The Magnificent JUNO

王为 (Wei Wang, on behalf of the JUNO Collaboration)

School of Physics & Sino-French Institute of Nuclear Engineering & Technology

中山大学 (Sun Yat-sen University)

Workshop on Ghost Particle Hunting: Neutrino Physics and its

Applications for World Peace

SYSU has 5 Campuses in 3 Major Cities School of Physics is on the South Campus in Guangzhou IFCEN is on the Zhuhai Campus

广州

珠海 Zhuhai

Guangzhou

深圳 Shenzh

● 局務木内

新疆維吾爾自治區

西藏自治區

Outline

Introduction of Neutrino Mass Hierarchy

Searching for a Solution at Reactors

The JUNO Approach and Design

Summary and Future Perspectives

One Page History of Discovering Reactor Neutrino Oscillations

Which Mixings Drive Which Reactor Neutrino Oscillations?

$$P(\overline{\nu}_{e} \rightarrow \overline{\nu}_{e}) \approx 1 - \frac{\sin^{2} 2\theta_{13} \sin^{2} \left(\frac{\Delta m_{ee}^{2} L}{4E}\right)}{\sin^{2} (\Delta m_{ee}^{2} \frac{L}{4E})} - \frac{\cos^{4} \theta_{13} \sin^{2} 2\theta_{12} \sin^{2} \left(\frac{\Delta m_{21}^{2} L}{4E}\right)}{\sin^{2} (\Delta m_{ee}^{2} \frac{L}{4E})} \equiv \frac{\cos^{2} \theta_{12} \sin^{2} (\Delta m_{31}^{2} \frac{L}{4E})}{+\sin^{2} \theta_{12} \sin^{2} (\Delta m_{32}^{2} \frac{L}{4E})}$$

- At different distances, the survival rate is dominated by different mixing angles
- To measure θ₁₃, a baseline
 of ~2 km is optimal
- To measure θ₁₂, a baseline
 of ~50-60 km is optimal

Known θ₁₃ Enables Neutrino Mass Hierarchy at Reactors

Plausible Extracting the Mass Ordering Information? Yes!

J. G. Learned, S. T. Dye, S. Pakavasa, R. C. Sovobota, PHYSICAL REVIEW D 78, 071302(R) (2008)

FIG. 1. Event rate versus L/E in units of km/MeV for: no oscillations (top curve), oscillations with $\theta_{13} = 0$ (lower smooth curve), and oscillations with $\sin^2(2\theta_{13}) = 0.1$.

FIG. 2 (color online). Fourier power spectrum with modulation in units of eV^2 and power in arbitrary units on the logarithmic scale. The peak due to Δ_{31} with $\sin^2(2\theta_{13}) = 0.1$ is prominent.

FIG. 3. Neutrino mass hierarchy (normal = solid; inverted = dashed) is determined by the position of the small shoulder on the main peak.

Challenges in Resolving MH using Reactors

- \succ Energy resolution: ~3%/sqrt(E)
 - \blacktriangleright Energy scale uncertainty: <1%
 - > Statistics (the more the better)
 - Reactor distribution: <~0.5km</p>

2

NH

Best Fit to NH data

S.F. Ge et al

 $\delta E_{vis}/E_{vis} = 6\% N E_{vis}$

 $\delta E_{vis}/E_{vis} = 0$

IH

3

E_v [MeV]

6000

5000

4000

3000

2000

6000

5000

4000

3000

2000

dN / dE_v [1/MeV]

Suitable Nuclear Power Plants (very easy now) in China

China's Path to Carbon Neutrality

Projected percent share of non-fossil fuels in China's total energy consumption

- China builds 6-8 new reactors a year
- Each reactor needs an average of 800 professional workers

Jiangmen Underground Neutrino Observatory (JUNO)

- Proposed as a reactor neutrino experiment for mass ordering in 2008 (PRD78:111103,2008; PRD79:073007,2009)
 - driving the design specifications: location, 20 kton LS, 3% energy resolution, 700 m underground
- Rich physics program in solar, supernova, atmospheric, geo-neutrinos, proton decay, exotic searches
- Approved in 2013. Construction in 2015-2024

