Superconductivity in Non-Centrosymmetric Materials: Discovery in LaRhGe₃ and Normal-State Electron-Phonon Interactions

Mohamed Oudah

January 21st, 2024

Outline

Superconductivity

- Superconductivity in Non-Centrosymmetric Materials
- \bullet Properties of the Weyl Semimetal LaRhGe_3
- Superconductivity in LaRhGe₃
- *e-ph* Interactions in the Normal State of LaRhGe₃

Outline

Superconductivity

- Superconductivity in Non-Centrosymmetric Materials
- \bullet Properties of the Weyl Semimetal LaRhGe_3
- Superconductivity in LaRhGe₃
- *e-ph* Interactions in the Normal State of LaRhGe₃

Superconductivity – The Phenomena

https://simpliphy.wordpress.com/2012/05/06/superconductivity/

https://en.wikipedia.org/wiki/Meissner_effect

Superconductivity – Applications

https://simpliphy.wordpress.com/2012/05/06/superconductivity/

https://en.wikipedia.org/wiki/Meissner_effect

Superconductivity in the elements

							ele	emen T _e (K)	t											
H ??						appl	ied press	ure /add	itional	info										He
Li 0.0004	Be 0.026 film: 10 K						am pre	ibient essure						B 11 250 GPa	C 15 nanotube	N	0. 120) 6 GPa	F	Ne
Na	Mg						spe	ecial c	ondit	tions				Al 1.19 film: 3.6	Si 8.5 250 GPa	Р 6 7 GPa	1 160	7 GPa	CI	Ar
К	Ca 15 150 GPa	Sc 0.3 21 GPa	Ti 0.4	V 5.3	Cr 3.2 thin fil	m IV	In	Fe 2 .GPa	Со	Ni	Cu	1	Zn 0.9	Ga 1.1 nano: 8.6 K	Ge 5.4 11.5 GPa	As 2.7 24 GPa	5 7 13 0	e 7 GPa	Br 1.4 150 GPa	Kr
Rb	Sr 4 50 GPa	Y 2.8 15 GPa	Zr 0.6	Nb 9.2	Mc 0.92	2 T	с F .8 с	Ru 0.5 0	Rh .0003	Pd 3.2 irradiated	Aį	5	Cd 0.55	In 3.4 film: 4.2	Sn 3.7 film: 4.7	Sb 3.6 8.5 GPa	T. 7.	е .4 _{SPa}	 1.2 25 GPa	Xe
Cs 1.5 5 GPa	Ba 5 15 GPa	(La)	Hf 0.13	Ta 4.4	W 0.02 film: 5.5	R L 1.	le (.7 0	Os .65	lr 0.14	Pt	A	, I	Hg 4.15	TI 2.39	Pb 7.2	Bi 0.0005	з	0	At	Rn
Fr	Ra	(Ac)	Rf	Db	Sg	В	h ł	ls	Mt	Ds	Rį	5	Cn	Nh	Fl	Mc	Ľ	v	Ts	Og
		La 5.9	C 1. 50	e .7 _{iPa}	Pr	Nd	Pm	Sm	E 2.	u .7	Gd	Tb	C)y F	ło	Er	Tm	Yb	L	.u .1
		Ac	T 1.	h .4	Pa 1.4	U 0.2	Np 0.075	Pu	A	m (Cm	Bk	0	Cf E	Es I	Fm	Md	No	I	.r

https://doi.org/10.3390/met12020337

Superconductivity – Type I vs. Type II

Superconducting T_c in Materials

https://en.wikipedia.org/wiki/High-temperature_superconductivity

Superconductivity – Cooper Pairing

Singlet & Triplet cooper pairing possible on degenerate Fermi surface Ratio of coherence length ξ and penetration depth λ determine type-I/II nature Ginzburg-Landau constant $\kappa_{GL} = \xi / \lambda = 1/\sqrt{2}$ is the border between type-I/II

Outline

Superconductivity

- Superconductivity in Non-Centrosymmetric Materials
 Properties of the Weyl Semimetal LaRhGe₃
- Superconductivity in LaRhGe₃
- *e-ph* Interactions in the Normal State of LaRhGe₃

Superconductivity in Non-centrosymmetric Materials

- Non-centrosymmetric space group *I4mm* and spin-orbit-coupling (SOC) leads to splitting of spin-up and spin-down bands, which is termed Antisymmetric SOC (ASOC).
- Spin-singlet pairing is unaffected, but one of the three triplet pairings possible is promoted!
- This results in a mixture of singlet-triplet pairings possible in non-centrosymmetric superconductors.

Rep. Prog. Phys. 80, 036501 (2017)

Superconductivity in Non-centrosymmetric Materials

- Non-centrosymmetric space group *I4mm* and spin-orbit-coupling (SOC) leads to splitting of spin-up and spin-down bands, which is termed Antisymmetric SOC (ASOC).
- Spin-singlet pairing is unaffected, but one of the three triplet pairings possible is promoted!
- This results in a mixture of singlet-triplet pairings possible in non-centrosymmetric superconductors.

