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Expansion Rate Determined by Universe Contents

DESI constrains the expansion rate, which is determined by Friedmann's equation,

H? = Hj (2;;;) [PDE(a) + pv(a) + pb(l);;pc(l) + pZz(‘ll)]
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» H;, DE, and neutrinos remain flexible

P> Massive neutrinos are cold, non-interacting, matter at late times
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Planck Fiducial Lookback Time (Gyr)

...but wyw, is a placeholder 2 68 10 12
Two parameters characterize the DE equation of state —— DESI+CMB+Pantheont
L e DESI+CMB-+Union3

—-— DESI+CMB+DESY5 i

P/p = weg(a) := wo + we(l — a)

Features

P Describes internal evolution between DE kinetic and
potential DOF

» DE assumed to exchange energy and momentum with
gravity only

Effective Equation of State weg(2)

Causality violation: w.g < —1 = speed of sound

greater than speed of light . . .
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...but wyw, is a placeholder 2 68 10 12
Under wow, assumptions, conservation implies —— DESI+CMB+Pantheon+
TR DESI+CMB+Union3
a dp —-— DESI+CMB+DESY5 |
Weff = —1 — 5———
3pda

so data-driven dp/da > 0 = weg < —1.

Interpretation: DESI data suggest energy injection

from other species

Effective Equation of State weg(2)
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What's the problem?

DESI constrains the expansion rate, which is determined by Friedmann's equation,

12 = 113 (572 ) [powa) + (o) + 252 00
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What's the problem?

DESI constrains the expansion rate, which is determined by Friedmann's equation,

12 = 113 (572 ) [powa) + (o) + 252 00

In order to recover H(1) = Hy, we require that

(87TG> (008 + pu + oo+ pe+py ],y =1

~535 | [PDE + v+ b+ petpy ] =

3HG Y el
Pinned by CMB

» Hy, DE, and neutrinos are the only remaining flexibility...

» And massive neutrinos are cold, non-interacting, matter at late times...
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What's the problem?

DESI constrains the expansion rate, which is determined by Friedmann's equation,

12 = 113 (572 ) [powa) + (o) + 252 00

In order to recover H(1) = Hy, we require that

87G B
ﬁ [pDE+pV+Pb+Pc+pﬂ/]a:1—1
Pinned by CMB

Interpretation: DESI data prefer less matter than CMB implies

University of Hawai'i at Manoa; Workshop on Ghost Particle Hunting; April 30, 2025
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Conclusions from DESI fiducial analysis

» dppgp/da >0 = DE receives injection from another species
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> > myer <0 = less matter (baryons or CDM) today than at Big Bang
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Conclusions from DESI fiducial analysis

» dppgp/da >0 = DE receives injection from another species
> > myer <0 = less matter (baryons or CDM) today than at Big Bang

> “... negative values should be interpreted as a signature of unidentified systematic errors
or possibly of new physics which may be unrelated to neutrinos...”

University of Hawai'i at Manoa; Workshop on Ghost Particle Hunting; April 30, 2025
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ALGEBRAIC PROPERTIES OF THE ENERGY-MOMENTUM TENSOR AND
VACUUM-LIKE STATES OF MATTER

. GLINER
A. F. Ioffe Physico-technical Institute, Academy of Sciences, U.S.S.R.
Submitted to JETP editor January 22, 1965; resubmitted April 17, 1965

J. Exptl. Theoret. Phys. (U.S.S.R.) 49, 542-548 (August, 1965)

The physical interpretation of some algebraic structures of the energy-momentum tensor
allows us to suppose that there is a possible form of matter, called the u-vacuum, which
macroscopically possesses the properties of vacuum. The assumption that an actually oc-
curring vacuum is a p-vacuum retains the Lorentz invariance of the Lagrangian (when gravi
tation is neglected) and preserves the theories based on the requirement of this invariance,
and at the same time makes the Mach principle no longer logically convincing. The space
time of a p-vacuum is an Einstein space in the sense of Petrov’s definition. 2] A uniform
world of p-vacuum has the de Sitter metric.
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ALGEBRAIC PROPERTIES OF THE ENERGY-MOMENTUM TENSOR

the condition u = const, plays the role of the cos-
mological constant, which accordingly can be inter-
preted in the framework of the ordinary formalism
of the general theory of relativity. If, on the other
hand, we cannot neglect the matter other than the
u-vacuum, the analogy of the y-vacuum density
with the cosmological constant can be maintained
only in so far as the interaction of this matter with
the p-vacuum is unimportant. Otherwise the con-
dition pu = const does not hold, and the analogy
with the cosmological constant is destroyed.