Jiangmen Underground Neutrino Observatory

The JUNO Central Detector

Acrylic Sphere:

Inner Diameter (ID): 35.4 m Thickness:12 cm

Stainless Steel (SS) Structure:

ID: 40.1 m, Outer Diameter (OD): 41.1 m 17612 20-inch PMTs, 25600 3-inch PMTs

Water pool:

ID: 43.5 m, Height: 44 m, Depth: 43.5 m **2400** 20-inch PMTs

The Detector Performance Goals

	KamLAND	Daya Bay	PROSPECT	JUNO Concept (Design&Simulation)
Target Mass	~1kt	20t	~4t	~20kt
Photocathode Coverage	~34%	~12% (Effective)	ESR + PMTs	<mark>~80%</mark> (75%+3%)
PE Collection	~250 PE/MeV	~160 PE/MeV	~850 PE/MeV	~1200 PE/MeV (1665)
Energy Resolution	~6%/√E	~7.5%/√E	~4.5%/√E	3%/ √E
Energy Calibration	~2%	1.5%→ 0.5%	~1%	<1%

An extremely demanding detector and a challenging job

Packing PMTs as Tight as Possible and Keep Them Safe

Double Calorimetry: Large PMTs and Small PMTs

- 3"-PMT photocathode coverage: ~2.7% (~75.2% for LPMTs)
- More importantly, double calorimetry for energy non-linearity
- For details, see arXiv: 2104.02565

20" PMT Water-Proof Potting

A Potting Lab of 650m² in the PMT workshop

- Potting technique developed and matured in 2019; Assemble line built and potting started in Jul 2019, with a capacity of 40–50 PMTs/day;
- The technique has been very successful: No leaks found after leakage tests (sampled) using pressurized water (@ 5 bar) and SF₆ gas sniffing

20" PMT Implosion Prevention System

- Top cover: acrylic, 9~11mm, mass production started and 6,000 have been delivered
- Bottom cover: stainless-steel, 2mm; stainlesssteel covers production started
- Multiple implosion tests have been carried out → SAFE!

A PMT Characterization, Potting and Assembly Station in a Warehouse

Characterizing/Testing Every Single PMT with Great Care

PMT System Summary

- 20-inch PMT: 15,012 MCP-PMT (NNVT) + 5,000 Dynode PMT (Hamamatsu HPK) 3.1-inch PMT: 25,600 Dynode PMT (HZC XP72B22) 3 mm clearance
 - All PMTs delivered and their performance tested OK
- Water proof potting done: failure rate < 0.5%/6 years
- Implosion protection: acrylic top & SS bottom (JINST 18 (2023), P02013)
 - Mass production completed

	LPMT (20-in)		SPMT (3-in)
	Hamamatsu	NNVT	HZC
Quantity	5,000	15,012	25,600
Charge Collection	Dynode	MCP	Dynode
Photon Det. Eff.	28.5%	30.1%	25%
Dynamic range for [0-10] MeV	[0, 100] PEs		[0, 2] PEs
Coverage	75%		3%
Reference	Eur.Phys.J.C 82 (2022) 12, 1168		NIM.A 1005 (2021) 165347

The 20" PMT Electronics System Scheme

- The 1F3 system cases Splitter, HV FEC, ADC, GCU&FPGA in the underwater boxes
- Two cables, one CAT5 and one CAT6, supply low voltage DC power, timing signal and data transfer

The 3" PMT Electronics System Scheme

The Construction of the Central Detector

arXiv: 2311.17314 (2023)

- A 35.4m spherical acrylic
 vessel containing 20kton LS
- Supported by the 41.1 m
 Stainless Steel structure via

590 supporting bars

JUNO Detector and Tightly Packed PMTs

arXiv: 2311.17314 (2023)

The Last Steps of Completing the Central Detector

Calibration and Expected Energy Resolution

Dark noise,

 $\left(\frac{2.61\%}{\sqrt{E_{v_is}}}\right)^2 + (0.64\%)^2 + \left(\frac{1}{\sqrt{E_{v_is}}}\right)^2 + (0.64\%)^2 + (0.6\%$

