CMBS4

Challenging ΛCDM: Massive neutrinos, extra neutrinos, and other surprises in cosmology

UH HEP Seminar

Presentation based on manuscripts: [2412.05451, 2208.14435 & 2309.11492]

Helena Garcia Escudero (she/her) UCI Collaboration: Kevork Abazajian (UCI)

garciaeh@uci.edu

12/10/2024

3.- Cosmological Tensions and beyond Standard Model Scenarios

Impact of neutrinos in cosmological observables.

Cosmological observations and Neutrino physics

- Power of cosmology testing the ΛCDM and **Neutrino physics**: Σm_{y} and N_{eff}
- Results:
 - 1.- Sum of the neutrino masses
 - 2.- Effective number of light relativistic particles

ACDM: detailed description of our Universe

Mathematical model based on three major features:

- 1. **Inflation:** early accelerated expansion.
- 2. Dark matter: clustering component.
- 3. Dark Energy: (Cosmological cte. A).

The Standard Cosmological Model

Image Credit: NASA/ LAMBDA Archive / WMAP Science Team

- Universe started with Big Bang
- Einstein gravity
- CDM, baryons, photons (++)
- Cosmological Constant
- Inflation
- adiabatic, near-gaussian fluctuations

ACDM: detailed description of our Universe

Planck 2018 Temperature power spectrum Image credits:2109.01760

ACDM consistent with enormous diverse, high-quality observational data (LSS, anisotropy of the CMB, light-element abundances ...)

ACDM characterized just 6 parameters:

- 1. Baryon density: $\omega_B \equiv \Omega_B h^2$
- 2. Matter density: $\omega_M \equiv \Omega_M h^2$
- 3. Spectral index density perturbations: n_S
- 4. Amplitude of density perturbations: A_S
- 5. Optical depth to the CMB due to re-ionization: τ
- 6. Sound horizon at recombination: θ_{MC}

Impressive precision! excellent fit to the CMB anisotropy data

ACDM: detailed description of our Universe

- Testable consequences driven observational cosmology since the 1980s...
 - Cosmic Neutrino Background (CvB)
 - -Indirect evidence support its presence
 - -BBN, CMB, LSS inconsistent without relativistic neutrino component.
 - -Cosmology attuned to neutrino properties: mass and density

The Standard Cosmological Model

Cosmological implications of Σm_{v}

1. $v_{\rm s}$ always relevant to Universe's energy density contribute to H(z). $H \propto \sqrt{\rho}$.

2. v_s travel ultra relativistically speeds (until temp. drops below m, their masses) \sim v_s do NOT cluster at small scales \sim suppress amount of structure small scales.

The suppression is energy density dependent.

$$\Omega_{\nu}h^{2} = \frac{\sum m_{\nu}n_{\nu}}{\rho_{\rm crit}} \simeq \frac{\sum m_{\nu}}{93.13 \ h^{2}}$$

Observations of LSS (DESI, Euclid,...) excellent to search for Σm_v

Mayall 4-meter Telescope at the

Kitt Peak National Observatory.

Image credit: Wikipedia

Cosmological imprints of v_s : $\Sigma m_{...}$

How is Planck CMB sensitive to $\Sigma m_{..}$?

- CMB LENSING EFFECT (dependent A & Ω_{m}) v_s at relativistic speeds \rightarrow <u>reduction lensing</u> CMB γ from the last scattering surface until today ---sharper peaks CMB power spectrum.
- Σm_i impacts <u>angular diameter distance</u> to 2. last-scattering surface + v_s contribute $H \propto \sqrt{\rho}.$

Ω

Σm

BAO) to break geometrical degeneracy **CMB**S4 HEP Seminar UH | December 10th 2024

 H_0

Key points to make inferences on Σm_v from <u>cosmological observations</u>:

- 1. Understanding CMB lensing on small angular scales,
- 2. Control over the amplitude of primordial matter power spectrum $\rm A_s$ and $\omega_{\rm m}.$
- 3. Accurate probe of expansion history at late-times (include late-time probes to constrain Ω_m).

What is the value of the neutrino mass?

IMAGE CREDIT: https://phys.org/news/2018-06-katrin-neutrino-mass.html

The absolute neutrino mass scale probed using β -decay:

KATRIN best bound upper limit on effective neutrino mass

Σm_v < 1.5 eV [95% CL] [arXiv:2406.13516]

• Cosmology can constrain neutrino mass > $\frac{20 \text{ times better }}{1000 \text{ times better }}$ today already!* $\Lambda \text{CDM} + \sum m_{\nu}$ [arxiv 2404.03002] DESI+CMB

What is the value of the neutrino mass?