Spin	Pairing	Possibility
↑↓-↓↑	Singlet	0
1	Triplet	Х
$\downarrow\downarrow$	Triplet	Х
$\uparrow\downarrow+\downarrow\uparrow$	Triplet	Ο

Rep. Prog. Phys. 80, 036501 (2017)

Superconductivity in Non-centrosymmetric Materials – Applications

- Triplet pairing in a superconductor can allow for Majorana bound state
- Majorana bound states can be manipulated for quantum computing
- Even a low T_c superconductor with triplet pairing can allow for novel application

Superconductivity in Non-centrosymmetric Materials

 In non-centrosymmetric superconductors you may realize time reversal symmetry breaking (TRSB).

• Such TRSB can be seen in experiments, such as muon spin relaxation (µSR).

Temperature (K)

Rep. Prog. Phys. 80, 036501 (2017)

Outline

Superconductivity

- Superconductivity in Non-Centrosymmetric Materials
- Properties of the Weyl Semimetal LaRhGe₃
- Superconductivity in LaRhGe₃
- *e-ph* Interactions in the Normal State of LaRhGe₃

ABX₃ in I4mm Crystal Structure

Self-Flux Grown LaRhGe₃ Crystals

LaRhGe₃ Transport – ρ vs. T

- Transport in zero-field shows metallic behavior
- Upturn at low temperature in measurements under magnetic field of >6 T

LaRhGe₃ Transport – Magnetoresistance

- Non-saturating magnetoresistance up to 14 T at low *T*
- Increase in magnetoresistance appears below 50 K

LaRhGe₃ Transport – Hall Measurement

Simultaneous measurements of Hall resistivity (ρ_{xy}) and magnetoresistance (ρ_{xx}) allows us to use a two-band model to extract *e* and *h* concentration and mobility

LaRhGe₃ Transport – *e*-*h* compensation

- Carrier concentration shows compensation of $n_{\rm h}$ and $n_{\rm e}$ at low *T*, in the region where upturn is seen in $\rho_{\rm xx}$
- High mobility consistent with semimetallic character of LaRhGe₃

LaRhGe₃ Band Calculation – Element Contribution

Quantum Oscillations

https://physics.aps.org/articles/v3/86

LaRhGe₃ Magnetization – dHvA FFT H//c vs. Literature

LaRhGe₃ Literature: Angle-Dependence of dHvA

T. Kawai, et al. JPSJ 77 064717 (2008).

LaRhGe₃ Literature: Fermi Surface

T. Kawai, et al. JPSJ 77 064717 (2008).

*RT*Ge₃ Literature: Effective Mass and ASOC

Co Cobalt

Rh

Rhodium

Ir

Iridium

Non-centrosymmetric space group I4*mm* results in ASOC in LaRhGe₃, with Rh contributing to SOC

Replacing Ge with Si has little affect in other members of $LaMX_3$ family

6 Bands and ASOC in LaRhGe₃

		Experiment			Theory						
1	Branch	$F (\times 10^7 \text{Oe})$	$m_{\rm c}^{*}(m_{0})$	*	Branch	$F_{\rm b}~(\times 10^7~{\rm Oe})$	$m_{\rm b}~(m_0)$				
l	2			$H \parallel$	[001]						
1	820	[10.4	1.04	7226	band 69	10.5	1.11				
	α	10.0	1.04	α	band 70	10.1	1.12				
		6 6 00	0.02		band 68	7.82	1.24				
	0	6.98	0.83	0	band 68	7.24	0.91				
	β	6.77	1.89	p	band 67	7.11	2.01				
		6.77	0.85		band 67	6.89	0.88				
	12	[3.06	0.74		band 66	3.13	0.68				
	ε	3.04	0.73	8	band 65	3.01	0.69				
	0	[0.44	0.44		[band 65	0.33	0.31				
	θ	0.38	0.51	θ	band 66	0.28	0.24				
		0.08	0.22		[band 70	0.03	0.27				
	η	0.06	0.23	η	band 69	0.03	0.26				

T. Kawai, *et al.* JPSJ 77 064717 (2008).

Outline

Superconductivity

- Superconductivity in Non-Centrosymmetric Materials
- \bullet Properties of the Weyl Semimetal LaRhGe_3
- Superconductivity in LaRhGe₃
- *e-ph* Interactions in the Normal State of LaRhGe₃

LaRhGe₃ Specific Heat – Superconductivity

Jump at $T_c \sim 0.39$ K, and transition is pushed to lower T with increasing field H

LaRhGe₃ Specific Heat – Superconductivity

- Jump at T_c similar to expectation based on weak-coupling BCS.
- Low temperature experimental data is not low enough to suggest any gap symmetry

LaRhGe₃ µSR – Type I Superconductivity

LaRhGe₃ Phase Diagram – Superconductivity

 $T_{\rm c}$ from µSR and $C_{\rm p}$ match well!

