

Accelerator R&D Opportunities: in the US, at U.Hawai'i

Vladimir SHILTSEV (NIU)

US-Japan Beam Monitor Workshop, February 19, 2025

University of Hawai'i at Mānoa, February 19, 2025

Content:

e+e- Frontier: Super-KEK-B et al

Next: Higgs Factories

e-Beam R&D at Universities (UHM...)

Shiltsev - Accelerator R&D Feb. 19, 2025

e+e- Colliders: Forefront of Beam Physics (1964-now) – *Great Machines of the Past*

- CESR (1979-2008): 6+6 GeV, Luminpsity=1.3e33
 - Pretzel-separation, SC RF, β *=1.8cm, Mobius ring ξ =0.09
- LEP (1989-2000): 104+104 GeV, L=1e32
 - •dE/E=0.001% calibration, total SR loss 3% (3.5GV RF), blackbody radiation losses, TMCI feedback, ξ =0.089/IP
- KEK-B and PEP-II (1999-2100): 3.5+8 GeV, L=2.1e34
 - Asymmetric collisions, top-up injection, transv. and long. FB systems, crab cavities, 3.2 A of e+ (!), record luminosities

Shiltsev - Accelerator R&D Feb. 19, 2025 3

e+e- Colliders: Forefront of Beam Physics (1964-now) – *Present Day Factories*

- DAFNE (1997 now): 0.51+0.51 GeV, L=4.5e32
 - Crab-waist scheme with large Piwinski angle
- VEPP-2000 (2010 now): 1+1 GeV, L=4e31
 - Round beams optics, record ξ =0.33(?)
- Super KEK-B (2018 now): 7+4 GeV, L=5.1e34
 - Nanobeams collision scheme, β*=1mm →0.3mm, world record luminosity, numerous challenges towards 40(80?)e34 – beam-beam, SBLs, nonlinear collimation, etc

Shiltsev - Accelerator R&D Feb. 19, 2025 4

Future Circular e+e- Colliders

- Energy of interest at least Higgs proc PHYSICS TODAY
- High luminosity O(1e34-1e35)...(10⁴-1
- High beam energy 120 GeV → huge S

$$U_0[\text{keV}] = 88.46 \frac{E[\text{Ge}]}{\rho[\text{n}]}$$

- High luminosity needs high current →
- As the result large rings, ~100MW pd

$$\mathcal{L} = \frac{3}{16\pi r_0^2 (m_e c^2)} \frac{P_{\rm SR}[\xi_y] \rho}{\beta_y^* \gamma^3}$$

Japan accelerator pursues nanobeams to boost luminosity [888]

11 February 2025

electrons and positrons for the Belle II experiment at the SuperKEKB facility proceeds with halting

US-FCC Collaboration

- Theory, detectors, accelerators; annual Workshops'23(BNL), '24(MIT), '25 (04/15-17, FNAL/ANL)
- Snowmass'21 proposal to P5 (accel.):

RF Systems:

- 1) 800 MHz SRF for Booster and Collider (28 → 244 CMs)
- 2) 800 MHz RF power sources (klystrons >80% eff.)
- 3) RF for 6-20 GeV e+/e- injector linac (C3 tech.)

Magnets Systems:

- 1) IR magnets and cryostats (for 4 IRs)
- 2) Collider ring and Booster ring magnets (low field)
- 3) FCC-hh collider ring magnets (14-20 T)

Optics/Design/Instrumentation:

- 1) Beam physics (beam-beam, instabilities, optics/DA, ...)
- 2) Interaction region design, MDI, integrated machine design
- 3) Polarization (simul., wigglers, etc), collimation
- 4) Beam Instrumentation (BPMs, feedback, etc)

Part III:

Accelerator R&D Opportunities at Universities and e-beam Facilities

- Fundamental beam physics
- Involvement in future colliders R&D
- FELs ("Trillion transistors on a chip")