April 2024 DESI DR1 cosmological results with key implications for Σm_{y}

Latest lab. Limit KATRIN:

[2406.13516]: $\sum m_{\nu} < 1.5 \,\mathrm{eV}$ (95 % CL)

& bound from Planck + SDSS

Planck+SDSS [1807.06209]

$$\sum m_{
u} < 0.12 \, {
m eV}$$
 (95 % CL)

From experimental point, cosmology can NOT be described by $\sum m_{y} = 0$.

 Σm_{y} at least 58 meV from oscillation experiments, i.e.: Super-Kamiokande, SNO, KamLAND).

HEP Seminar UH | December 10th 2024

P18+CMB lensing+DESI(BAO)	σ	
Preference $\sum m_{\nu} = 0$ over NO	1.36	
Preference NO over IO	1.47	

H.García Escudero and K. Abazajian Dec. 2024 (2412.05451) -Other CMB analysis don't significantly change results (arxiv: 1610.02743)

Upcoming cosmological surveys expected 2-3 σ sensitive to Σm_{ν} in the minimal mass scenario.

Upper limits Σm_{v} inferred from cosmology

 $\Sigma m_{\rm w}$ <76.9 meV to Σm²<108 meV (95%CL) 3 clusters: -Stringent Σm_v bound (4 curves) -Moderate Σm^{*} bound (4 curves) -Relaxed Σm_{ν} bound (1 curve) We find P20 PR4 with DES Y5 Garcia Escudero H. and Abazajian. K Dec. 2024, 2412.05451 provide the most relaxed 0.0000.0250.0500.075**bound** on neutrino mass only $\Sigma m_{\nu} \,[\mathrm{eV}]$ at the ≅1.1 *σ* vs. NO (58 meV)

0.125

0.100

Relaxation upper limits Σm_{μ}

- CMB:P20 least lensing anomaly (A_{lens} closer to 1)
 - More statistical power.
 - Better handle systematic effects.
 - A_{lens} anomaly: $A_{lens,LCDM}$ = 1 vs. A_{lens} >1 2.8 σ (P18) vs. 0.75 σ (P20)
- SNe survey data: DESY5 highest Ω_m (different Ω_m: Pantheon+, Union 3 & DESY5)

$$\Sigma m_{\nu} \implies 0_m \implies H_0$$

Where is the stringency preference of negative Σm, coming from?

Garcia Escuder 2412.05451 HEP Seminar UH | December 10th 2024

21

NEGATIVE NEUTRINO MASS ANOMALY

- CMB lensing excess arxiV: HGE in prep., 2407.07878, 2407.13831
- Late time expansion history (Ω_m)

- Unphysical negative masses weak tension at <~ 2σ but worth exploring.
- Future CMB, BAO data study this discrepancy.

Black dashed curves represent the Gaussian fits

Effective Number of Neutrino Species, **N**

Total cosmological number density of neutrinos

- $n_{
 u} = N_{
 m eff} \left(rac{3}{4}
 ight) \left(rac{4}{11}
 ight) n_{\gamma},$
- $N_{off} = 3 \implies$ neutrinos instantaneously decoupled from the primordial plasma.
- Neutrino properties early universe $\rightarrow (N_{eff} = 3.044)$ $+H_0$ arxiv 2005 07047 Upcoming cosmological survey 2-3 σ sensitivity N_{off} can find: 3.0 3.5 $N_{\rm eff}$ N_{eff} consistent with 3.044 \rightarrow Confirmation of standard cosmology arxiV 1807.06209 Precise understanding thermal conditions universe. Garcia Escudero H. and Abazajian. K Dec. 2024, 2412.05451 23

Signature of new physics?!

 Universe started with Big Bang

 Einstein gravity

 CDM, baryons, photons (++)

 Cosmological Constant

Inflation

 adiabatic, near-gaussian fluctuations ACDM provides a great fit to most cosmological data, but ...

a few significant statistically <u>tensions</u> arise

Cosmological Tensions: Hubble or H₀ tension

We include last H_o value from SHOES collaboration:

Image credit: Nikki Aradnese

CMBS4 HEP Seminar UH | December 10th 2024

 $H_0 = 73.04 \pm 1.04 \text{ km s}^{-1} \text{ Mpc}^{-1}$

2112.04510

Cosmological Tensions: S₈

S₈ tension:

- $\sigma_{\mbox{\tiny a}}$ measures the amplitude or rate of growth of structure.
- Mismatch between:
 - S_8 CMB+ Λ CDM (S_8 = 0.832 ± 0.013)
 - $\sum_{\alpha} S_{\alpha}$ low redshift probes:
 - Weak gravitational lensing (DES) 0
 - X-Ray Clusters 0
 - SZ Clusters 0

Cosmological Tensions: S₈

S₈ tension:

- σ₈ measures the amplitude or rate of growth of structure.
- Mismatch between:
 - A_8 CMB+ Λ CDM (S_8 = 0.832 ± 0.013)
 - \downarrow S₈ low redshift probes:
 - Weak gravitational lensing (DES)
 - X-Ray Clusters
 - SZ Clusters

We include S₈ value from Dark Energy Survey Year 3

N_{eff} significantly different from 3.044 = **signature of new physics**

N_{eff} significantly different from 3.044 = **signature of new physics**

N_{eff} significantly different from 3.044 = signature of new physics!

Short baseline anomalies and Sterile neutrinos

- N_{eff} higher than 3.044 = new physics =?? hidden neutrino sector!
- Short baseline neutrino oscillations results (Super-Kamiokande, LSND, MiniBooNE) and Gallium anomaly (i,e.: SAGE, GALLEX, BEST), hint richer neutrino sector.
- More than 3 active neutrinos with one (or more) sterile flavors.

TOTALLY THERMALIZED STERILE NEUTRINOS N_{eff} = 4.044; m_{v,ster} = free $\Delta N_{\text{eff}} = \left[\frac{7}{8}\frac{\pi^2}{15}T_{\nu}^4\right]^{-1}\frac{1}{\pi^2}\int dp \ p^3 \ f_s(p), \qquad \omega_s \equiv \Omega_s h^2 = \frac{m_s^{\text{eff}}}{94.1\text{eV}} = \frac{h^2 m_s^{\text{ph}}}{\pi^2 \rho_c}\int dp \ p^2 \ f_s(p),$

CMB S4 HEP Seminar UH | December 10th 2024

Totally thermalized Sterile Neutrinos

 Strongly disfavored using P18+ CMB Lensing +DESI BAO +PP vs. ΛCDM.

ΔAIC > 20

- When $+H_0 \implies \Delta AIC = 4.5$
- A fully thermalized eV scale short baseline sterile neutrino is as consistent with H_0 tension as Λ CDM

Garcia Escudero H. and Abazajian. K Dec. 2024, 2412.05451

Short baseline anomalies and Sterile neutrinos

Partially THERMALIZED STERILE NEUTRINOS 3 thermalization cases for 0.1 eV and 1 eV

1.-
$$N_{eff}$$
 = 3.49; $m_{\nu,ster}$ = 0.1 eV and 1 eV

2.-
$$N_{eff}$$
 = 3.12; $m_{v,ster}$ = 0.1 eV and 1 eV

3.-
$$N_{eff}$$
 = 3.05; $m_{v,ster}$ = 0.1 eV and 1 eV

Results adding H_0 -0.1 eV: ΔAIC=-11.0, -3.7, -2.1 -1eV: ΔAIC=25.9, 0.8, 1.1

Short baseline anomalies and Sterile neutrinos

Partially THERMALIZED STERILE NEUTRINOS :

- 0.1 eV partially thermalized sterile neutrinos studied are preferentially fit to data alleviating Hubble tension better than ΛCDM.
- Model with 0.1 eV part. Therm. ster. neutrino with N_{eff} 3.39 is strongly preferred over Λ CDM by its AIC as well as $\Delta \Box^2 > 3\sigma$.
- Preference due to correlation N_{eff}-Σm_ν in BAO; both can increase without altering BAO

11-parameter model: $\Lambda CDM + \omega_0 / \omega_a + \Omega_k + \Sigma m_v + N_{eff}$

Garcia Escudero H. and Abazajian. K Dec. 2024, 2412.05451

- Simple parameterizations don't often work.
- Test a significantly relaxed model
- Consistency with ACDM except:

-w _o more
positive
than Λ
over 3 σ
-less
than 2σ
away
from flat

Parameters	Benchmark			
$\Omega_{ m b}h^2$	0.02236 ± 0.00022			
$\Omega_{ m c}h^2$	0.1184 ± 0.0028			
$\log(10^{10}A_{ m s})$	3.053 ± 0.016			
$n_{ m s}$				
$ au_{ m reio}$				
$100 heta_{ m MC}$				
$\Sigma m_{ u}~(95\%~CL)$				
$N_{ m eff}$	2.98 ± 0.18			
Ω_k	0.0029 ± 0.0019			
w_0	$-0.961\substack{+0.012\\-0.037}$			
w_a	0.010 -0.066			