Constant

 $\overline{E_{v_is}} =$

Photon

- Four systems for 1D, 2D, 3D scan with multiple sources
- Energy scale and non-linearity will be calibrated to <1% using γ peaks and cosmogenic ¹²B beta spectrum

Neutrino Physics and Its Applications to World Peace, with a tribute to Prof. John Learned

Current Status of JUNO: Water Filling

- Dec 1, 2024, Installation finished
- Dec 18, 2024, water filling started
- Feb 2, 2025, water filling completed

out pure water filling

ynchronize pure water filling of CD and WP. 'ure water production for FOC **~90 m³/h**. **urther purification** of CD line. Jse **regulating valves** to regulate flow entering CD or WP for **liquid level balance**.

Current Status of JUNO: Water Filling

Feb 8, 2024, LS replacing/filling started

Let's See Some Event/Photons!

Achievements:

- Calibration of the large PMTs using laser data
- Small failure channels
 : ~7/17k (~0.04% loss at installation)
- Calibration sources working as expected (Am-Be and Am-C)
- We have seen some muon candidates

Reactor Antineutrino Anomaly (RAA)

Neutrino Physics and Its Applications to World Peace, with a tribute to Prof. John Learned

Visible Energy (MeV)

The Tao Site

- Taishan Nuclear Power Plant has two cores currently in operation (other two cores might be built later)
- Both reactors are European Pressurized Reactor (EPR) with
 4.6 GWth thermal power
- Taishan-1 reached first criticality and was connected to the grid in June 2018
 - the first running EPR in the world!
- The TAO detector will be installed in a basement at 9.6 m underground, outside of the concrete containment shell of the reactor core
 - > >99.99% signal from Taishan-1+Taishan-2
 - > 4% signal from Taishan-2
- Muon rate and cosmogenic neutron rate are measured to be
 1/3 of those on the ground

Neutrino Physics and Its Applications to World Peace, with a tribute to Prof. John Learned

JUNO-TAO: another unprecedented reactor detector arXiv: 2005.08745

2.8 ton GdLS detector ~30 m Baseline **Reactor Thermal Power** 4.6 GW SiPM Light Collection Photon Detection Efficiency >50% <mark>-50 °C</mark> Working Temperature Dark Count Rate [Hz/mm²] ~100 Coverage ~94% Detected Light Level [PE/MeV] 4500 < 2% @ 1 MeV **Energy resolution**

✓ SiPMs to achieve high light yield with ~94% coverage
 ▶ 4500 PEs/MeV & energy resolution < 2% @ 1 MeV
 ✓ Gd-LS works at -50°C to lower the dark noise of SiPM

Start construction in Taishan Laboratory since Nov. 2024 and expected to be completed in Summer 2025.

TAO Energy Resolution

	JUNO	TAO
Coverage	~ 75%	~ 94%
Photon detection efficiency	~ 30%	> 50%
Attenuation length	> 20 m (R = 17.2 m)	> 20 m (R = 0.9 m)
Photoelectron yield	~ 1665 PE/MeV	~ 4500 PE/MeV
Energy resolution	2.95% @ 1 MeV	~ 2% @ 1 MeV

Non-stochastic effects affecting energy resolution in TAO:

- at low energies, the contribution from the LS quenching effect might be quite large;
- at high energies, the smearing from neutron recoil of IBD becomes dominant.

In most of the energy region of interest, the energy resolution of TAO will be sub-percent!

- 1. ~94% coverage of SiPM with ~50% PDE
- 2. Inner diameter of target: 1.8 m, *L*_{absorption} very small
- 3. Gd-LS works at -50°C, increase the photon yield

The TAO Detector Installation

JUNO Milestones

Conclusions and Future Perspectives

Absolutely possible using reactors for NMO ✤JUNO detector better than 3% (at 1MeV) in energy resolution and 1% in energy scale \rightarrow NMO 3-4 σ in 6 years (reactor neutrino alone); <1% precision oscillation parameters \star JUNO construction completed \rightarrow **Detector filling** & Commissioning in parallel: water and LS quality good Reactor Neutrinos are useful also (Creation of the AAP series by John and friends) \rightarrow JUNO-TAO has great potential in reactor physics and nuclear data

> Stay tuned for our data taking in July 2025!

