 — Hardware/resource-aware ML/Al-based workflows for dynamic
Al ALGOR'THM real-time experiment operation.

Thrust 2 - Energy-efficient distributed network organization and

b
= Al-based edge computing architecture trainable across architectures --
COMPUTATION TYPES g puting

analog and digital -- for optimized information extraction.

~ Thrust 3 - Ultra-high-rate trainable front-end ASIC architectures
TYPE TYPE TYPE TYPE TYPE u | with adaptive analog interfaces.

L 2 3 4 6

Thrust 4 - Integration of dense multi-tile sensor planes with inter-tile
communication.

Thrust 5 - Wide bandgap material-based sensor for efficiency over

a wide range of energies.
MAPPING TO HARDWARE

FPGA — GPU — EFPGA

-

CPU GPU FPGA ' ASIC

ASIC — GROQ — OTHER

16



Project Morpheus: what do we need to study to achieve adaptive

detectors?

High speed detector create a data deluge at every
detector level (ASIC, in detector FPGA, support
processing FPGA/CPU/GPU farms, super computers

Adaptive resolution (spatial, energy and time) for
real-time performance optimization

Auto-calibration (electrical units -> physical units)

Trainable to extract information in real-time
(independent of the occupancy)

* E.g., focused readout (on recognized features) based on
neuromorphic architectures

e E.g..feedback loop with a training ML algorithm on HPC in
the back reconfiguring Al inference in the detector front
end

Producing Data at the Information rate

* Validated algorithms - no loss of information
Ultra-high frame rate (programmable patterns)
Energy efficient

Lots of questions, some ideas, few answers and
limited possibility to explore these directions

Custom ASIC to enable fast
re-configuration and Al core to enable
adaptive detector

-
L

Sample delivery Detector
system d - - data EPGA \
High spee ’

X0 o}
DAY xe
4\\0(6
®
o«
. [
<
L J
% s Live Al core input
X-ray
source | ) Continuous
/ / Al Engine for . learning
ASIC i single ASIC
prototype l ' area

High speed
configuration network

A Multi-Disciplinary Co-Design Foundational Research Problem

Need to leverage broad expertise

ANL and SLAC collaboration
PI: Dr. Angelo Dragone 17
Co-Pls: Dr. Antonino Miceli and Dr. Dionisio Doering



Science in the loop: Reinforcement learning and Morpheus

SPI
sample

tomography Data

simulation

Gain = eV->ADU
Non-linearity
Data representation: float toint12

(Skopi)

Many
science
cases

Sample
& reconstruction

Sample
reconstructed

Science specific domain

Noise: random, poison noise
Noise: common mode
N Detector L Dead/hot pixels
transformations l

T Data driven optimizations
to the detector ASIC

Post processing |
(Action)

Al Engine for »
single ASIC area 2
8 2 Calibration
135 (FPGA)
ML segmentation £
{Unet, SegNet,...) :S 5
38 &

 —

Adaptive detector
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Multi-Model & Distributed Data Sources

secure
science

open science

AT

SPALLATION NEUTROX SouRCE
LR 4

i
Neutron .

secure
science

[

Courtesy
Rick
Archibald

Electrons

K Location A \

Database Security

Homomorphic
reduction
&
Synthetic
Data

0fs -
> sorfd

KData Mask

Model = p‘y

[

Location B

Database Security

Homomorphic 0 ’ ‘ )
reduction
&
Synthetic o
Data

\Data

Mask Model

Epy

\

Central Hub

/ Location C \

Database Security

Homomorphic
reduction
&
Synthetic
Data

> Heets

Data Mask
N

Model = py
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Quantization is Unavoidable — Variable binning

Occurrence

Optimizes information per bit

Reduces input token dimensionality
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Puts metadata to work

CNN Prediction
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Gouin-Ferland, Coffee and Therrien, Front. Phys. 10 (2022)
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Quantization Challenges

1 AR

N

B F 2>

Layer by Layer Quantization to make ML model Lighter

Classes Quantization in ML reduces model precision to make it more efficient for deployment
0 on resource-constrained hardware like FPGAs, GPUs, and other devices.
Conv2D Conv2D 1
Filter: 5x5x5 Filter: 5x5
Dense:50 2 Digital vs. Analog Hardware: Quantization techniques and scaling methods (e.g., in
3 QKeras for FPGAs) might not work well for analog hardware due to different
7 & L ' 4 characteristics.
- . nse:10 5
| 28328 6 Hardware-Specific Formats: Tools like QKeras use fixed-point formats (e.g., ap_fixed)
nput: 28x MaxPool2D 7 suitable for FPGAs, while GPUs often use different formats like INT8 or FP16.
Pooling: 2x2 Dense:100 3
9 Different Tools, Different Approaches: Quantization methods vary by hardware and

toolchain, impacting how models are scaled and represented.

Tiny LeNet for Digit Classification Parameters: 9242
Weights and biases: 32bit (High Precision) 95.07% Acc.

Post Training Layer Wise Quantization 89.21% Acc. Training tools & hardware must match!

Ideally the tool properly mimics the real hardware!

There are two types of Quantization:
1. Quantization Aware Training (QAT): Quantize weights and biases during training
2. Post Training Quantization (PQT): Quantize weights and biases after training

21



Edge-to-Exascale and Back!
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HPC testbeds linked to Edge Streaming Sensors and Early Access Hardware

Testbeds that design for Edge Integration with LCF . Reconfigurable hardware and racks for design exploration
Real-world streaming tests to work out bugs and security . Streaming imaging (photonics) and digitizers (analog)
Prototype domestic inter-lab federation, then international . Early access for inference hardware and custom ASICs and HEP
IRI Orchestration should align with future HEP international sensor prototypes _ _

ecosystem . Long DOE history in FPGA and leading eFPGA into age of

chiplets for trigger, stream, and control systems

EdgeML and Heterogeneous Computing

22



S3Al TestBed Integration With S3DF and IRl

Experimental.—\—.

Systems

. Tiered Facilities

o Experimental sensors

o Mid-scale HPC —also archival storage

o LCF

Pragh —— \
o : . g
O - ] 3 W .
: BRI Ay
s L R
" > R

IRI

Co

JJJJJJJ‘

rpryent

(AR NN

B —p
rrrnrnnl

Neuro Photonic

Reconfigurable S2Al TestBed

Edge
Processing
Algorithms

"l

@)

Engineers

. Community Collaboration

o Workforce Development

o Open the hood on weird hardware

o HEP science drives global technology mission
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Conclusion And A Plug: SLAC Neural Network Library (SNL)

Key points:

e Provides specialized set of libraries for deploying ML inference to FPGA,
eFPGA & ASIC

e Using High-Level-Synthesis (HSL): C++ programming of FPGA/ASIC
e Supports Keras like API for layer definition
e Dynamic reloading of weights and biases to avoid re-synthesis

e Supports 10s of thousands of parameters or more depending on latency
requirements for the inference model

¢ Total end to end latency of couple of usec to couple of millisecond.
e Streaming interface between layers.
e Allow for pipeline of the data flow for a balance of latency vs frame rate

e Library approach allows for user/application specific enhancements

o~
s o

FPGA Design Flow

'*@l

SNL

SLAC Neural
Network Library

_’~
\o

C++ Template
Parameters and Layers definition

[ Packed IP }

Linux Kernel
aes-stream-drivers

l

Export to
Vivado

FPGA

>

/
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