⊻⊼CMBS4

11-parameter model: $\Lambda CDM + \omega_0 / \omega_a + \Omega_k + \Sigma m_v + N_{eff}$

Garcia Escudero H. and Abazajian. K Dec. 2024, 2412.05451

- Simple parameterizations don't often work.
- Test a significantly relaxed model
- Consistency with ACDM except:

CMBS4

Parameters	Benchmark		
Ω, h^2	0 02236 + 0 00022		
No preference	for		
nontrivial w _a du	ie to 🛛 —		
shifts in other	:		
cosmological	.3		
parameters	_		
Ω_k	0.0029 ± 0.0019		
w_0	$-0.961^{+0.012}_{-0.007}$		
w_a	$0.013\substack{+0.039\\-0.066}$		
HEP Seminar UH De	cember 10th 2024		

11-parameter model: $\Lambda CDM + \omega_0 / \omega_a + \Omega_k + \Sigma m_v + N_{eff}$

Garcia Escudero H. and Abazajian. K Dec. 2024, 2412.05451

Adding tension datasets:

Benchmark := P18+CMB lensing + DESI BAO + PP

Parameters	Benchmark	$+ H_0$ Post.	$+ S_8$ Post.	$+ H_0 \& S_8 $ Post	•
$\Omega_{ m b}h^2$	0.02247 ± 0.00013	$0.02274\substack{+0.00017\\-0.00020}$	0.02237 ± 0.00022	$0.02273^{+0.00018}_{-0.00021}$	
$\Omega_{ m c}h^2$	0.1185 ± 0.0083	$0.1251\substack{+0.0028\\-0.0025}$	0.11756 ± 0.0027	$0.1241\substack{+0.0029\\-0.0025}$	-Increase N
$\log(10^{10}A_{ m s})$	3.049 ± 0.013	3.073 ± 0.018	3.049 ± 0.016	3.072 ± 0.015	ett
$n_{ m s}$	0.9683 ± 0.0036	$0.9808\substack{+0.0076\\-0.0069}$	0.9636 ± 0.0084	$0.9804\substack{+0.0076\\-0.0068}$	-Relavation
$ au_{ m reio}$	0.0586 ± 0.0071	0.0616 ± 0.0089	0.0581 ± 0.0074	$0.0619\substack{+0.0074\\-0.0060}$	
$100 heta_{ m MC}$	1.04108 ± 0.00029	1.04044 ± 0.00036	1.04119 ± 0.00043	$1.04048\substack{+0.0038\\-0.0043}$	2 m _v bound
$\Sigma m_{ u}~(95\%~CL)$	$< 82.1 \mathrm{meV}$	$< 125 \mathrm{meV}$	$< 112 \mathrm{meV}$	$< 130 \mathrm{meV}$	
$N_{ m eff}$		3.43 ± 0.15	2.94 ± 0.18	$3.39\substack{+0.18 \\ -0.13}$	
Ω_k		0.0023 ± 0.0017	$0.0029\substack{+0.0017\\-0.0020}$	0.0027 ± 0.0017	
w_0		$-0.975\substack{+0.012\\-0.024}$	$-0.962\substack{+0.012\\-0.036}$	$-0.978\substack{+0.018\\-0.031}$	
w_a		$0.016\substack{+0.027\\-0.045}$	$0.015\substack{+0.039\\-0.060}$	$0.019\substack{+0.028\\-0.043}$	

No model does better than Λ CDM solving H₀ + S₈ simultaneously

CMBS4

Conclusions and future work

- No model does better than ACDM in fitting cosmological data while solving cosmological tensions but...
- Include new cosmological data and reevaluate promising candidate models.
- Study and develop new candidate models further developing winner models:
 - 1.- New dynamical dark energy models
 - 2.- Primordial magnetic fields (include full magnetohydrodynamics (MHD) simulations)
 - 3.-Models providing extra N_{eff}: LRTs, exotic neutrino sector, ...

Conclusions and future work

- Cosmological observations are a very powerful tool for <u>high precision</u> determination neutrino cosmological parameters.
- Combined cosmological probes (CMB-S4 + BAO) revolutionize understanding of neutrino physics:
 - 1.- Test standard cosmological model predictions.
 - 2.- Shred light to existing cosmological anomalies.
 - 3.- Test new physics.
- Upcoming observational results next decade critical understanding Universe!

Thank you for attention! Questions?

Helena Garcia Escudero

(garciaeh@uci.edu)

41