$LaRhGe_3 \mu SR - Zero-Field$

Fitted Gaussian Kubo-Toyabe form

No sign of significant TRSB

LaRhGe₃ vs. Other *I*4*mm* Superconductors

Comparing LaRhGe₃ with other non-centrosymmetric superconductors in the space group *I4mm*

Compound	$T_{\rm c}~({\rm K})$	$\gamma_n \; (\mathrm{mJ} \; \mathrm{mol}^{-1} \; \mathrm{K}^{-2})$	$B_{c2}(0)$ (T)
$Ba(Pt,Pd)Si_3$	2.3 - 2.8	4.9 - 5.7	0.05 - 0.10
$\rm La(Rh,Pt~Pd,Ir)Si_3$	0.7 - 2.7	4.4 - 6	Type $I/0.053$
$Ca(Pt, Ir)Si_3$	2.3 - 3.6	4.0 - 5.8	0.15 - 0.27
$\mathrm{Sr}(\mathrm{Ni},\mathrm{Pd},\mathrm{Pt})\mathrm{Si}_3$	1.0 - 3.0	3.9 - 5.3	0.039 - 0.174
$\rm Sr(Pd,Pt)Ge_3$	1.0 - 1.5	4.0 - 5.0	0.03 - 0.05
$LaRhGe_3$	0.39(1)	4.92(4)	Type I/0.0021(1)

Rep. Prog. Phys. 80, 036501 (2017)

LaRhGe₃ vs. Other Type-I Elemental Superconductors

 μ SR \rightarrow no sign of significant TRSB

Outline

Superconductivity

- Superconductivity in Non-Centrosymmetric Materials
- \bullet Properties of the Weyl Semimetal LaRhGe_3
- Superconductivity in LaRhGe₃

• *e*-*ph* Interactions in the Normal State of LaRhGe₃

LaRhGe₃ Transport – ρ vs. T in Zero-Field

o (µQ cm)

Low 7 region of resistivity is poorly fitted with a quadratic 7 term.

Low temperature regions fits well to an exponential term!

Perhaps associated with unusual electrons with phonons interactions at low T in the normal state...

4

$$\rho = \rho_0 + BT^5$$

 $\rho = \rho_0 + AT^2 + BT^5$
 $\rho = \rho_0 + Ce^{-\theta/T}$
2
 $\theta = 109.2 \text{ K}$
0
0
15
30
45
 $T (\text{K})$

LaRhGe₃ – Seebeck and Thermal Conductivity Measurement

We find a peak at low T in the Seebeck and thermal conductivity measurements on LaRhGe₃, suggestive of enhanced *e*-*ph* interactions

LaRhGe₃ Phonons – Raman Spectroscopy

LaRhGe₃ Phonons – Low *T* Raman Spectroscopy

- Large relative change in *E* of the lowest A₁⁽¹⁾ mode
- The other modes with large relative change in *E* are $A_1^{(2)}$ and $A_1^{(3)}$
- *e-ph* interactions effect the linewidth of the Raman modes, but not the *E*

$$\omega(T) = \omega_0 e^{-3\gamma_G \alpha_0 T} - \omega_{3p} [1 + n(\omega_1, T) + n(\omega_0 - \omega_1, T)]$$

LaRhGe₃ Phonons – Low *T* Raman Spectroscopy

- The FWHM of the *A*₁ modes show anomalous behavior
- Can be explained with a model that suggest strong *e-ph* interactions

$$\gamma(T) = \gamma_0 + \gamma_{3p} [1 + n(\omega_1, T) + n(\omega_0 - \omega_1, T)] + \gamma_{ep} [f(\omega_a - \omega_0/2) - f(\omega_a + \omega_0/2)]$$

Summary

- Normal State Properties of Semimetallic LaRhGe₃
 Compensated carriers (10²¹/cm³) & non-saturating magnetoresistance
- Superconductivity in Non-Centrosymmetric Materials ASOC in LaRhGe₃ due to Rh allows for mixing of singlet-triplet pairing
- Superconducting Properties of LaRhGe₃ Evidence for weak coupling superconductivity from C_p, type-I superconductivity from TF μSR, T_c~0.385 K, H_c~2.1 mT and no significant triplet pairing in zero-field μSR
- *e-ph* Interactions in the Normal State Unusual *T*-dependence of $\rho_{xx'}$ Evidence from peak at ~30 K in S_{xx} and κ_{xx} Raman spectra at low T reveal unusual FWHM of $A_1^{(1)}$ mode

Thank You!

Mohamed Oudah,

Sean Kung, Samikshya Sahu, Doug Bonn, Alannah M Hallas

Yipeng Cai, Marta-Villa De Toro Sanchez, Kenji M. Kojima

Armin Schulz, Niclas Heinsdorf, Andreas Schnyder, Bernhard Keimer

Kai Philippi, Hidenori Takagi