The differences between the structure of the
energy-momentum tensor of u-vacuum and that
for ordinary matter, and the consequent differences
between its equations of motion and its properties
and the equations of motion and properties for
ordinary matter show that if the p-vacuum is real,
then it is a specific form of matter. Since the
equations of the general theory of relativity do not
contain adequate information about the conditions
of transition between different forms of matter,
within the framework of this theory we cannot de-

ing of particles of matter are annulled.

This situation is not utterly unrealistic. An
attempt to describe phenomenologically the struc-
ture of an elementary charged particle would lead
to the conclusion that inside the particle there
must be a negative pressure which balances the
electrostatic repulsion. This raises the thought
that in an ultradense state of matter, with the
baryons so compressed that the meson fields
which provide the interaction between them (repul-
sion!) cannot be produced, a continuous medium is
formed in which the conditions correspond to an
attraction between material elements and are de-
scribed phenomenologically by a negative pressure.
For example, such a state might be reached in
gravitational collapse.

It would seem that a negative pressure should
lead to an internal instability, and that if there are
no volume forces of the type of the electrostatic
repulsion it would lead to a contraction without
limit. This is not true, however. Let us assume
that compression actually leads to a negative pres-
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General Relativity and Gravitation, Vol. 24, No. 8, 1992

Vacuum Nonsingular Black Hole!

Trina Dymnikova®

The spherically symmetric vacuum stress-energy tensor with one assump-
tion concerning its specific form generates the exact analytic solution of
the Einstein equations which for large 7 coincides with the Schwarzschild
solution, for small r behaves like the de Sitter solution and describes a
spherically symmetric black hole singularity free everywhere.
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Cosmological expansion and local physics

Valerio Faraoni* and Audrey Jacques'

Physics Department, Bishop’s University, 2600 College Street, Sherbrooke, Québec, Canada JIM 0C8
(Received 7 June 2007; published 24 September 2007)

The interplay between cosmological expansion and local attraction in a gravitationally bound system is
revisited in various regimes. First, weakly gravitating Newtonian systems are considered, followed by
various exact solutions describing a relativistic central object embedded in a Friedmann universe. It is
shown that the “all or nothing” behavior recently discovered (i.e., weakly coupled systems are comoving
while strongly coupled ones resist the cosmic expansion) is limited to the de Sitter background. New exact
solutions are presented which describe black holes perfectly comoving with a generic Friedmann universe.
The possibility of violating cosmic censorship for a black hole approaching the big rip is also discussed.

DOI: 10.1103/PhysRevD.76.063510 PACS numbers: 98.80.—k, 04.50.+h

L INTRODUCTION perturbed by a transient and does not expand [22]. This
) work breaks free of the standard assumption of previous
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eral relativity that still awaits a definitive answer. fundamental limitations: first. the cosmoloeical back-
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It is of interest to study the behavior of a relativistic star
embedded in a FLRW background with respect to the
problem of local physics versus cosmological expansion.
The Nolan interior solution [33] describes a relativistic star
of uniform density in such a background. The metric is

| — o m (] — my72
ds2 _ o r ( 4r0 )
(1+ (1 +55)
2 (1+ 27 7" =2 1 22302
+ a*(¢) Y (dr* + r*dQ?) (43)

(1 +12y

in isotropic coordinates, where 7 is the star radius, 2 =
—% (the condition forbidding accretion onto the star sur-
face), and 0 = 7 = 7,. The interior metric is regular at the
center and is matched to the exterior McVittie metric at
¥ =1y by imposing the Darmois-Israel junction condi-
tions. The energy density is uniform and discontinuous at
the surface = ro, while the pressure is continuous. These
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(47)

where g, (s,) is the metric on X at a fixed time 7 and g,
is its determinant. By using the Schwarzschild curvature
coordinate r = 7(1 + #2)?, one has

A (1) = 4ara®(t)ri. (48)

The star surface is comoving with the cosmic substratum
and the proper curvature radius of the star is 7y () =
a(n)ry(1 + Zﬂfo)z' Therefore, we have a local relativistic
object with strong field which is perfectly comoving at
all times: in this case the cosmic expansion wins over the
local dynamics.