-FLASH-RT

Opportunities at UHM

- Establish a *Traineeship in Accelerator Science & Engineering*
- Join/Collaborate/Lead the US Center of Accelerator Physics (US CAP GARD ABP)
- Join US Future Collider Programs (EIC, FCCee, Muon Collider) R&D topics:
 - Beam modeling and simulations (beam-beam, space-charge, collimation/MDI, etc)
 - Collaborative tests at other facilities
 - Design and prototyping (halo monitoring, collimation systems, magnets, RF, beam diagnostics, etc)
 - Develop a program of research at the UHN 40 MeV linac facility
 - Many possible topics (FELs, RF, diagnostics, irradiation, AAC...)
 - AI/ML-based accelerator optimization, nonlinear optics, and halo control
 - Applications for chip-making industry, medicine (FLASH-RT), and environment

FY 2024 GARD University by Thrusts (\$12.14M)

GARD = General Accelerator R&D Program in the US DOE Office of High Energy Physics (total ~85 M\$/yr now)

FY2024 University GARD by Thrusts (Total ~ \$12M)

- ABP includes Beam Instrumentation and Controls
- RF Technology includes SRF and NC High gradient RF and RF sources.
- Accelerator Traineeship supports four areas (5 active awards now):
 - 1. Physics of large accelerators and systems engineering.
 - 2. Superconducting radiofrequency accelerator physics and engineering.
 - 3. Radiofrequency power system engineering.
 - 4. Cryogenic systems engineering (especially liquid helium systems).

P5 Area Recommendations for D0E OHEP

	Now (FY24 \$)	P5 Recomm.
General Accelerator R&D *	~55M\$/yr	+10 M\$/yr
Targeted Collider R&D	0 M\$/yr	+35 M\$/yr
FNAL Accel.Complex Plan	0 M\$/yr	+10 M\$/yr

~1 B\$
combined
over
the next
decade

^{*} Note: in addition, GARD Facility Ops are supported at ~30M\$/yr – these are of great relevance for R&D and projects (eg tests and pre-project R&D)

UHM 40+ MeV Electron Linac

Efficiency Boost: Energy Recovery

Other benefits: spectral density

Wavelength spread of the FEL spectrum at 6.75-nm wavelength. The FWHM is ~0.04 nm, which is narrow enough to match the acceptance of the multilayer mirror.

Current State-of-the-Art: 14nm → 7 nm...

ASML

EUV-LPP CO2 laser on tin droplets 1000/sec

Issues:

Broad spectrum of EUV
Stability of tin source
It's lifetime (clean x4/yr)
500W source → few Watts
on the wafer (~10 mirrors)

Overall wall-plug efficiency
~0.1% (!)

Accelerators can do 1-10%

FLASH - Radiation Therapy

Shiltsev - Accelerator R&D

PASTUH: Program in Accelerator Science and Technology @ Univ. Hawaii

"Now" = therm. RF gun + S-band linac + chicane and FEL + 42 MeV beamdump

- 1 Cold Copper RF photoinjector
- 2 Additional S-band RF sections
- 3 ERL return loop/storage ring
- 4 Chicane & EUV FEL
- 5 Collimator & diagn. test
- 6 Beam optics/phys.test
- 7 Nanostructure Wake
- 8 FLASH-RT area
- 9 Irradiation area

PASTUH: Program in Accelerator Science and Technology @ Univ. Hawaii

The program will support unique studies in several fields:

- HEP and NP colliders (elements #1, 5, 6, 7)
- Light sources/FELs (elements #1, 3, 4, 6)
- Instrumentation and technology development (elements #1, 6, 8, 9)
- Medical and electronics applications (elements #3, 8, 9)
- Training students, physics, AI/ML (elements #1, 2, 3, 4, 5, 6, 7, 8, 9)
- 1 Cold Copper RF photoinjector 4 Chicane & EUV FEL 7 Nanostructure Wake
- 2 Additional S-band RF sections 5 Collimator & diagn. test 8 FLASH-RT area
- 3 ERL return loop/storage ring 6 Beam optics/phys.test 9 Irradiation area

Thanks for your attention!