IFCEN

Background

SYSU and FINUCI signed the first phase of cooperation (witnessed by the then prime ministers of the two countries at the Great Hall of the People)

A Fused Sino-French

Program

R&D

核工程材料与力学 Nuclear Materials and Mechanics

核化学与放射化学 Nuclear chemistry and radiochemistry

核能科学与工程 Nuclear Energy Science & Engineering

核仿真与安全 Nuclear energy simulation and safety

反应堆热工水力 Nuclear reactor thermal hydraulis

先进核能系统 Advanced Nuclear Energy Systems 核物理 Nuclear Physics

中低能核物理、天体物理、核数据 Low- and medium-energy nuclear physics, astrophysics, nuclear data

核科学与技术 Nuclear Science & Technology

核数据科学与 应用 Nuclear Data

核环境辐射监测与应急 Nuclear environmental radiation monitoring and emergency response 辐射防护与安全 Radiation protection and safety

辐射探测 radiation detection

等离子体技术 plasma technology

放射治疗及核医药 Radiotherapy and nuclear medicine

核技术及应用 Nuclear Technology & Applications

粒子物理、新型探测器、中微子应 用 Particle physics, novel detectors, neutrino applications

辐射防护与环境保护 Radiation & Environmental Protection

e- / µ-Flavor Feels Mass Ordering Differently

 δ_{CP} for $\bar{\nu}_e$ and ν_{μ} disappearance measurements, respectively.

Also See: Zhang&Ma, arXiv:1310.4443/ Mod. Phys. Lett. A29 (2014) 1450096

Daya Bay Full Data Set (Neutrino 2024)

Daya Bay reported the precision measurement with 3158-days full dataset in 2022

 $\sin^2 2\theta_{13} = 0.0851 \pm 0.0024$

```
\Delta m_{32}^2 = 2.466 \pm 0.060 (-2.571 \pm 0.060) \times 10^{-3} \text{ eV}^2
```

precision 2.8% \rightarrow the Best in the world

precision 2.4% \rightarrow one of the Best in the world

Systematics, mainly detector differences, contributed about 50% in the total error

Global comparison θ_{13}

Daya Bay leads the precision measurement, nGd+nH gives 2.6% precision By combining all reactor results, ultimate precision of $sin^2 2\theta_{13}$: 2.5%

Consistent results from reactor and accelerator experiments

Global comparison Δm^2

Consistent results from reactor and accelerator experiments

Normal Ordering slightly preferred (<2σ) from reactor/accelerator averages

Note: average is error weighted average assuming no correlation

Reactor weighted average 2% dominated by Daya Bay

Accelerator weighted average 1.5% (SK+T2K) + NOvA + MINOS + IceCube

Global Efforts Resolving v Mass Hierarchy

Source / Principle	Matter Effect	Interference of Solar&Atm Osc. Terms	Collective Oscillation	Constraining Total Mass or Effective Mass
Atmospheric ν	Super-K, Hyper-K, IceCube PINGU, ICAL/INO, ORCA, DUNE	Atm и/ + JUNO		
Beam <i>ν</i> μ	T2K, NOvA, T2HKK, DUNE	Beam yı + JUNO		
Reactor <i>v</i> e		JUNO, JUNO + Atm/Beam 14		
Supernova Burst v			Super-K, Hyper-K, IceCube PINGU, ORCA, DUNE, JUNO	
Interplay of Measurements				Cosmo. Data, KATRIN, Proj-8, 0vββ