It is interesting to compute the generalized Tolman-

a—+(P+p)—

In the Newtonian
equation reduces

where p = m(%”

potential. This e
obtained from E
curvature radius.
of hydrostatic ec
uniform density s

dP  dDy
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CCBH that contribute cosmologically as DE (not matter)

Suppose each black hole satisfies

Mpp(a) < a®

KC & J. Weiner. ApJ 882.1 (2019): 19.; KC, J. Weiner, & D. Farrah. PRD 105.8 (2022): 084042.
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BHSs are objects inside a cosmology, so their number density

dNpg 1

I
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CCBH that contribute cosmologically as DE (not matter)

Suppose each black hole satisfies

Mpp(a) < a®

BHSs are objects inside a cosmology, so their number density

dNpg 1

I

.. the total energy density of BHs

dNpy
dy

ppH = Mpp = constant

KC & J. Weiner. ApJ 882.1 (2019): 19.; KC, J. Weiner, & D. Farrah. PRD 105.8 (2022): 084042.
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CCBH that contribute cosmologically as DE (not matter)
Cosmological conservation of stress-energy requires

dppH
da

3
+ P (pBH + PBH) =0

KC & J. Weiner. ApJ 882.1 (2019): 19.; KC, J. Weiner, & D. Farrah. PRD 105.8 (2022): 084042.
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CCBH that contribute cosmologically as DE (not matter)
Cosmological conservation of stress-energy requires

dppH
da

3
+ p (pr + Per) =0
If pppr is constant, then

Ppy = —pBH

KC & J. Weiner. ApJ 882.1 (2019): 19.; KC, J. Weiner, & D. Farrah. PRD 105.8 (2022): 084042.
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CCBH that contribute cosmologically as DE (not matter)
Cosmological conservation of stress-energy requires

dppH
da

3
+ p (pr + Per) =0
If pppr is constant, then

Ppy = —pBH

Conclusion: energized vacuum black holes, in aggregate, contribute as a DE

species, just as you would expect from simply averaging over their stress-energy

KC & J. Weiner. ApJ 882.1 (2019): 19.; KC, J. Weiner, & D. Farrah. PRD 105.8 (2022): 084042.

University of Hawai'i at Manoa; Workshop on Ghost Particle Hunting; April 30, 2025



Dark Energy from Cosmologically Coupled BHs

Hypothesis: all DE comes from stellar-collapse BHs

prrOJ
3 a < a;

Py = prrOJ = e dd
- = — a
a3 a3 /al wHa’

WV

a;

University of Haw:



Dark Energy from Cosmologically Coupled BHs

Hypothesis: all DE comes from stellar-collapse BHs

prrOJ
a < a;

Py = prrOJ / pd N
Z G
Ha “ !

Evolution of DE density follows directly from conservation of stress-energy V, T, =0

dppe _
da Ha#

Y ppe(a;) =0

KC, G. Tarlé, S. Ahlen, B. Cartwright, D. Farrah, N .Fernandez, R. A. Windhorst JCAP 2024 (2024): 94.

