The Solar Neutrino Puzzle

Art McDonald, Gray Chair Emeritus, Queen's University

> John Learned's 85th Birthday

University of Hawaii April 29, 2025

Nobel Week in Stockholm with our good friends Professor John Learned and his wife Colleen.

Neutrinos reaching the Earth

Homestake Gold Mine

100,000 gallons of cleaning fluid C₂Cl₄

Expected 1.5 interactions per day Measured 0.5 interactions per day

Sensitive to ⁸B solar neutrinos only

Slide From Learned and Pakvasa lecture course

SOLAR FUSION CHAIN

The detection of neutrinos from the Sun is a very direct way to verify models of the Sun and the energy generation reactions.

SOLAR V ENERGY SPECTRA

Experiments sensitive primarily or exclusively to Electron Neutrinos saw too few neutrinos compared to Solar Models. Was this solar physics or neutrino physics?

1967 - 2001

Solar Model Independent Measurements: SuperKamiokande, (Using elastic scattering from electrons in ⁸B Solar Neutrinos)

- MSW Effects
 - Distortion of the spectrum
 - Regeneration in the Earth (Day/Night Effects)

- Other Time Dependent Effects
- Seasonal effects (Earth-Sun Distance, Neutrino Magnetic Moments ..)
- Long Term: Solar cycle ... (Neutrino Magnetic Moments ...)

Recoil Electron Spectrum

Also: Limit on Anti-electron neutrinos: few % of Standard Solar Model

The Sudbury Neutrino Observatory (SNO)

1) Neutrino Electron Elastic Scattering Sensitive: ~86 % v_e and ~14% v_{μ} , v_{τ} As also observed by SuperKamiokande

First: SNO-SK comparison with lower sensitivity to v_{μ} , v_{τ} First result: flavor change: 3.3 σ (2001)

2) Charged Current Interaction on Deuterium 100 % ν_e

Second: SNO-only comparison with high sensitivity to ν_{μ} , ν_{τ} Second result: flavor change: 5.3 σ (2002)

3) Neutral Current Interaction on Deuterium Equal sensitivity for ν_e , ν_μ , ν_τ

Neutrons are detected by capture in 1) Deuterium,
2) Chlorine in dissolved salt and 3) ³He in a detector array during the three phases of the experiment.

Gamma radioactivity must be very low to avoid neutron background from photodisintegration

The Sudbury Neutrino Observatory: SNO

SNO: 3 neutron detection methods for v_{all} reaction.

Data from Experiments in Operation

SNO data: 391 live days with salt

SNO Phase III (NCD Phase)

> ³He Proportional Counters ("NC Detectors")

40 Strings on 1-m grid 440 m total active length

Detection Principle

²H + $\nu_x \rightarrow p + n + \nu_x - 2.22$ MeV (NC) ³He + n $\rightarrow p + {}^{3}$ H + 0.76 MeV

Physics Motivation

Event-by-event separation. Measure NC and CC in separate data streams.

Different systematic uncertainties than neutron capture on NaCl.

Solar Neutrino Problem

Pre 2001

Solar Neutrino Problem Resolved

Neutrino Properties to Date

Using the oscillation framework:

If neutrinos have mass:

$$\left| \boldsymbol{\nu}_{l} \right\rangle = \sum \boldsymbol{U}_{li} \left| \boldsymbol{\nu}_{i} \right\rangle$$

For three neutrinos:

Fits to solar neutrino data indicate that electron neutrinos interact with electrons in the sun via MSW and emerge as a mass 2 state with nearly equal parts electron, mu, tau neutrinos. These matter interactions define the mass hierarchy ($m_2 > m_1$). The MSW effect produces an energy spectrum distortion and flavor regeneration in Earth giving a Day-night effect of about 3% as measured by SuperK.

SUMMARY OF OSCILLATION RESULTS FOR THREE ACTIVE ν TYPES

Particle Data Group $\begin{aligned} \sin^2(\theta_{12}) &= 0.307 \pm 0.013 \\ \Delta m_{21}^2 &= (7.53 \pm 0.18) \times 10^{-5} \text{ eV}^2 \\ \sin^2(\theta_{23}) &= 0.539 \pm 0.022 \quad (S = 1.1) \quad (\text{Inverted order}) \\ \sin^2(\theta_{23}) &= 0.546 \pm 0.021 \quad (\text{Normal order}) \\ \Delta m_{32}^2 &= (-2.536 \pm 0.034) \times 10^{-3} \text{ eV}^2 \quad (\text{Inverted order}) \\ \Delta m_{32}^2 &= (2.453 \pm 0.033) \times 10^{-3} \text{ eV}^2 \quad (\text{Normal order}) \\ \sin^2(\theta_{13}) &= (2.20 \pm 0.07) \times 10^{-2} \end{aligned}$

Solar, Reactor

Atmospheric, Accelerator

Reactor, Accelerator

Future objectives:

- δ_{CP}
- θ_{23} max?
- Hierarchy?
- Majorana v?
- Absolute mass
- Sterile v?

Accelerator,Reactor, Atmospheric

 $0\nu\beta\beta$, Cosmology, Electron spectrometers,

Accelerator, Reactor, Atmospheric

SNO The SNO+ Experiment

- 2km underground in SNOLAB, Canada
- Infrastructure repurposed from **SNO**:
 - New calibration systems
 - Upgraded DAQ and electronics
 - New hold-down ropes
 - Scintillator Plant + Tellurium synthesis and purification
 - ~9300 PMTs
 - 18m diameter PMT Support Structure
 - 12m diameter Acrylic Vessel
 - 7kt ultra pure water shielding

780t Liquid Scintillator to be loaded with 0.5% Te in 2026 Increase to 1.5% planned for future

19% Te

06.07.15

Presently running with liquid scintillator for other physics and evaluating backgrounds. Te projected for 2026

Summary plot from NSAC LRP White Paper (Augmented) (Values provided by experiments)

From: Fundamental Symmetries, Neutrons, and Neutrinos (FSNN): Whitepaper for the 2023 Nuclear Science Advisory Committee Long Range Plan: arXiv:2304.03451iv:2304.03451

A remarkable set of measurements to understand solar neutrino reactions in the pp and CNO cycles Bellini, Calaprice and the Borexino collaboration

HAPPY BIRTHDAY JOHN!!!