Veto Detectors

Water Cherenkov + Top tracker

NIMA 1057 (2023) 168680

- Water Cherenkov detector
 - <u>35 kton</u> water to shield backgrounds from the rock
 - Instrumented w/ 2400 20-inch PMTs on SS structure
 - Water pool lining: 5mm HDPE (black) to keep the clean water and to stop Rn from the rock, covered w/ tyvek
 - 100 ton/h pure water system Requirement: U/Th/K<10⁻¹⁴ g/g and Rn<10 mBq/m³, attenuation length>40 m, temperature controlled to (21±1) °C
- Top tracker
 - Refurbished OPERA scintillators
 - 3 layers, ~60% coverage on the top
 - $-\Delta\theta \sim 0.2^{\circ}, \Delta D \sim 20 \text{ cm}$
- Earth Magnetic Field compensation coil

A Comprehensive Calibration System

Automatic Calibration Unit (ACU)

Complementary for covering entire energy range of reactor neutrinos and fullvolume position coverage inside JUNO central detector

Cable Loop System (CLS)

Remotely Operated under-liquid-scintillator Vehicles (ROV)

Wei Wang/王為 SYSU

A Controlled Installation Environment for Cleanness

SUN VITE SEV UTITIE

- Average radon and cleanliness:
 - > Radon concentration: $\sim 160 \text{ Bq/m}^3$ in the EH, $\sim 140 \text{ Bq/m}^3$ in the LS hall
 - Cleanliness: class 20,000

Precision Measurement of oscillation parameters

$\sin^2 2\theta_{12}$, Δm_{21}^2 , $|\Delta m_{32}^2|$, leading measurements in 100 days; precision <0.5% in 6 years

	Central Value	PDG2020	$100\mathrm{days}$	6 years	20 years
$\Delta m_{31}^2 \; (\times 10^{-3} \; \text{eV}^2)$	2.5283	$\pm 0.034~(1.3\%)$	$\pm 0.021 \ (0.8\%)$	$\pm 0.0047 \ (0.2\%)$	$\pm 0.0029 \ (0.1\%)$
$\Delta m_{21}^2 \; (\times 10^{-5} \; {\rm eV}^2)$	7.53	$\pm 0.18~(2.4\%)$	$\pm 0.074~(1.0\%)$	$\pm 0.024 \ (0.3\%)$	$\pm 0.017~(0.2\%)$
$\sin^2 \theta_{12}$	0.307	$\pm 0.013~(4.2\%)$	$\pm 0.0058~(1.9\%)$	$\pm 0.0016 \ (0.5\%)$	$\pm 0.0010~(0.3\%)$
$\sin^2 \theta_{13}$	0.0218	$\pm 0.0007~(3.2\%)$	± 0.010 (47.9%)	± 0.0026 (12.1%)	$\pm 0.0016~(7.3\%)$

Neutrino Mass Ordering

Sensitivity mostly from 1.5-3 MeV

	Design	Now
Thermal Power	$36 \mathrm{GW}_{\mathrm{th}}$	26.6 GW _{th} (26% ↓)
Signal rate	60 /day	47.1 /day (<mark>22%↓</mark>)
Overburden	~700 m	~ 650 m
Muon flux in LS	3 Hz	4 Hz (33% ↑)
Muon veto efficiency	83%	91.6% (11% ↑)
Backgrounds	3.75 /day	4.11 /day (10% ↑)
Energy resolution	3.0% @ 1 MeV	2.95% @ 1 MeV (<mark>2%</mark> ↑)
Shape uncertainty	1%	JUNO+TAO
3σ NMO sens. Exposure	<6 yrs $ imes$ 35.8 GW _{th}	~6 yrs $ imes$ 26.6 GW $_{ m th}$

- JUNO NMO median sensitivity:
 3σ (reactors only) @ ~6 yrs * 26.6 GW_{th} exposure
- Combined reactor and atmospheric neutrino analysis in progress: further improve the NMO sensitivity

arXiv:2405.18008 (2024)

Understanding Reactor Antineutrinos: Fuel Evolution

- Fuel evolution: Phys.Rev.Lett. 118 (2017) no.25, 251801
- Isotope decomposition, *PRL 123 (2019) no.11, 111801*

²³⁵Pu: 1.2-sigma effect

Understanding Reactor Antineutrinos: Improved Systematics

• Improved Fuel evolution: Phys.Rev.Lett. 130 (2023) no.21, 211801