University of Haw. t Manoa; Workshop on Ghost Particle Hunting; April 30, 37
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Cosmic star-formation rate density (SFRD) ¢

We use Trinca, et al. for z > 4
SFRD ' ' ' ' ' ' ' ' '

» Accounts for faint sources
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Figures: A. Trinca, et al. MNRAS 529.4 (2024): 3563; P. Madau & M. Dickinson ARA&A 52 (2014): 415
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» Calibrated to JWST
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We use Trinca, et al. for z > 4 lookback time (Gyr)
SFRD 02 8 10 12
» Accounts for faint sources '

» Calibrated to JWST
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RESULT: Consistent time-evolution with 2 fewer parameters than wyw,
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RESULT: Hubble tension decreased - ACDM (DEST+L-H)

Gaussian tension with local distance ladder
calibrated SNla measurements of Hj is
reduced
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S. P. Ahlen, A. Aviles, B. Cartwright, KC, W. Elbers, D. Farrah, N. Fernandez, G. Niz, J.W. Rohlf, G. Tarle, R.A. Windhorst, et al. [arXiv:2504.20338]
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RESULT: Hubble tension decreased
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calibrated SNla measurements of Hj is
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RESULT: Hubble tension decreased M CCBI Madan ¢ (DEST+LH)
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RESULT: Hubble tension decreased M CCBH Madau 4 (DESL+L4)
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Gaussian tension with local distance ladder R ACDM (DESL+L-H)
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Summary

» DESI DR2 fiducial analysis implies acausal dark energy and negative ) m, cg

v

Acausal equation of state weg < —1 signals energy injection from other species

> Negative effective neutrino mass can be interpreted as overabundance of matter at
late-times, relative to CMB measurements

» Stellar-collapse to non-singular energized vacuum BHs converts baryons — DE and
reproduces observed expansion history with two fewer parameters than wow,

» Expansion rate Hy decreases tension with SHOES 5.6 — 2.70

v

Baryons converted into DE consistent with “missing baryons problem” ~ 30%

» Recovered Y m, in good agreement with oscillation lower-bounds
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Stellar mass tension: LIGO BBHs prefer £ ~ 0.5
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Stellar mass tension: Globular cluster BHs strongly prefer £ < 0.5
Black Hole Coupling Limits
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Stellar mass tension: Gaia DR3 BHs prefer k£ < 0.75
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Cosmological equations describe effective fluids

Lemma
Let A(k,n) be the Fourier transform of some field A(x,n) that appears in L. Let V denote
the support of A(k,n). Then the Euler-Lagrange equations of motion for A are

oL

(SiA(X’ 77) * ]:_1 []-V] = 07

where % denotes convolution, F~! denotes the inverse Fourier transform, and 1 denotes the
indicator function.

Proved: KC, J. Weiner, & D. Farrah. PRD 105.8 (2022): 084042.
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Cosmological equations describe effective fluids

Lemma
Let A(k,n) be the Fourier transform of some field A(x,n) that appears in L. Let V denote
the support of A(k,n). Then the Euler-Lagrange equations of motion for A are

oL

(SiA(X’ 77) * ]:_1 []-V] = 07

where % denotes convolution, F~! denotes the inverse Fourier transform, and 1 denotes the

indicator function.

Recall that convolution is a “sliding average”:
f*g::/f(x')g(x—x') dx’

Proved: KC, J. Weiner, & D. Farrah. PRD 105.8 (2022): 084042.
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Cosmological equations describe effective fluids

Lemma
Let A(k,n) be the Fourier transform of some field A(x,n) that appears in L. Let V denote
the support of A(k,n). Then the Euler-Lagrange equations of motion for A are

oL

(SiA(X’ 77) * ]:_1 []-V] = 07

where % denotes convolution, F~! denotes the inverse Fourier transform, and 1 denotes the
indicator function.

If A(x,n) is unconstrained in Fourier-space,

V :=supp A(k,n) = R3

Proved: KC, J. Weiner, & D. Farrah. PRD 105.8 (2022): 084042.
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Cosmological equations describe effective fluids

Lemma
Let A(k,n) be the Fourier transform of some field A(x,n) that appears in L. Let V denote
the support of A(k,n). Then the Euler-Lagrange equations of motion for A are

oL

(SiA(X’ 77) * ]:_1 []-V] = 07

where % denotes convolution, F~! denotes the inverse Fourier transform, and 1 denotes the
indicator function.
Then the inverse Fourier transform is the Dirac delta

FU) =6 ()

Proved: KC, J. Weiner, & D. Farrah. PRD 105.8 (2022): 084042.
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Cosmological equations describe effective fluids

Lemma
Let A(k,n) be the Fourier transform of some field A(x,n) that appears in L. Let V denote
the support of A(k,n). Then the Euler-Lagrange equations of motion for A are

oL 1
(SiA(X’ 77) * J []-V] = 07

where % denotes convolution, F~! denotes the inverse Fourier transform, and 1 denotes the
indicator function.

And the familiar Euler-Lagrange equations are recovered

— (x') 53 (x—x) dx' = g—j (x) = 0.

Proved: KC, J. Weiner, & D. Farrah. PRD 105.8 (2022): 084042.
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Cosmological equations describe effective fluids

Lemma
Let A(k,n) be the Fourier transform of some field A(x,n) that appears in L. Let V denote
the support of A(k,n). Then the Euler-Lagrange equations of motion for A are

oL

(SiA(X’ 77) * ]:_1 []-V] = 07

where % denotes convolution, F~! denotes the inverse Fourier transform, and 1 denotes the
indicator function.
Spatial convolution integral comes directly from the action integral

58 = // ST 6A dx dy = /<§j,6A> dn

Proved: KC, J. Weiner, & D. Farrah. PRD 105.8 (2022): 084042.
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Cosmological metric is Fourier constrained
By definition of the model,

Juv = a*(n) [UW ] .

KC & J. Weiner. ApJ 882.1 (2019): 19.
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Juv = a*(n) [UW ] .

» The zero-order dynamical DOF a(n) only depends on time
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Cosmological metric is Fourier constrained
By definition of the model,

Juv = a*(n) [UW ] .

» The zero-order dynamical DOF a(n) only depends on time

» . a, a scalar DOF in a 341 dimensional theory, is subject to derivative constraint

8]‘61 =0

KC & J. Weiner. ApJ 882.1 (2019): 19.
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Cosmological metric is Fourier constrained
By definition of the model,

Juv = a*(n) [UW ] .

» The zero-order dynamical DOF a(n) only depends on time

» . a, a scalar DOF in a 341 dimensional theory, is subject to derivative constraint

» In Fourier space

KC & J. Weiner. ApJ 882.1 (2019): 19.
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Apply the Lemma to the Einstein-Hilbert action

Gravitational DOF is unaltered by convolution:

0LEn
— %

5a ¥ [Looo)

KC & J. Weiner. ApJ 882.1 (2019): 19.
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Apply the Lemma to the Einstein-Hilbert action

Gravitational DOF is unaltered by convolution:

5§EH*F_1 000 /a#aa
a

KC & J. Weiner. ApJ 882.1 (2019): 19.
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Apply the Lemma to the Einstein-Hilbert action

Gravitational DOF is unaltered by convolution:

0LEn
da

F N 0,a(n) dx' = L0
* [ (0,0,0)] X . ua(n) X == dTlg

KC & J. Weiner. ApJ 882.1 (2019): 19.

University of Hawai'‘i at Manoa; Workshop on Ghost Particle Hunting; April 30, 2025 37/37



Apply the Lemma to the Einstein-Hilbert action

Gravitational DOF is unaltered by convolution:
5£EH -1 /
o * F [1(070’0)] XX /V@“aua(n) dx’ = _Vdi’rﬁ
but unapproximated stress-tensor DOFs are necessarily filtered by the EL convolution:
0Ly 341G

—1
5 * F [1(070,0)] xa’— VTM“ (x',n) dx’

d2a

KC & J. Weiner. ApJ 882.1 (2019): 19.
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Apply the Lemma to the Einstein-Hilbert action

Gravitational DOF is unaltered by convolution:

2
6£EH *f_l 000 / a#a a dX == _V@
da dn?

but unapproximated stress-tensor DOFs are necessarily filtered by the EL convolution:
0L 341G

= s« F1 [10,0,0)] x a’ 5 VT“M(X’,n) dx’

Trace is frame invariant = these are microphysical degrees of freedom:

4G d%a
a33< —p(x,n) + Zpi(xvn) > =T

v

Microphysical eigenvalues!

KC & J. Weiner. ApJ 882.1 (2019): 19.
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